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Abstract. According to Eurocode EN 1990 and Lithuanian Technical Regulation of Construction STR 
2.05.03:2003, structures should be designed to satisfy reliability requirements. The reliability of a structure 
can be achieved using one of 3 methods: partial factor (PF), PF assisted by testing and direct probability-
based method. When PF methods are used, the determined reliability of a structure is often greater than 
required; therefore the direct probability methods allow a more cost-efficient design. The reviewed literature 
suggests that even greater economical effect can be achieved by combining probability-based design meth-
ods with optimization. Unfortunately, the literature presents very few such methodologies. This article fo-
cuses on an optimal design of a truss under variable repeated loading at shakedown. The authors propose a 
model of a truss volume minimization problem with direct probabilistic evaluation of safety margin. The de-
veloped technique allows finding minimum volume of desirable reliability structure when loading, provided 
stochastic parameters are known in advance. The finite element method is applied for the discretisation of a 
structure. Mathematical programming is used to resolve the optimization problem.
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Introduction

Modern national and international design standards 
allow using partial factor (PF) and direct probability-
based (PB) methods for ensuring the required reliabil-
ity of a structure (Holický et al. 2004, Vrowenvelder 
2002). However, only PF method is used in practice, 
because of its disposition of definite calculation meth-
ods, characteristic values of material properties, de-
termined combinations of loading etc. Calculations 
based on PF method are rather simple and compre-
hensible. On the other hand, they produce poorer ac-
curacy. In the mathematical sense, the goal of partial 
factors is to ensure required (standardised) reliability 
of an element or an entire structure (Köhler et al. 2007; 
Užpolevičius 2006; Kudzys, Kliukas 2010). This means 
that a very small (admissible) possibility of structural 

failure should be permitted, the value of which would 
be based on economic and social expenses. 

As PB method determines the structural collapse 
probability more accurately than PF or permissible 
stress methods, more cost-efficient structures can be 
designed. This method is presented in the Eurocode 
standards (LST EN 1990), although it does not offer 
definite calculation methodologies. Scientists are in-
terested in creating such methodologies (Simões 2012; 
Užpolevičius, Amšiejus 2007; Mrázik, Križma 1997). 
In direct PB methods, the safety reserve of a struc-
ture is described by stochastic variables (Holický et al. 
2005, Kudzys 2005), such as the failure (collapse) prob-
ability, structural reliability and the index of reliability. 
The index of reliability is described in the standard EN 
1990. National standards indicate values for the index 



of reliability in terms of certain structures, depending 
on their significance (i.e. the significance of damage in 
case of collapse). 

Some authors indicate that compared with PF 
or other methods, the economic effect of 20% can be 
achieved by using the probability-based design meth-
ods (Užpolevičius 2006). Considering these facts, it is 
rational to use PB design for structural optimization 
problems (Schuëller, Jensen 2008). Thus, we can en-
sure the optimal required reliability and design of a 
structure (by chosen criteria) at the same time. It is a 
complex problem and, therefore, not many solutions 
are proposed in the literature.

In order to ensure a more effective design, plastic 
properties of materials can be taken into account in 
optimization problems. European Eurocode standards 
(LST EN 1993) allow for designing steel structures 
with plastic hinges (plastic deformations). It is rational 
to apply the shakedown theory for the design of stati-
cally indeterminate structures (Marti 2008; Kaliszki, 
Lógó 1998; Giambanco et  al. 1994). The shakedown 
theory exploits plastic properties of elements in order 
to reduce the required cross-sections in an optimal 
project of a structure. Residual internal forces of the 
structure in the state of shakedown ensure that after 
the complete loading cycle, the structure will not col-
lapse and stay in pseudo elastic state (plastic defor-
mations will stop). The loading cycle is a time period 
when all signs of plastic deformation development in 
the structure can be observed (Atkočiūnas 2011).

Unfortunately, examples of such design tech-
niques (methods) are rarely discussed in literature. 
Therefore, the purpose of this paper is to demonstrate 
the method for the effective design of a more economi-
cal structure with required standardised reliability, us-
ing simple mathematical calculations and an optimiza-
tion algorithm. 

