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Abstract. The paper focuses on the optimization of a perfectly elastic-plastic truss under repeated variable
load. The improved mathematical model of truss volume minimization problem with strength, stifftness and
stability constraints is presented. The assumptions of the calculation methods of the truss-like structures and
the shakedown theory are applied. The evaluation of the stability of elements under compression is based on
EC3 requirements and related to plastic deformations in the shakedown process to correct the interpreta-
tion of the stability constraints in mathematical programming problems. In the optimization problem, truss
displacements are evaluated according to different reliability levels of the ultimate and serviceability limit
states of EC. The proposed methodology is illustrated with a numerical example. The results are valid for the
assumption of small displacements.

Keywords: optimal shakedown design, elastic-plastic truss, standards, mathematical programming.

Introduction stiffness and stability constraints, it is necessary to
correctly define the physical process of the shakedown
(Cheng et al. 2012; Simon, Weichert 2012) and to assu-

re that the structure should satisfy the requirements of

To design more economical structures subjected to
variable as well as repeated loading, the shakedown
theory may be applied (Staat, Heitzer 2002; Weichert,
Ponter 2009; Atkocitinas 2011). This theory allows for
the employment of the plastic properties of materials

the standards. The main problems associated with this
task are considered in the current paper. First, the pro-

(particularly steel) for reducing the design structure’s blem is associated with the application of the stress-

volume (mass). Though the process of shakedown is strain dependence of the perfectly elastic-plastic truss

to the bars under compression, which may potentially

explored notionally in depth (Dang Van et al. 2002),
loose stability. The stability of bars is widely explo-

it is still in the focus of researchers’ and designers’

interests (Tin-Loi 2000; Vu et al. 2007; Giambanco
et al. 2012; Spiliopoulos, Panagiotou 2012). Practical
structural design is always associated with national and
international standards (Atkocitinas, Venskus 2011).
The Eurocode requirements (EN 1993-1-1 2005) allow
for designing the structures with plastic deformations,
though the optimization in the shakedown state has
not been standardized. Therefore, in order to create
a practically applicable mathematical model for the
problem of truss volume minimization with strength,

red by many authors (Kaliszky, Log6 2002; Ziemian
2010) and strictly regulated by the design standards.
However, some problems of plastic state interpreta-
tion occur, when the algorithm of the stability check
is implemented in the mathematical programming
problem. It should be noted that the influence of bars
under compression on the development of plastic de-
formations of a truss in the shakedown process can-
not be interpreted in the same way as the influence
of those under tension (by a formal explanation of a
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yield condition satisfied as a strict equality). Second,
the considered problem is associated with the displa-
cements’ constraints in the optimization problem of a
perfectly elastic-plastic truss. Two different reliability
levels for verification of the ultimate and serviceability
limit states are used in the Eurocode and, in practical
design, these limit states are usually evaluated separa-
tely. However, in searching for the optimal project of
the structure, it is necessary to take into account both
limit state requirements in solving one problem, i.e.
to combine two different reliability levels in the same
mathematical model. Therefore, a method of binary
displacement calculation is proposed in this paper. The
improved mathematical model of truss optimization,
with the included strength, stiffness and stability cons-
traints, is created. The new mathematical program-
ming problem is non-convex due to the combinatorial
complementary slackness conditions. The results of the
numerical example of cantilever truss optimization are
valid, when small displacement is assumed. This paper
is based on the presentation given in an international
conference (Atkocitnas, Blazevicius 2012).

