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Abstract. The paper presents a mathematical model for bar cross-sectional optimization of steel structu-
reunder strength, stiffness and stability constraints. The theory of mathematical programming of extremum 
energy principles has been used for developing the introduced model. Solving a non-linear mathematical 
problem is subject to the MatLab programming environment. Because of the existing relationship between 
elastic response values and the optimized parameters of the structure, the problem has been calculated it-
eratively. The calculation algorithm has been applied to a frame with a truss span. The framing structure has 
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to the obtained optimal project, standard tube profiles have been chosen.
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Introduction

Optimal design is aimed at planning a project of the 
construction that ensures the strength, stiffness and 
stability of the designed structure as well as requires 
minimum cost to produce and operate the formation 
(Čyras et al. 2004).

Over the past decades, the structure optimization 
theory, methods, calculation algorithms and their in-
terface with computer simulation and design programs 
have been improved. It has been discovered that one of 
the most effective methods of structure optimization 
is the application of both – the theory of mathemati-
cal programming of extremum energy principles and 
plastic properties of materials (Atkočiūnas, Karkauskas 
2010; Karkauskas, Norkus 2006; Popov, Karkauskas 
2005; Kalanta 1997). It is also obvious that the evalua-

tion of deformable state parameters and plastic prop-
erties of materials accompanies more expressed work 
on the structure at different loading stages (Kaliszky, 
Logo 2002; Romero et al. 2004). This calculation meth-
od helps with the economical exploitation of materi-
als and creates a much more rational design project 
(Atkočiūnas, Karkauskas 2010; Kalanta 1997).

The minimal material mass (volume) of the struc-
ture is one of the main criteria of optimality and is 
being applied to the problems of construction op-
timization (Makris, Provatidis 2002; Luh, Lin 2008; 
Hernandez et al. 2005; Pereyra et al. 2003; Gil, Andreu 
2001). In most cases, extremum energy principles are 
formulated for identifying the actual stress and strain 
state of such formation. When static (internal forces 
or stresses) or kinematic (displacements or deforma-
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tions) variables are chosen as the main unknowns, ex-
tremum problems are obtained. The problems consist 
of an objective function and constraints describing the 
actual state of stress and strain. When these problems 
are resolved, the actual state of the stress and strain 
of the structure as well as its optimal parameters are 
identified (Atkočiūnas, Karkauskas 2010; Karkauskas, 
Norkus 2006).

The main tool for optimizing problems is the limit 
equilibrium theory ensuring the strength of the struc-
ture. However, often an optimal structure in terms of 
strength may not meet maintenance requirements. It 
happens when the structure that has not reached full 
plastic collapse faces high plastic deformations and 
displacements. In engineering practice, it is referred 
to as a limit state. There are two limit states of plas-
tically deformed structures – the limit state of safety 
related to plastic collapse and the limit state of eligi-
bility related to limit deformations (STR 2.05.08:2005; 
Eurokodas 3). 

The listed reasons complicate the practical ap-
plication of the limit equilibrium theory; however, 
to avoid this, deformability constraints could be in-
volved into the mathematical models of optimization 
problems. The evaluation of the parameters of the 
deformed state of the structure allows restricting the 
displacements of individual nodes or elements, limited 
slenderness of structure elements, etc.

The research is aimed at: 
 – forming and improving optimization problems 
calculating algorithms in the MatLab envi-
ronment under the evaluation of the strength, 
stiffness and stability constraints of the framing 
structure and with regard to non-elastic steel 
characteristics;

 – numerical experiment on the analysis and opti-
mization of the elastic-plastic framing structure 
under displacement constraints and at evalua-
ting the stability of the bars under compression.

The methodology is illustrated by a light-type 
framing structure with a truss span under quasi-stat-
ic, single type loading (Pedersen, Nielsen 2001). The 
presented framing structure is designed from tube 
profiles having functional dependence between cross-
section parameters, type and the thickness of the web. 
Optimality criterion for bar cross-sections is the used 
volume of the material.

1. Mathematical model for framing structure 
optimization in plastic collapse 

The optimization problem of the plastic collapse of the 
steel framing structure already having plastic defor-
mations is formulated when the configuration of the 
structure, external loads, its adding location, direction, 
value and optimality criterion are known. According 
to the optimum criterion, optimal resistant (limit) in-
ternal forces S0 (cross-sectional area A) are found. 

