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formed the numerical simulation on MATLAB.
Keywords: elliptic interface problems, steady state heat conduction, immersed interface method, composite 
systems.

Corresponding author:
P. Joshi E-mail: pratibha.joshi@gmail.com

Introduction 

Studies regarding steady state temperature distribu-
tion in composite structures have become of great 
importance due to expanded use of composite mate-
rial in many industrial applications e.g. aerospace, au-
tomotive, shipbuilding, nuclear and many others. We 
need thermal profiles of modern composite materials 
in various engineering problems e.g. construction of 
furnaces, conductors (Seyidmamedov, Ozbilge 2006) 
thermal protection applications, laminated and fiber 
reinforced materials, cooling problems etc. In many 
modern composite systems e.g. thermal barrier coa-
tings, optical coatings, electronic packages, we rely on 
integrity of interfaces for material reliability. Hence, we 
investigate their thermal performance by a qualitative 
thermal analysis. 

The phenomenon of steady state heat conduction 
in composite structures, Joshi and Kumar (2012) is 
governed by elliptic boundary value problems with in-

terfaces, which are often called elliptic interface prob-
lems. The difficulty to solve such problems is caused 
when there is discontinuity across the interfaces. Dis-
continuity can be either in the solution or flux or the 
coefficient in the governing partial differential equa-
tions. Standard finite difference methods may not give 
accurate results for these problems especially near the 
interfaces because of the discontinuity. 

Previously a number of approaches have been 
proposed for solving problems of steady state heat con-
duction in different types of composite systems. Most 
of them are capable of solving those problems only in 
which there is no discontinuity along the interface i.e. 
the contact between two materials is perfect. 

In Seyidmamedov and Ozbilge (2006), a numeri-
cal scheme is used to solve transmission problems 
that arise in steady state heat conduction. Two types 
of problems; the two layered nonhomogeneous me-
dium interface problems and three–layered medium 



(conductor-isolator-conductor) interface problems are 
modelled and solved by a conservative finite difference 
scheme on non uniform mesh. In Noor and Burton 
(1991), a predictor-corrector method is proposed for 
determining temperature and heat flux in composite 
plates and shells. The method is based on using the 
information obtained from a simple two-dimensional 
shear deformation theory to correct certain key ele-
ments of the computational model and hence improve 
the response predictions. The plates are assumed to 
be antisymmetrically laminated with respect to the 
middle plane and the cylinders are constructed of or-
thotropic layers. 

In Berger, Skilowitz and Tewary (2000), Green’s 
functions are obtained through a Fourier representa-
tion for solving steady state heat conduction problems 
in anisotropic bimaterials. The Green’s function is 
shown to degenerate to the usual logarithmic poten-
tial for steady state heat conduction in both uniform 
anisotropic and isotropic solids. To obtain the region-
dependent parts of the Green’s function, the homo-
geneous solution is written using the virtual force 
method. In Datskovskii and Yakunin (2005), steady 
state heat conduction problems in a composite region 
with boundary conditions of the fourth kind are solved 
by a Fourier method. Solution is constructed in each 
individual region.

In Zarubin and Radikov (2007), temperature state 
of an inhomogeneous body has been determined by a 
numerical method based on employing a dual varia-
tional formulation of the problem; which includes 
alternative functionals, where the direct functional 
reaches a minimal value and the alternative function-
al a maximal value, which allows finding the mean-
square error of the solution.

A fundamental heat conduction problem has been 
solved by Ma and Chang (2004) in anisotropic multi-
layered media having steady state heat temperature and 
heat flux fields in each layer subjected to prescribed 
temperature on the surface and perfect thermal con-
tact. The anisotropic multi-layered heat conduction 
problem is reduced to equivalent isotropic ones by a 
linear coordinate transformation without complicating 
the geometry and boundary conditions of the problem 
and its analytical exact solution has been determined by 
Fourier transform and the series expansion technique. 
In Xia and Jacobi (2004), the temperature distribution 
in a two-dimensional composite fin comprised of a fin 
and coating material is analyzed. An exact solution of 
this problem is obtained by the separation of variables. 

Green’s functions in boundary element approach 
are used to solve heat conduction problems with im-
perfect interface by Ang (2006) and Ang, Choo and 
Fan (2004). Green’s functions are derived which satis-
fies the appropriate interface condition and solution of 
the governing partial differential equations is obtained 
which is expressed in terms of an integral taken over 
only the exterior boundary of the region. A particular 
type of jump condition has been taken where the tem-
perature jump is proportional to the heat flux jump.