1. Mathematical model of optimal truss design

The numerical methods of structural mechanics are
based on a discrete structural model. For this model,
both general and particular mathematical models of
problem solution (in our case, truss model) are de-
veloped. Dual relations between static (equilibrium)
and kinematic (geometric) equations are taken into
account, when choosing static and kinematic varia-
bles, which characterize the stress-strain state of the
structure. The uniaxial stress state of a truss is expres-
sed by the internal (axial) force vector N = [N, N, ...
N T where s is the number of finite elements (k = 1, 2,
..» S, k € K), constituting the discrete model. The varia-
ble repeated forces F(t), acting upon the elastic-plastic
structure, are characterized by time-independent up-
per and lower bounds F, F; . A detailed analysis
of a loading history is omitted, when the loading is
F< F <

1

described by all possible combinations F),
Fopj=12,...p,j€J,p=2" wherem is the number
of the acting forces). These combinations can describe
vertices of any loading locus or positions of loading
when moving load is under consideration. The forces
N,; and the displacements u,; of the elastic structure

are determined, using the influence matrices of forces
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and displacements a and f: N, = aF, u,; = BF;, j € J.
The limit force N, (k € K) is assumed to be constant
over the whole finite element £. Then, piecewise linea-
rized yield conditions are @(N, + N, ot N, <NjeJ,
while NV, denotes the unknown statically admissible re-
sidual forces. The forces V, are resulting from constant
(invariable, permanent) loading: N, = aF,. The opti-
mization problem of the structure is stated as follows:

for the given load variation bounds F,, F; ;. the vector

inf
of the limit forces N, satisfying the optimality criterion
minF(N,) and the constraints of strength, stiffness and

stability, should be found:

find

min F(NV,), (1)

subject to
¢max=N0_G)“_Ne,max_N020; (2)
(pmin:NO,cr+G'1+Ne,min_Nc20; 3)
'1Tmax (omax = O’ }“Tcr wmin = 0’ A= [)‘max’ )‘cr] 2 0; (4)
Ny = Ny i (5)
w, < (Hi+ u,+ u.)< Ugp (6)

j=12,.,p,jel.

The objective function can implicitly express the
minimum cost or the volume of the structure: V' =
LTA, where L is the vector of the element length and
A is the vector of the element’s cross-sectional areas.
The yield conditions (2)—-(3) are written by implemen-
ting the vectors of the maximal and minimal values of
the elastic axial forces N, .., IV, iy such that IV,
Nej = aFj < Ne’max,j =1,2,.,p jeJ Then o,
and ¢, are the vectors of the yield condition values

<
,min

of the elements under tension and compression, res-
pectively. Yield conditions determine the vector of the
statically admissible residual forces N, = G4, ensuring
the shakedown of the elastic-plastic system under the
given variable repeated load (G is the influence matrix
of residual forces). The conditions (2)-(3), supplemen-
ted with the complementary slackness conditions of
mathematical programming (4) ensure that the prin-
ciple of minimum deformation energy of the unloaded
system will be satisfied. Then, the components of the
vector A obtain the physical meaning of plastic multi-
pliers (Zouain et al. 2002; Atkocitnas, Venskus 2011).
The displacements in the stiffness conditions (6) are
as follows: the residual u, = HA, the elastic u o and u,,
resulting from the invariable loading (F,). The limits
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of the displacements of the structure u; - and u,, are
determined according to the Eurocode requirements.
The limit axial force of the k-th element under tensi-
on is calculated basically as the product of the cross-
sectional area and yield stress: Noy = Ay f., whereas
the limit axial force of the element under tension must
be reduced because of a possible loss of stability. The
Eurocode methodology of reducing the limit axial for-
ce of an element under compression will be considered
in this paper. It states that for the k-th discrete element
Noerk = X" No o while the reduction coefficient y is
the function of the element’s geometrical and physical
characteristics. The vector of the limit forces /V;, and
the vector of plastic multipliers 4 are the unknowns
in the problem (1)-(6). This optimization problem is
non-convex due to the combinatorial complementa-
ry slackness conditions. Taking into account that the
problem conditions depend on the unknowns, the so-
lution algorithm is iterative. Similar shakedown design
method, with the stability evaluation and the assump-
tion that V, = 0 and u, = 0, was used in the previous
publication (Merkeviciaté, Atkocianas 2006).