Strength, stiffness and stability constraints must 
comply with the actual stress and strain state of the 
structure prior to its plastic collapse. Thus, combining 
all these limitations and the application of the expres-
sion of energy dissipation (scattering) as a minimum 
objective function assists in obtaining a mathematical 
model for the optimization problem in plastic collapse 
(Atkočiūnas, Karkauskas 2010):
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where: L is a vector of element lengths; S0 is a vector of 
limited internal forces;  Γ   is the construction configu-
ration matrix;  Φ  is the matrix of yield conditions for 
the frame; S is a vector of total internal forces; A    is 
the coefficient matrix of structure equilibrium condi-
tions; F is a vector of external forces; min

0S  is a vector 
of lower restriction bounds to limited internal forces. 

When solving the above introduced mathemati-
cal programming problem (1), unknowns S and S0 are 
obtained. 

2. The problem analysing an optimal 
framing structure 

A system in plastic collapse is in the limit equilibrium 
state. Then, any small increase in load leads to the 
unlimited values of displacements and strains, and 
therefore is hard to decide on the critical state of the 
absolute values   of displacements and deformations. 
Because of a plastic mechanism, different deformed 
body situations may be obtained (Atkočiūnas, Kar-
kauskas 2010).

Knowing the physical parameters and external 
load of the structure, the problem of analysis occurs, 
which means that the actual stress and strain state pri-
or to the plastic collapse of the system is searched. The 
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optimal parameters of cross-sections are expressed via 
limit internal forces S0.

The mathematical model of the task for analysing 
an optimal framing structure isas follows (Atkočiūnas, 
Karkauskas 2010):
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where: Sr is a vector of residual internal forces; D is 
the general Hooke’s law flexibility matrix of the initial 
unstrained construction; Se is a vector of elastic inter-
nal forces.

This is a convex quadratic programming problem 
(Bazaraa et al. 2006). A solution to dealing with the 
problem of analysis points to residual internal forces 
Sr. Also, actual internal forces S = Sr + Se and displace-
ments u = ur + ue are obtained. Thus, this is the actual 
stress and strain state of the structure.

Residual displacements ur are obtained by solving 
a dual formulation of the problem (2). Moreover, as 
MatLab was used for reaching a solution to the opti-
mization problem, it makes possible to obtain the un-
known quantities of dual formulation by dealing with 
the problem (2).

3. Optimization of elastic-plastic framing 
structures under displacements constraints

The optimization problem of limiting displacements 
is formulated in case external loads and its adding lo-
cation as well as the direction and value affecting the 
configuration of structure are known. Upper and lo-
wer displacement changes are verified. According to 
structure requirements, the elements that are lower 
the boundary changes of internal forces are validated 
(form of optimality criterion form and its coefficients). 

Boundary distribution of internal forces should be 
found, which corresponds to the minimum capacity 
of the structure that did not reach requirements for 
plastic collapse.

A proposal to introduce the following boundary 
restrictions of eligibility (Karkauskas, Nagevičius 2007; 
Karkauskas, Norkus 2006) embraces

 – constraints of maintenance defining conditions 
that describe the real stress and deformation 
state of the structure. This is found based on the 
additional energy of deformation by the mini-

mum principle formalized from a pair of dual 
extremum problems and Kuhn and Tucker con-
ditions (Bazaraa et al. 2006); 

 – deformation constraints defining conditions for 
displacement restriction in particular places of 
the structure in certain directions:

 .( )r e
− +≤ + ≤u u u u , (3)

where: 0+ >u and 0− <u   – normative values 
of upper and lower limits to displacements. 
By solving the problem analyzing load-dis-
placement dependency, the values of upper 
and lower limits to displacements are obtained 
(Atkočiūnas, Karkauskas 2010).

 – defined technological or constructive require-
ments in normative documents for element sta-
bility or moments of boundary flexibility with 
regards to a lower limit to change min

0S .
Then, the total framing structures optimization 

problem by limiting displacements in the mathemati-
cal model that consists of three optimization problems, 
including plastic collapse, analysis and load displace-
ment dependency (Atkočiūnas, Karkauskas 2010), is 
written in the following way (Atkočiūnas, Karkauskas 
2010):
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where: [P] is a logical matrix of the displacement that 
evaluates lower conditions.