This article focuses on a truss volume optimisa-
tion problem with the implemented probability-based 
design methodology. A truss is subjected to variable re-
peated loading, i.e. time varying, independent forces or 
their combinations. The assumptions and mathemati-
cal formulations of the direct PB design method are 
presented in detail. A mathematical model of a truss 
optimization problem, which allows finding minimum 
volume of desirable reliability structure is proposed. 
The finite element method is applied for discretisation 
of a structure and mathematical programming is used 
for the numerical solution to the problem. The numer-

ical example of a truss volume minimization problem 
is presented. Experiments were performed under the 
assumption of small displacements.

1. Discrete model of an elastic–plastic truss 

A discrete model of a truss is composed of n finite ele-
ments (members) connected to the nodes. The state 
of stress is generated only by axial forces, therefore, 
it is uniaxial. Statically admissible pseudo elastic axial 
forces N = [N1, N2, ..., Nk, ..., Nn]T and the residual 
forces Nr constitute the total internal forces of an elas-
tic–plastic truss: N = Ne + Nr. Acting loading is de-
scribed by the vector F = [F1, F2, ..., Fm]T, where m is a 
degree of freedom of a structure. Thereby equilibrium 
equations of an entire discrete structure read as follow: 

 AN = F,  (1)

where A(m × n) is the coefficient matrix of equilibrium 
equations. It is also used for determination of residual 
axial forces Nr = [Nr1, Nr2, ..., Nrk, ..., Nrn]T:

 ANr = 0.  (2)

Elastic internal forces are calculated using an in-
fluence matrix of internal forces α: 

 Nr = αF, α = KAT(AKAT)–1,  (3)

where K is the stiffness matrix composed of individual 
stiffness of discrete elements kk = (EApk)/lk (lk is the 
length of k-th element, Apk is cross-sectional area, E 
is the modulus of elasticity). The axial force of an in-
dividual discrete element is calculated using the sub 
matrix (line) of α, which is related to k-th element: 
Nek = αk F. Thus, without loss of generality, the axial 
force can be expressed as a function of cross-sectional 
areas Ap, lengths l, modulus of elasticity E and loading 
vector F: 
 Nek = f(Ap, E, l, F), (4)

Fig. 1. Physical model of ideal elastic–plastic material
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The limit axial force N0k = Apk fyk (k = 1, 2, ..., n) is 
assumed to be constant over the entire finite element; 
fyk is the material yield stress. An ideal elastic–plastic 
stress–strain state model is applied for the structure 
(Fig. 1). 

2. Probability-based truss design 

When PB method is applied to a truss design, all 
variables X that describe load effect and structural re-
sistance are random with the normal distribution of 
probability density: X ∈ N(µX, σ2

X). For the sake of 
simplicity, element buckling is ignored is this study, 
therefore, a form of cross-section has no influence on 
the calculations. Thus, the structural resistance func-
tion of k-th element reads as follows:

 Rk = r(fyk, Apk, ∆R), (5)

the function of load effect is:

 Ek = e(Nek, Nrk, ∆E). (6)

Consequently, the safety margin function is:

 Zk = Rk – Ek = r(fyk, Apk, ∆R) – e(Nek, Nrk, ∆E) =

z(fyk, Apk, Nek, Nrk, ∆R, ∆E) = 
N0k – Nek – Nrk + ∆R + ∆E = 
Apk ⋅ fyk – αkF – Nrk + ∆R + ∆E,                         (7)

where ΔR is the error of the structural resistance cal-
culation model and ΔE is the error of the load effect 
calculation model.

Variables of structural resistance and load effect 
functions are random and have normal distributions; 
therefore, the function of safety reserve has the normal 
distribution too: Zk ∈ N(µZk, σ 2Zk). The reliability in-
dex of the safety margin function βk is the main crite-
ria of the probability-based design method. A graphi-
cal interpretation of the probability density function 
h(Zk) is shown in Fig. 2. 

Eurocode standards require that the reliability in-
dex of all structural elements should be higher or equal 
to the indicated value βnk. This way, sufficiently small 
failure probability αk of elements is ensured (Fig. 2). 