1.1. Plastic deformations under stability conditions

When mathematical programming is used for optimal
shakedown truss design, the complementary slackness
conditions of mathematical programming (4) are writ-
ten down alongside strength conditions. The multi-
pliers 4 = [, 4,,]
plastic multipliers for the elements under tension and

obtain the physical meaning of

compression, respectively. In designing the elastic-
plastic bar structures, the stress-strain state is usually
simplified, using the so-called Prandtl diagram. It is
further used to explain the emergence of plastic de-
formations in the shakedown process (Fig. 1). When a
positive side of the graph (positive stress f'and strain ¢)
referring to the elements under tension is conside-
red, it is evident that plastic deformations occur only
when the elastic state (the section 0-4) is over, when
the stress reaches the yield stress value, i.e. /=1 (the
section 4-B). A more complicated case is found, when
the elements under compression are examined. In the
simplest case, when the element’s buckling is not con-
sidered, a negative side of the graph is symmetric to
the positive one, i.e. the element is deformed according
to the curve 0-D-E. The same case is found, when the
critical stress reaches the yield stress f,,. = f. Accor-
ding to the Eurocode, such case refers to the elements

7
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Fig. 1. Stress-strain graph of perfectly elastic-plastic material

with very small non-dimensional slenderness: 4 < 0.2
(it should not be confused with plastic multipliers 1).
When stability verification is implemented in the
mathematical programming problem, it is found that,
in the general case, the deformations emerge according
to the curve 0-C-F. However, contrary to the case of
tension, the plastic deformations of the elements un-
der compression (when the limit state is reached, i.e.
after the loss of stability) are not defined in the EC
and cannot be evaluated. Therefore, a true deforma-
tion curve of the element under compression is only
elastic - 0-C, if C # D, or elastic-plastic — 0-D-E, when
D = Cand E = F. Thus, the solution algorithm of the
mathematical programming problem comes into conf-
lict with the Eurocode requirements. Therefore, the
above-mentioned complementary slackness conditions
(4) are inadequate for ensuring the shakedown of a
truss. This inaccuracy is eliminated by introducing a
new condition in the mathematical model, which en-
sures that plastic multipliers (i.e. plastic deformations)
can emerge only due to the limit stress of the elements
under tension or in very stocky elements (small non-
dimensional slenderness) under compression:

Dok Nog= Nt =0 k= 1,2, s, ke K. (7)

This condition ensures that slender elements un-
der compression (when N .., < Ny, x < 1) cannon
cause the occurrence of nonzero plastic multipliers.
The correct determination of the plastic multipliers 4
is an essential task because they are used in the same
problem for calculating the residual forces and displa-
cements.
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1.2. Displacement constraints according
to the Eurocode

In the Eurocode standards, all design calculations are
divided into two groups and are aimed at verifying
the ultimate and serviceability limit states. Two diffe-
rent reliability levels are used for these limit states. In
using the partial factor method, these levels are achie-
ved by applying the respective representative values
of the action. When the strength (2) and stability (3)
conditions of the mathematical model are there for
the ultimate limit state verification, the serviceability
limit state for the structure must be secured as well.
A structure can be reliable only if none of the limit
states is exceeded. Therefore, stiffness conditions (6)
(displacement constraints of the truss nodes) must be
introduced into the model. Regarding Eurocode they
can be specified as follows:

uinfs(ur +u, +t7c)£ Ugp>J=1,2,...pj€d, (8)

where Ugy,

and lower admissible bounds of displacement variation.

and u, ¢ are the known vectors of the upper

The displacement of a perfectly elastic-plastic truss
consists of two components: the residual u, = HA and
pseudo-elastic u#,; + u,. The residual component is ob-
tained from the shakedown process (by using the plas-
tic multipliers 4 and the influence matrix H); therefore,
it is determined by the ultimate state with a high relia-
bility level. The vector u, is calculated in the optimi-
zation process of a structure subjected to variable repe-
ated loading of design values. Therefore, for all possible
combinations of loading j, F;; = 7 F (where index
d means the design value, k is the characteristic value
and y is a partial factor for the action). The pseudo-
elastic component is calculated, using the Hooke’s law,
and determined by the serviceability limit state with a
lower reliability level. It is calculated, using all possi-
ble combinations of the characteristic loading values:

Eej +EC :ﬂij +ﬂFck’ J= ©)

1,2,..p,jeJ.