This is a nonlinear mathematical programming 
problem solved by the iteration method. The fourth 
restriction condition – Kuhn and Tucker complemen-
tary condition – gives much extremeness and greater 
complicates a solution to the problem. Thus, this mod-
el could be modified by eliminating residual internal 
forces Sr and residual displacements ur (Atkočiūnas, 
Karkauskas 2010).
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4. Numerical realization  
of the optimization problem

For proposing a solution to the iteration process opti-
mizing the problem of analysis, a flat framing structu-
re has been chosen. A numerical experiment has been 
performed thus including a mathematical model con-
sisting of strength, stiffness and stability constraints.

The configuration and load character of the ana-
lyzed structure are presented in the calculation scheme 
(Fig. 1.).

Struclural elements are designed considering the 
cross-sectional profiles of a hot-rolled tube.

The frame is designed with the same limited in-
ternal forces for the particular groups of elements of 
a structure: M01 – limited internal force depending on 
columns, M02  – boundary bars of the upper lane of 
the truss, M03 – rest elements of the upper lane of the 
truss (upper lane of the truss is accepted as uncut), 

N01 – the lower lane of the truss, N02 – the grid of the 
truss (Fig. 2).

The initial geometric characteristics of the cross-
section of frame bars are calculated according to the 
formulas that express functional dependence between 
cross-sectional parameters (Atkočiūnas, Karkauskas 
2010).
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where: Ix is a cross-sectional moment of inertia; Wpl is 
a plastic resistance moment of the cross-section; A is 
the initial cross-sectional area; a1, b1, a3, b3 are the co-
efficients of the geometric characteristics of the cross-
section that depends on the type of the cross-section 
and web thickness. The coefficients are given in Table 1.

Steel yield strength for columns and the upper 
lane of the truss is 275 MPa while the lower lane of 

Fig. 1. Computational scheme for a steel framing structure

Fig. 2. Discrete model for a steel framing structure
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the truss and the grid of the truss makes 235 MPa. 
Material elasticity (Young’s) modulus E = 210 GPa.

A discrete model containing 28 finite elements is 
presented in Figure 2. DOF = 35. All elements of the 
discrete model are formed as beam-column elements.

As the discrete model of the structure should be 
adequate for the work of internal forces, columns and 
the upper lane of the truss are approximated only as 
bending elements while the lower lane of the truss 
and the grid of the truss – as tensile or compressive 
elements. Thus, the unknown number of the internal 
forces of construction are n = 40.

In the case of bending elements, only the work of 
those is evaluated and yield conditions are written in 
the following way:

 0
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In the event of elements under tension and com-
pression, only the work of axial forces is evaluated and 
yield conditions are written in the following way:
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Table 1. The coefficients of geometric characteristics of profiles

Type of a  
cross-section

Web 
thickness, 

mm
a1 b1, a3, b3

Rectangular 5 0,0668 2,9665 0,2303 1,9851

Rectangular 6,3 0,0512 2,9099 0,1979 1,9619

Rectangular 8 0,0286 2,9470 0,1488 1,9779

Rectangular 10 0,0185 2,9558 0,1227 1,9782

5. Introduction into restrictions

 – Selecting lower limits to the moments of boundary 
flexibility

These boundaries are determined by solving the 
problem of frame optimization during plastic col-
lapse based on the mathematical model (1) in which 
internal boundary forces min

0,crS  of construction restric-
tions are related to the vector of frame elements from 
the minimum values of the moments of boundary 
flexibility min

0,crM . Those are calculated based on the 
formula (Karkauskas, Nagevičius 2007) introducing 
conditions for requirements for boundary slenderness  
(STR 2.05.08:2005):
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where: lb is the buckling length of the element and llim 
is the boundary slenderness of the element selected ac-
cording to STR 2.05.08:2005 instructions.

The calculated upper lane boundary slenderness 
of columns and truss – llim = 150. 

 – Determining internal boundary forces of a compressed 
bar

When a bar is affected by deformation, its internal 
boundary force N0 is axis force to buckling Ncr and 
is expressed in the following way (STR 2.05.08:2005):

 cr y crN A A= cσ = σ ,
 

(10)

where: cr yσ = cσ
 
is calculated buckling stresses and c 

is the reduction coefficient that depends on the non-
dimensional slenderness of the bar determined as fol-
lows:
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where: l is bar slenderness, / ,yE El = π σ   – Euler’s 
slenderness.