The reliability index βk of the element k is calcu-
lated according to the formula:

  
(8)

where µZk is the value of the safety margin in mean 
points:
µZk = z(µx) = µApk ⋅ µfyk – µNek – µNrk + µ∆R + µ∆E,   (9) 

σZk is the mean square deviation of the safety 
margin function:

 

                       (10)

After differentiation operations we get:

σZk = [(Apk ⋅σfyk)2 + (fyk ⋅σApk)2 + (σNek)2 +

(σNrk)2 + (σΔR)2 + (σΔE)2 + 2σREσ2
ΔEσ2

ΔR]1/2,   (11)

where σXk is the square deviation of random variable 
X, σΔR, σΔE, σRE are the square variations of resistance 
and effect functions and their correlation (Ditlevsen, 
Madsen 2007). The square deviation of the axial force 
Nek function (4) is calculated in the same manner: 

    

                           
(12)

Calculations of such partial derivatives are rather 
complicated, thus simplified methods, such as Richard-
son extrapolation, are applied (Jankovski, Atkočiūnas 
2008).

Fig. 2. The probability density function of the safety margin Zk
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3. The mathematical model of a truss volume 
optimization 

The mathematical model of a truss volume minimi-
zation problem with constraints for reliability of ele-
ments, when the truss is subjected to variable repeated 
loading, reads as follows: 
find
 min LT Ap, (13)

subject to
 ANr = 0, (14)

	 β≥ βn, (15)

 Ap ≥ Amin. (16)

It is a linear mathematical programming problem. 
The objective function (13) express volume of truss ele-
ments: LT is the vector of truss elements and Ap = [Ap, 
Ap2, ..., Apn]T is the vector of corresponding cross-sec-
tional areas. Conditions (14) describe the equilibrium 
of the residual axial forces Nr . Conditions (15) en-
sure required reliability indices of structural elements;  
β = [β1, β2, ..., βk, ..., βn]T is the vector of truss element 
reliability indices and βn is the vector of standardized 
reliability indices. Conditions (16) are construction reg-
ulation constraints (implied by the designer or indicat-
ed in standards); Amin is the vector of minimal allowed 
cross-sectional areas. The unknowns of the problem 
(13)–(26) are the vector of the element’s cross-sectional 
areas Ap and the vector of residual axial forces Nr.

The components of the vector β in conditions (15) 
are written in modulus to satisfy the validity of safety 
margin function both for positive and negative axial 
forces, i.e. for tension and compression. Thus, the ex-
pression for the k-th element of a truss is:

(17)

where μNek,max and μNek,min are the extreme pseudo 
elastic axial forces of k-th element. A time function 
of variable repeated loading F(t) is often substituted 
by the combinations Fj, which describe all vertexes 
of loading locus. Thereby μNek,max and μNek,min are 
extracted from all possible internal forces caused by 
loading combinations Fj (j = 1, 2, ..., p, p = 2m) in el-
ement k (Merkevičiūtė, Atkočiūnas 2005). Thus, the 
conditions (17) are essentially yield conditions with 
stochastic variables. 

4. Numerical example of a truss optimization 

A bridge type truss subjected to a pair of forces that 
can take any of five positions (discretised moving load) 
is analysed (Fig. 3). The main task is to find the mini-
mum volume of the truss by solving the problem (13)–
(16) and ensure that reliability indices of all members 
are higher or equal to βn = 3.8.

The following presumptions are considered: the 
length of elements are invariable (determined values); 
variations of elastic internal forces are assessed all at 
once, without considering the influence of variations 
of cross-sectional areas Ap, nor the modulus of elastic-
ity E, or external forces F; the structural resistance and 
the load effect functions are independent, i.e. σRE = 0; 
the error of the load effect calculation model is ne-
glected – σΔE = 0. The effect of the variable repeated 
loading is evaluated through vectors of extreme inter-
nal forces and applied to the corresponding equation 
of the reliability index calculation (17). 

The following stochastic parameters were known 
in advance: the steel yield stress (μfy, σfy) = (530 MPa, 
58.3 MPa); the cross-sectional areas υAp = 0.05; elastic 
axial forces σNe = 40 kN; errors of the structural resis-
tance calculation model (μΔR, σΔR) = (21 kN, 6 kN). 
The predefined minimal cross-sectional area for all ele-
ments is Amin = 5 cm2. 