This approach, based on the dual reliability le-
vel, allows for designing a more economical structure,
compared to the earlier presented models because lo-
wer reliability is used for the displacement constraints

than the strength and stability conditions.

1.3. The improved model
of truss volume optimization

The improved mathematical model of the problem of
volume minimization of a perfectly elastic-plastic truss
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with new displacement constraints and plastic defor-
mation conditions can be expressed as follows:

find

min L'4, (10)

subject to
Prnax = No= GA = N, 110 2 05 (11)
O rnin = NO’C,, + GA + Ne,min >0; (12)
A ax Pinax = O Al P = 0,2 = o 4,1 2 05 (13)
Aerjk WNop =Ny =0, k=1,2, .., 5, ke K (14)
Az Ay (15)

i< (u, + ity + 7, ) Sty j=1,p, j€J. (16)

The model consist of the yield conditions (11)-
(12), the complementary slackness conditions of mat-
hematical programming (13), the complementary con-
ditions for plastic multipliers (14), the construction
regulation constraints (15) and the displacement
constraints (16). A, is the vector of the minimum
values of cross-sectional areas of all elements (usu-
ally, it is determined by joint construction or other
design requirements). The unknowns of the problem
(10)-(16) are the vector of the element’s cross-sectio-
nal areas A and the vector of plastic multipliers 4. The
influential matrices of the elastic forces, elastic displa-
cements, residual forces and residual displacements a,
P, G, H, used for calculations, are dependent on the
variable cross-sectional areas A. Therefore, the solution
algorithm is performed in an iterative manner (Fig. 2).

Initial data
0 5
A 5 Finf: Fsup; Uinf, Usup, E,fy
|

v

Calculation of buckling |
reduction factors y

¢ Initiating new
Determination of areas of cross
influence matrices sections
af H, G A,=A°
Solving the problem
(10)-(16)

v

’ Solution: 4,, 4, ’—

@ptimal solution A" = A,, 2" =1,

Fig. 2. Flowchart of the proposed solution algorithm
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This model suits for either - discrete or continuous -
optimization. The discrete optimization is more practi-
cal, but, the continuous optimization can also be used.
For example, using section properties, obtained from
the continuous optimization, it is possible to choose
nearest fitting discrete cross-section from assortment.

2. Numerical example

The minimum volume problem of the cantilever truss
with parabolic compression chord, shown in Figure 3,
is considered. The truss is subjected to the action of
permanent (constant) F, and moving (variable) Fj
loads (characteristic values in kN are given in the
Fig. 3). Following partial factors are used for the de-

sign values of the loads: 1 = 1.35 for the moving

Gji,suj

load and 4, = 1.3 for the ]pefmanent load. The main
task is to solve the problem (10)-(16), i.e. to determi-
ne the cross-sectional areas 4 of the elements and the
volume V of the whole structure. The bars of the truss
are grouped into four groups: compression (bottom)
chord A, tension (top) chord A,, vertical web A, and
inclined web A,. The prescribed minimum values of
the cross-sectional areas are equal to A} . = A, . =
Aj in = Agmin = 0.006 m% The sections of the bars
are square hollow (SHS) with selected heights of b, =
16 cm, b, = 14 cm, by = b, = 10 cm. These values can
be changed according to the optimization results. The
elasticity modulus of the material is E = 210 GPa, whi-
le the yield stress fy = 235 MPa.

The presented method of binary displacement
calculation is used in both cases. The following total
displacement constraint is imposed: #, < 35 mm. In
order to evaluate the changes made in the new mat-
hematical model, two different cases of truss optimi-
zation are considered:

Case C1 - truss volume optimization using the
classical model (1)-(6);

moving load F/.k, j=12,..,4

\ 140 70 permanent load F,,

yis o q1s 0§15

v
~
*®
=)

| 4x3=12m |

Fig. 3. Geometry and loading of the truss

Case C2 - truss volume optimization using the
improved model with new complementary conditions
for plastic multipliers (10)-(16).