Then, the reduction coefficient can be calculated 
by EN3 given formula:

 butc = c ≤
ϕ+ ϕ −l2 2

1 , 1;
 

(12)
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where: a = 0.21 for hot forming pipes.

Solving the optimization problem by the math-
ematical model (1) got the final lower limit vector of 
internal boundary forces:

 
min min min min min min min
0 0, 01, 02, 03, 01 02,
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 – Selecting the upper and lower limits of displacements 

For this purpose, the calculation of the problem 
analysing the stress deformed state of the frame is 
executed employing the mathematical model of the 
problem analysing load and displacement dependency 
(Atkočiūnas, Karkauskas 2010). The earlier found val-
ues of internal forces S0 and reduced load redg =F F

 are used for restrictions on the problem. gred is the fac-
tor of reduced load making less than 1.

Frame limits umax are determined by solving the 
problem of analysis, i.e. displacement values before 
plastic collapse max

+u , if max 0+ >u  or max
−u , if max 0.− <u
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Then, by decreasing reduction factor gred displacement 
values umin are calculated when the first plastic hinge 
is opened. umin corresponds to the values of elastic re-
sponse min

+u  if min 0+ >u  or min
−u  if min 0− <u . 

Thus, limits to changes, under conditions of re-
strictions on the displacements of the mathematical 
model of the problem should match these values:

 tai min max0,+ + + +> ≤ ≤u u u u ,
 

                   tai min max0,− − − −< ≥ ≥u u u u .            (14)
 

The above provided conditions ensure plastic 
construction performance and allow optimizing it ap-
plying the mathematical model (3). Otherwise, no so-
lution for the problem can be suggested.

Restricted characteristic incision displacements 
include a top horizontal frame displacement with the 
boundary value of 4 cm ( 5 0,04,+ =u 5 0− =u ) and ver-
tical truss deflection with the boundary value of 2 cm  
( 15 150,02, 0+ −= =u u ).

Having a vector of lower limits from internal forc-
es and load reduction factor gred = 0.9999, the problem 
analysing load-displacement dependence can be solved 
(Atkočiūnas, Karkauskas 2010). With reference to this 
factor of reduction, upper limits to frame displace-
ments are as follows:

horizontal direction – on the top of the column: 

 5,max 5, 5, 5,19 0,00 5,19 cm;e r
+ = + = + =u u u

vertical direction – in the middle of the truss:

 15,max 15, 15, 1,21 5, 46 6,67 cm.e r
+ = + = + =u u u  

The load factor is decreased to gred = 0.7783 when 
the first plastic hinge is opened in the bars and dis-
placement values:

horizontal direction – on the top of the column: 

 5,min 5, 5, 4,00 0,00 4,00 cm;e r
+ = + = + =u u u

vertical direction – in the middle of the truss:

 15,min 15, 15, 0,90 0,00 0,90 cm.e r
+ = + = + =u uu

Limits to displacement changes correspond to 
condition (14) and the performance of elastic-plastic 
construction is ensured.

For the optimization process, starting boundary 
values of internal forces 20% greater than min

0S are 
chosen
 .0 220,0 80,0 450,0 450,0 450,0

Tpr =  
 S

 
By solving the problem of analysis using the ini-

tial vector of internal boundary forces, we can state 

that the initial restriction displacement values match 
the required conditions (14) because:

 54,00 4, 48 5,19;pru< = <  
 150,90 3,94 6,67.pru< = <  

Results of counting analysis. An optimal project 
has been achieved in 5 iterations when displacements 
are restricted and deformed bar stability is evaluated. 
In total, 2 plastic hinges, including those having 12 and 
13 elements in the lower lane of the truss, are obtained. 
Changes in the dynamics of the projected parameters 
during iteration processing are given in Table 2. The 
zero line displays the internal forces of starting bound-
ary (kNm, kN) and the values of the objective function 
(kNm2). The project of the optimal frame is shown in 
the last line.