This is a continuous optimization problem, dis-
crete values of real steel cross-sections are neglected, 
thus calculation results are mathematically ideal val-
ues, which satisfy the model (13)–(16) conditions 
without reserve. Real cross-sections can be ascribed 
to members of the truss subsequent to analysis of 
continuous optimisation results. Members could also 
be grouped before the optimization (e.g. all web ele-
ments could be the same), but in this case we assumed 

Fig. 3. Truss subjected to moving load
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that all elements could be different. Unification of ele-
ments is more rational when stress (or internal forces) 
distribution is available, i.e. if optimization results are 
considered. 

The constraints of the model (13)–(16) are depen-
dent on the unknowns (cross-sectional areas); there-
fore, the solution algorithm is performed in the fol-
lowing iterative manner:

 – initial cross-sectional areas Apk,init are pre-
scribed for all elements k ∈ K;

 – the global stiffness matrix K is composed with 
the initial cross-sectional areas and mean values 
of the elastic axial forces μNek,max, μNek,min and 
a deviation σZk of structural resistance function 
distribution for all k ∈ K are calculated;

 – new cross-sectional areas Apk,new are received 
by solving the linear mathematical programing 
problem (13)–(16);

 – new cross-sectional areas are prescribed as initi-
al ones Apk,init =Apk,new and the cycle of problem 
(13)–(16) solution is repeated while a change of 
truss volume value in adjacent iterations is as 
small as desired. 

Such iterative calculation is reasonable in case of 
the analysed example (convergence achieved after 6 
iterations, see Fig. 4). It allows resolving simpler for-
mulation of the optimization model compared with 
possible nonlinear solution if variables as functions in 
the constraints are introduced. Calculations were per-
formed using Matlab programming environment. The 
results are presented in Table 1. The optimal solution 
consists of cross-sectional areas A* and residual axial 
forces Nr

*. Extreme axial forces in every element k are 
also calculated: Nmax,k = μNek,max + Nrk and Nmin,k = 

μNek,min + Nrk. These forces do not exist in the struc-
ture at the same time, but arise in separate elements on 
different stages of the shakedown process. The optimal 
distribution of cross-sectional areas is relatively shown 
in Fig. 5. The optimal volume of the truss, calculat-
ed with respect of above stated conditions, is Vopt = 
0.43926 m3.

The influence of individual stochastic variables 
to the results of calculations is further analysed. The 
square products in the formula (11) have a meaning 
of different variable errors in the safety margin calcu-
lation function. For example, an actual function with 
numerical values for the 8-th element reads as follows: 
σZ8 = [(Ap8 ⋅ σfy8)2 + (fy8 ⋅ σAp8)2 + 
(σNe8)2 + (σNr8)2 + (σΔR)2]1/2 = 
[(0.006⋅58300)2 + (530000⋅0.05⋅0.006)2 + 402 + 62]1/2 =
[12.24 ⋅104 + 2.53 ⋅104 + 0.16 ⋅104 + 36]1/2.

From these results we can easily determine, that 
the greatest influence for this variable is achieved by the 
first component, i.e. the square product of the cross-
sectional area and the square deviation of yield stress.  Fig. 4. Convergence of the iterative problem solution

Table 1. Results of the problem solution

Element 
No A*, cm2 Nr

*, kN Nmax, kN Nmin, kN βn

1 52.61 0.00 800.00 0.00 3.80

2 53.73 27.98 818.99 27.98 3.80

3 56.79 19.28 870.92 19.28 3.80

4 52.23 17.21 793.62 17.21 3.80

5 57.33 0.00 880.00 0.00 3.80

6 64.46 0.00 0.00 –1000.00 3.80

7 59.00 28.85 28.85 –908.13 3.80

8 60.24 19.28 19.28 –929.09 3.80

9 58.55 17.74 17.74 –900.52 3.80

10 70.43 0.00 0.00 –1100.00 3.80

11 34.21 27.98 482.82 27.98 3.80

12 18.64 –34.98 203.53 –203.53 3.80

13 16.59 –39.58 165.71 –165.71 3.80

14 26.90 40.27 353.37 40.27 3.80

15 16.36 –27.27 161.41 –161.41 3.80

16 21.88 –27.27 262.86 –178.01 3.80

17 25.91 32.19 335.70 22.20 3.80

18 23.49 –21.51 292.03 –117.74 3.80

19 14.26 –24.33 122.16 –122.16 3.80

20 35.96 17.21 513.62 17.21 3.80
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The cross-sectional area of optimization problem is 
unknown; therefore, the most effective way to improve 
the reliability of structures is to reduce the square de-
viation of yield stress. The latter value is mostly in-
fluenced by steel manufacturing technology and the 
quality control during manufacturing. It is worth 
mentioning, that the deviation of the production of a 
particular steel manufacturer can be smaller than the 
one indicated in the standards, where the worst case 
scenario is always implicated. Thus, a possibility of 
more economical design emerges with the knowledge 
of particular steel product characteristics.