In Sheikh, Beck and Agonafer (2003), steady state 
heat conduction in two-layer bodies with boundary 
conditions of the first, second, and third kind have 
been studied. This study includes tables to assist the 
selection of eigenfunctions and computation of the ei-
genvalues. The computations include the contribution 
of contact resistance to the temperature solution. The 
eigenvalues are evaluated by an efficient computational 
approach.

In real world applications there is no perfect con-
tact between composite systems practically. We can 
find different types of discontinuities in microscopic 
observation of such systems. In this paper decom-
posed immersed interface method has been applied to 
solve problems with imperfect contact and a general 
class of discontinuous jump conditions in temperature 
and flux. A decomposed immersed interface method 
is presented by Berthelsen (2004) where a correction 
term is introduced to standard difference stencil on the 
right hand side only so that the resulting linear system 
remains symmetric and diagonally dominant which 
can be solved by standard solvers. This correction term 
is decomposed in both cartesian directions. We have 
applied this method in inhomogeneous composite sys-
tems and computational results are discussed in graph-
ical and tabular form. Our motivation towards this 
work is the industrial importance of steady state heat 
conduction in composite systems (Kumar, Joshi 2012a, 
2013) and the efficiency and robustness of this method 
for handling interfaces. The proposed method is sec-
ond order accurate, fast, efficient and easy to apply. 

The remainder of the paper is constructed as fol-
lows: In Section 1, we have explained the decomposed 
immersed interface method. In Section 2, two steady 
state heat conduction problems in inhomogeneous 
composite systems with discontinuities along the inter-
face have been solved and their computer simulations 
have been performed and in the last Section, we have 
summarized our work with some conclusions.
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1. A decomposed immersed interface method  
for elliptic interface problems 

The original immersed interface method (IIM) given 
by Li (1994), solves any elliptic interface problem by 
including the interfacial boundary conditions into the 
finite difference discretization in such a way that it 
preserves the jumps in the solution and its derivatives. 
The original IIM adds additional nodes to numerical 
stencil, leading to a non-symmetric matrix. This non-
symmetric matrix reduces the numbers of efficient nu-
merical solvers to be used and convergence is not al-
ways guaranteed (Kumar, Joshi 2012b). This increases 
the computational cost of solving this matrix. 

 A decomposed immersed interface method is in-
troduced by Berthelsen (2004) which keeps the stan-
dard finite difference stencil making only corrections 
to the right hand side of the problem. As a result, the 
linear system remains symmetric and diagonally dom-
inant. The order of accuracy is improved by including 
more jump conditions. In this method, the interface is 
represented by a level set function.

We find this method appropriate for solving the 
class of problems discussed in section 1 because we 
have to add correction term only for irregular points. 
At regular points jumps becomes zero the descretiza-
tion reduces to the standard finite difference scheme. 
The method is second order accurate and easy to im-
plement. Let us discuss the method in detail.

Suppose we have a domain W divided into two (or 
more) subdomains W+ and W–by a lower dimensional 
interface G. Let us consider an elliptic boundary value 
problem

 

 ∂ ∂ ∂ ∂  + = ∈W  ∂ ∂ ∂ ∂   
( , ) ,u uk k f x y x

x x y y
  (1)

with Dirichlet boundary conditions

 = ∈dW( , ) ( , ), ( , )u x y g x y x y , 

where dW is the boundary of the domain W. Suppose 
k and source term f have jumps across the interface G, 
i.e.

 

+ +

− −

 ∈W= 
∈W

, ( , )
, ( , )

k x y
k

k x y
  (2)

and

 

+ +

− −
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∈W

, ( , )
,

, ( , )
f x y

f
f x y

 
 (3)

which can cause discontinuities in the solution and its 
derivatives specified as

 

= ∈G  
= ∈G  

( , ), ( , )

( , ), ( , ) ,n

u w x y x y
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= ∇

∂
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n
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 is normal derivative of ,u n


 
is the local unit normal vector to the interface pointing 
towards the W+ – region and the jumps are defined as 
the limiting values
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Level set representation of the interface. Let us de-
fine a smooth auxiliary function f( , )x y  as

 f = ±( , )x y d ,
where d is the shortest distance to the interface. The 
interface is represented by the zero level set of the 
function f,

 
( ){ }G = ∈ f =2, | ( , ) 0x y R x y .

The sign of f indicates whether ( ),x y  is in the 
W+ – region (in case of positive sign) or in the W– – 
region (in case of negative sign) i.e.