Table 2. Optimization results under stability and  
displacement constraints

Ite
ra

tio
n

M01 M02 M03 N01 N02 LTS0

0 240,0 80,0 450,0 450,0 450,0 25870

1 199,4 46,5 427,5 459,7 406,2 23876

2 199,4 46,5 427,5 459,8 406,2 23877

Table 3. Chosen data on the framing structure

Element Profile A,  
cm2

Wpl, 
cm3

Iy,  
cm4

Mass, 
kg/m

Columns

M01 RHS 220×120×6.3 38,89 185,85 979,19 31,3

Truss

Upper 
lane M02

RHS 300×100×8 72,57 285,25 1224,41 57,0

Upper 
lane M03

RHS 300×200×8 75,24 574,46 5041,67 59,1

Lower 
lane N01

RHS 90×90×5 16,36 51,41 192,93 12,8

Grid N02 RHS 50×50×4 6,95 11,73 23,74 5,45

According to the optimally derived plan and re-
sistant internal forces, tube profiles are selected for 
the bars of the structure: for the columns of the frame 
structure and the upper lane of the truss – rectangular 
cross-sections and for the lower lane of the truss and 
the grid – square cross-sections (Table 3).

It can be noticed that an optimal plan is achieved 
by few iterations through limiting construction dis-
placements and evaluating stability. This determines 
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limits on the stability of the bars compressed by the 
structure. Limitations restrict the free spread of the 
non-elastic deformations of steel thus decreasing the 
interval from the formation of the first plastic hinge up 
to the plastic collapse of the structure (Fig. 3).

Table 4. Displacements of the framing structure

Horizontal displacement u5,max = 3.93 cm

Vertical displacement u15,max =2.07 cm 

Table 4 shows that displacement values meet nor-
mative requirements for regulated boundary deflec-
tions and displacements for such type of construction, 
but the performance of construction in the plastic state 
is less notable. Figure 3 presents the diagram of load-
displacement dependency.

Conclusions

1. The algorithm for calculating the optimal project 
and problems of analysis of the frame structure 
that has experienced plastic deformations has been 
made. The non-elastic qualities as well as strength, 
stiffness and stability of steel structure have been 
evaluated.

2. Finding an optimal project of the structure is a com-
plex task due to the existing relationship between 
elastic response values and optimized parameters 
which therefore determine the values of internal 
forces. Therefore, such tasks must be solved apply-
ing the iteration method.

3. The calculation algorithm has been applied for one-
span frame with a truss designed selecting standard 
profiles. The numerical experiment, under limits to 
the displacements of the characteristic nodes of the 

frame structure and under the evaluation of the sta-
bility of compressed bars, has been conducted. 

4. The problem of analyzing the stressed-deformed 
state of the optimal frame structure has been re-
solved obtaining real displacements and internal 
forces. The boundary values of displacements have 
been established. 

5. Aplastic deformation trajectory of the structure has 
been determined.
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TAMPRIOS PLASTINĖS RĖMINĖS KONSTRUKCIJOS OPTIMIZAVIMAS 
KOMPLEKSINĖMIS APRIBOJIMŲ SĄLYGOMIS

A. Gervytė, E. Jarmolajeva

Santrauka. Straipsnyje pateikiamas plieninių rėminių konstrukcijų strypų skerspjūvių optimizavimo uždavinio matemati-
nis modelis, kuris leidžia įvertinti konstrukcijos stiprumo, standumo ir stabilumo reikalavimus. Optimizavimo uždavinio 
matematiniam modeliui sudaryti taikoma matematinio programavimo teorija ir ekstreminiai energiniai principai. Neties-
iniam matematiniam programavimo uždaviniui spręsti taikoma MatLab programavimo aplinka. Dėl ryšio tarp konstruk-
cijos tampraus atsako dydžių ir optimizuojamų parametrų uždavinys sprendžiamas iteracijų būdu. Skaičiavimo algoritmas 
pritaikytas plokščiajam vieno tarpatramio rėmui su santvara. Rėminė konstrukcija diskretizuojama strypiniais baigtiniais 
elementais. Nustatytas minimalus konstrukcijos tūris, kai konstrukcija dar nepasiekusi visiško plastinio suirimo, tačiau 
atskiri jos elementai jau yra patyrę plastines deformacijas. Pagal gautąjį optimalų planą – strypų ribines įrąžas – parenkami 
standartiniai dėžiniai profiliuočiai. 

Reikšminiai žodžiai: optimizacija, tamprioji plastinė rėminė konstrukcija, energiniai principai, stiprumas, standumas, sta-
bilumas, MatLab.
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