The relation between the reliability index βn and 
the optimal truss volume according to the problem 
(13)–(16) is further analysed. After solving a set of 
problems, nonlinear distribution of these values was 
found (Fig. 6). It is evident that the volume of truss 
increases with higher values of desired reliability. A so-
lution to the abovementioned detailed example (when 
βn = 3.8) is also in the graph.

Conclusions

1. A proposed methodology allows effective and eco-
nomical designing of structures with direct proba-
bilistic evaluation of the safety margin using a mod-
erate amount of mathematical calculations and an 
optimization algorithm. 

2. The considered method is based on implication of 
the probability-based design in the mathematical 
programming optimization problem of a discrete 
structure.

3. A numerical example showed that the greatest in-
fluence to the optimal volume of structure has the 
variation of the steel yield stress; therefore, the re-
duction of its value is the most effective way to a 
more economical design. The latter value is mostly 
influenced by steel manufacturing technology and 
its quality control, thus it is recommended to con-
sider controlling this parameter.

4. Further analysis of the developed optimization 
model showed a nonlinear dependence of the op-
timal truss volume on the reliability index βn. That 
validates the necessity to apply optimization tech-
niques in each particular case and does not allow 
any prejudgement of possible structural reliability.
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OPTIMALIOS TAMPRIAI PLASTINĖS SANTVAROS PROJEKTAVIMAS  
TIKIMYBINIU STATISTINIU METODU

G. Blaževičius, R. Šalna

Santrauka. Europos projektavimo normos EN 1990 ir Lietuvoje galiojantys statybos techniniai reglamentai STR 2.05.03:2003 
reglamentuoja konstrukcijų projektavimą užtikrinant normuotąjį patikimumą. Konstrukcijos patikimumas gali būti užti-
krintas trimis metodais: dalinių koeficientų (DK), DK su bandymais ir tikimybiniu informaciniu statistiniu (TIS) metodu. 
Taikant DK ar DK su bandymais metodus suprojektuotos konstrukcijos patikimumas dažnai viršija normuotojo patikimumo 
reikšmę, o tiesioginis tikimybinis projektavimas sudaro prielaidas projektuoti ekonomiškiau. Kaip rodo literatūros šalti-
nių analizė, pasiekti dar didesnį konstrukcijos ekonomiškumą galima jungiant TIS metodą su konstrukcijos optimizavimu. 
Straipsnyje pademonstruota, kad, pasitelkus nesudėtingus matematinius skaičiavimus ir pritaikius optimalaus sprendinio 
paieškos algoritmą, galima efektyviai projektuoti statybines konstrukcijas užtikrinant reikiamą normuotąjį patikimumą. 
Straipsnyje nagrinėjama kintamosios kartotinės apkrovos veikiama prisitaikanti santvara. Sudarytas tūrio minimizavimo 
uždavinio modelis, tiesiogiai tikimybiškai įvertinant konstrukcijos atsparumo atsargą. Iš pateikto skaitinio pavyzdžio re-
zultatų nustatyta, kad didžiausią įtaką optimaliam santvaros tūriui iš visų atsitiktinių dydžių turi plieno takumo įtempių 
kvadratinė nuokrypa. Todėl jos mažinimas yra efektyviausias būdas siekiant didesnio konstrukcijos ekonomiškumo. Kons-
trukcijos diskretizacijai taikomas baigtinių elementų metodas. Skaitiniam optimizavimo uždavinio sprendimui pasitelktas 
matematinis programavimas.

Reikšminiai žodžiai: tiesioginis informacinis statistinis projektavimas, santvara, optimizacija, matematinis programavimas.
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