 

−

+

W f <W =  f ≥W

, 0
.

0,
Numerical discretization. Suppose we have a rect-

angular domain W = ×      , ,a b c d . The uniform grid 
is defined as

 
= + = +,i jx a ih y c jh ,

where − −
= =

b a d ch
M N

 and ≤ ≤ ≤ ≤0 , 0i M j N .

A grid point is called regular if the neighbouring 
nodes are on the same side of the interface whereas 
a grid point is irregular if at least one neighbouring 
node is on the other side of the interface. Now ellip-
tic equation (1) can be approximated by the following 
discretization

( ) ( )

( ) ( )

+ + − −

+ + − −

− − −
+

− − −
=

1/2, 1, , 1/2, , 1,
2

, 1/2 , 1 , , 1/2 , , 1
,2

,

i j i j i j i j i j i j

i j i j i j i j i j i j
i j

k U U k U U

h
k U U k U U

f
h

 
                                                                     (5)

where ( )= =, ,, , ( , )i j i j i j i jU u x y f f x y  and 

+ = +1/2, ( / 2, )i j i jk k x h y .
A correction term ,i jC  is introduced on the right 

hand side of equation (5) to make the numerical dis-
cretization well defined at irregular nodes and should 
vanish at regular nodes. This correction term can be 
decomposed directionwise since jump condition can 
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be decomposed in the x- and y- directions allowing 
for a dimension by dimension approach. Hence we can 
define correction term as

 
= +, , ,

yx
i j i j i jC C C .  (6)

If we will evaluate correction term in x direction 
we can get another correction term by the similar pro-
cedure in y-direction. Hence we will discuss the proce-
dure of evaluating correction term in only x-direction.

Let us suppose that interface is located at 

G = + σix x h, ≤ σ ≤0 1, 
+

f
σ =

f − f 1

i

i i
, where xi is an 

irregular node and ( )f = fi ix . The correction will be 
done in two steps. First we will correct the numerical 
discretization of ux, then, the approximation of ( )x xku

 
. 

The first derivative is estimated at the centre between 
xi and +1ix . The correction of this approximation de-
pends on what side of +1/2ix  the interface is located. 

Writing expression for ( )+1iu x  at G = + σix x h  
for the case f < < σ ≤0 and 1/ 2 1i  using Taylor’s se-
ries expansion
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2
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2
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Expanding ( )iu x at +1/2ix  we get
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2
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From (7) we can evaluate the correction term as
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2 2
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Subtracting (8) from (7) we get
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For the case < σ ≤0 1/ 2  expanding ( )iu x at 
G = + σix x h  we get
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and Expanding ( )+1iu x at +1/2ix  by Taylor’s series 
expansion
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In this case correction term can be evaluated as
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Also, the approximation of flux xku  needs to be 
corrected, if it is discontinuous and < σ ≤0 1/ 2 . Hence 
expanding xku  at +1/2ix : 
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Similarly expanding xku  at −1/2ix :
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Hence the correction term C2 can be evaluated 
from (11) as
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Hence for − G +≤ ≤1 1i ix x x , we can numerically 
approximate ( ) ( )x ixku x  as

( ) ( ) ( ) ( )
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+ + − −− − −
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with correction term
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where the parameters λ σ, and k are defined as
 – If G +≤ ≤ 1i ix x x ;
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f
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1
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i i
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The jumps become zero where solution is smooth 
and continuous and therefore correction term gets 
vanished. In that case (16) reduces to standard finite 
difference approximation for ( )x xku . In Berthelsen 
(2004) the method for approximating jump conditions 
is also given if they are unknown. Since the correc-
tion term is added only at right hand side, the system 
of linear discretized equations is a symmetric and di-
agonally dominant matrix and can be solved with any 
standard solver. In higher dimensional problem we can 
similarly evaluate expression for correction terms in 
each direction. We found this method appropriate for 
solving such problems because of the following rea-
sons:

 – The method is easy to implement since the cor-
rection term only needs to be added to the right 
hand side of the system.

 – The method is second order accurate.
 – The method is robust and can be applied to va-
riety of problems.

 – The coefficient matrix can be solved any stan-
dard solver.

In the next section, we have determined temper-
ature distribution in two inhomogeneous composite 
systems with different types of boundary condition 
and discontinuous jump conditions using decomposed 
immersed interface method and performed their com-
puter simulation in MATLAB 7.0.1 with computer 
configuration Intel Atom processor and 2 GB RAM. 

2. Computer simulation 

Problem 1. In first problem we have taken the same 
composite system as discussed in Datskovskii and 
Yakunin (2005) but with different assumptions. Hen-
ce, the boundary conditions and jump conditions are 
different. In Datskovskii and Yakunin (2005) the con-
tact has been taken perfect but we assume that tem-
perature and heat flux are discontinuous along the 
interface. 

Mathematical model of problem 1. We take a com-
posite system (see Fig. 1) having two regions R1 and R2 
with different thermal conductivity 1 2

2 2and K K  along 
y-direction, and same thermal conductivity K1 along 
x-direction having contact at = 1y b . We suppose tem-
perature of each region is Ti, i = 1,2. Hence according 
to the assumption, we have taken; steady state heat 
conduction in this system is modelled as following:

The governing elliptic equation is

 ∂ ∂ ∂ ∂
+ = =  ∂ ∂ ∂ ∂   

1 2 0 , 1,2,i iiT T
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x x y y
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∂
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∂
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0
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T
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∂
=

∂
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1

, 0,
0
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T
x

, 

( )= ∈

∂
=

∂
1 2

2

0, ,
0
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T
x

,

( )= ∈

∂
=

∂
2 1 2

2

, ,
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T
x

,

( )∈ = =
2 22 0, , px a y bT T

and jump conditions

( )∈ =− =
1 11 2 0, , ,x a y bT T A
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( )∈ =

∂ ∂
− =

∂ ∂
1 1

2 1

0, ,
,

x a y b

T T
B

y y

( )∈ =

∂ ∂
− =

∂ ∂
1 1

2 12 1
2 2
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x a y b

T T
K K C

y y

We have solved the above problem using decom-
posed immersed interface method in MATLAB 7.0.1 
taking uniform mesh. The computation has been per-
formed for these values of parameters: 

=1 50W/m.degK  , =1
2 100 W/m.degK ,

=2
2 200W/m.degK , =1 0.01 ma  , =2 0.02 ma ,
=1 0.002 mb , =2 0.004 mb , =0 20 deg,T = 30 deg,pT
= −6 degA , = 2000 deg/m,B = × 5 27 10  deg/mC . 

The analytic solution of this problem is

( )
( )

∈+=  + ∈

1

2

,3000 20
( , )

5000 10 ,A
x y Ry

T x y
y x y R

.

Temperature distributions in region (R1) and re-
gion (R2) are shown in Figure 2 and Figure 3 respec-
tively. It can be be visualized from the figures that the 
temperature in this system varies along height only. 
The figures are plotted taking 20×20 mesh. For analyz-
ing efficiency of our approach, we have also compared 
the approximate numerical solution with analytical so-
lution and demonstrated the maximum absolute error 
in Table 1 at some grids. 

Table 1. Maximum absolute error

Grids ||en||  ∞ by Decomposed IIM

10×10 3.197442310920451e-014

14×14 2.842170943040401e-014

Problem 2. We take another composite system, 
described in Zarubin and Radikov (2007) with differ-
ent assumptions. It is a recurring element of a circu-
lar cylindrical shell of an engine combustor shown in 

Figure 4. The shell consists of an outer wall of inside 
radius R and thickness h2 and an inner wall in which 
channels of rectangular cross section of width 2b are 
milled in parallel with shell axis so that longitudinal 
ribs of height L and width 2d are formed between the 
channels. The inner wall thickness after milling is h1.

Fig. 1. Composite system with two regions

Fig. 2. Temperature distribution in first region (R1) in problem 1

Fig. 3. Temperature distribution in second region (R2)  
in problem 1
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The ratio of the shell radius to thickness is much 
greater than unity (Balabukh et al. 1969); therefore we 
can represent this structure as a flat wall with straight 
ribs of height L and width 2d milled in this wall and 
spaced at intervals of 2b. In Zarubin and Radikov 
(2007), the thermal contact between the ribs and outer 
wall is taken to be ideal but we have assumed it to be 
imperfect having discontinuities in temperature as well 
as in heat flux along the interface. Since the operating 
time of engines, in which such combustor structures 
are employed, is relatively short; we can solve a simpler 
steady state heat conduction which is the limiting case 
of unsteady-state problem. 

Mathematical model of problem 2. The recurring 
element of the structure shown in Figure 5 becomes an 
inhomogeneous composite system having two regions 
with different thermal conductivities. We assume that 
the two regions have same thermal conductivity co-
efficient k along x-direction and different k k1 2 and  
along z-direction having an imperfect interface at

( )= + = d1 , 0,z h L x . Some boundaries of this system 
are thermally insulated. In actual modeling, thermal 
conditions could be more intense, which lead to some 
different rigid boundary conditions, but they can al-
ways be incorporated into the scheme. We aim to sug-
gest a robust and efficient approach to simulate steady 
state heat conduction in a composite region, described 
in Figure 5. Hence, based on the made assumptions, 
we require to solve the following elliptic equation to 
determine temperature distribution in system shown 
in Figure 5: 

In region 1. 

∂ ∂   ∂ ∂
k + k =   ∂ ∂ ∂ ∂   

1 1
1 0

U U
x x z z

;

with boundary conditions 

( )∂
= ∀ ∈ +  ∂

1
1

0,
0, 0, ,

U z
z h L

x

( )∂ d
= ∀ ∈ +  ∂

1
1 1

,
0, , ,

U z
z h h L

x
= ∀ ∈ + d  1 0( ,0) , 0, ,U x U x b

( )∂ + d
= ∀ ∈ +  ∂

1
1

,
0, 0, ,

U b z
z h L

x
= ∀ ∈ d + d  1 1( , ) , , .KU x h U x b

In region 2. 

∂ ∂   ∂ ∂
k + k =   ∂ ∂ ∂ ∂   

2 2
2 0

U U
x x z z

;

with boundary condition
+ = ∀ ∈ d + d  2 1( , ) , , ,LU x h L U x b

( )∂
= ∀ ∈ + + +  ∂

2
1 1 2

0,
0 , , ,

U z
z h L h L h

x
( )∂ + d

= ∀ ∈ +  ∂
2

1 1
,

0, , ,
U b z

z h h L
x

+ + = ∀ ∈ + +  2 1 2 1 2( , ) , 0, .MU x h L h U x h L h

Contact conditions between region 1 and region 2. 

( )

+ = + + 
∂ + ∂ + = + ∀ ∈ d
∂ ∂
∂ + ∂ + k = k +

∂ ∂ 

2 1 1 1 1

2 1 1 1
2

2 1 1 1
2 1 3

( , ) ( , ) ,
( , ) ( , )

, 0,

( , ) ( , )

U x h L U x h L J
U x h L U x h L

J x
z z

U x h L U x h L
J

z z

.

 
      The values of parameters that we used in the com-
putation are: 
k =100 W/m.K , k =1 290 W/m.K , k =2 14.5 W/m.K  ,
d = 0.001m , = 0.001mb , =1 0.001mh , = 0.002 mL  , 

=2 0.003mh , =0 25KU , = 40 KKU , = 75KLU  , 
=150 KMU , =1 25KJ , =2 20000 K/m ,J ,

= − 2
3 1087500 K/mJ .

We have plotted temperature distribution at line 
x = 0.0005 m in 12×12 grid in Figure 6 to visualize the 
variation of temperature along height of the compos-
ite system. It can be easily seen that the temperature 
rises along the height. Descretization of such an inho-
mogeneous domain along with insulated boundaries 
and discontinuous contact conditions becomes very 
difficult. Any arbitrary set of grids may not be well 
suited for this domain; hence we have used number Fig. 5. A recurring element of the structure of problem 2
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of subintervals in the multiple of 6 so that the grids 
fit in the domain properly. Table 2 and Table 3 display 
temperature of the system at some selected points in 
region 1 and region 2 respectively in 12×12 grid. 

Table 2. Temperature at different arbitrary points in region 1

Rectangular Co-ordinates (m) 
(x, z) Temperature (K)

(0.0008333, 0.0005) 37.50 

(0.0003333, 0.002) 45.00

(0.0006667, 0.0025) 47.50

Table 3. Temperature at different arbitrary points in region 2

Rectangular Co-ordinates (m) 
(x, z) Temperature (K) 

(0.0015, 0.0035) 87.50 

(0.0003333, 0.004) 100.00

(0.0001167, 0.0055) 137.50

Conclusions 

We have determined steady state temperature distri-
bution using decomposed immersed interface method 
in two inhomogeneous composite systems having two 
regions with imperfect interface i.e. there exist some 
discontinuities along the interface. In first problem, we 
have also proved the effectiveness and accuracy of the 
approach by comparing it with the analytical solution. 
Since very few methods in the existing literature can 
handle a steady state heat conduction problem in a 
composite system with discontinuities in temperature 
and its derivatives, this approach may be very benefi-
cial to deal a variety of industrial problems and engi-
neering applications. 
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