The results of the numerical optimization calcu-
lations are shown in the Table 1. Truss plastic deforma-
tions in the particular optimization cases are illustra-
ted in Fig. 4. Optimal truss volume values were found:
V' =0.15916 m? in the case C1, and ¥ = 0.17269 m3
in the case C2.

Table 1. Optimization results

Element Bottom Top Vertical | Inclined
chord chord web web
Cl | 4, m? 39.068 29.494 20.975 14.556
t, mm 6.43 5.55 5.64 3.83
C2 | 4,m? 37.730 30.572 18.264 19.982
t, mm 6.20 5.76 4.87 5.36

The complementary conditions for plastic multi-
pliers (14) in the case C2 did not allow to emerge plas-
tic deformations in the elements under compression
as it was in the case C1. Thus different stress state and
different distribution of residual forces and plastic de-
formations are found. Bigger value of the truss volume
is found in the case C2. The distribution of the cross-
sectional areas also differs. The optimal cross-sectional
areas of the bottom chord and vertical web elements
are found to be smaller, meanwhile cross-sectional are-
as of the top chord and inclined web elements - bigger
in the case C2.

Constraint of the node displacement is satisfied as
strict equality in both cases. However, due to reduced
possibility of plastic deformations emergence, heavier
but in also more buckling resistant structure was de-
signed using the new optimization model (10)-(16).

Case C1
lCl‘ 2 0
v =01592 m®

Case C2
j'('}" = 0
vV =01727 m’

Fig. 4. Truss deformations and the optimal volumes
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Conclusions

Practical implementation of optimal shakedown design
should not be based only on theoretical improvements,
but should take into account the existing design stan-
dards. When the stability requirements are implemen-
ted in a mathematical programming problem, some
difficulties in evaluating plastic multipliers arise. The
complementary slackness conditions are not adequate
to ensure the shakedown state. The improved mathe-
matical model of truss volume minimization problem
with strength, stiffness and stability constraints is pre-
sented. Different reliability levels are used for the ve-
rification of the ultimate and serviceability limit states
of trusses in the suggested mathematical model. Thus,
the shakedown theory acquires the potentiality to be
used in actual standardized truss design.
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OPTIMALIOS PRISITAIKANCIOS SANTVAROS PROJEKTAVIMAS
TAIKANT EUROKODO REIKALAVIMUS

G. Blazevicius, J. Atkociunas

Santrauka. Straipsnyje nagrinéjamas idealiai tamprios ir plastinés santvaros, veikiamos kintamosios kartotinés apkrovos,
optimizavimas. Taikomos santvariniy konstrukcijy skai¢iavimo techninés ir prisitaikymo teorijos prielaidos. Sudarytas
pagerintas santvaros tirio minimizavimo uzdavinio matematinis modelis su stiprumo, standumo ir stabilumo apriboji-
mais. Konstrukcijos gniuzdomuyjy elementy galimas stabilumo praradimas tikrinamas pagal Europos projektavimo normy
(EN) reikalavimus, siejamus su prisitaikymo proceso plastinémis deformacijomis. Straipsnyje pateikiamos naujos salygos,
papildancios optimizavimo uzdavinj ir patikslinancios stabilumo apribojimy interpretacija prisitaikymo procese. Skirtin-
gai nei tempiamyjy, gniuzdomujy strypy plastinés deformacijos (vir$ijus saugos ribinj bavi, t. y. iSklupus) neapibréztos
EN ir néra vertinamos. Tad klasikinés matematinio programavimo grieztumo salygos yra nepakankamos idealiai tamprios
plastinés santvaros prisitaikymui uztikrinti. Sis netikslumas pasalinamas pritaikius nauja salyga, uztikrinancia, kad nenu-
liniai plastiniai daugikliai gali atsirasti tik dél tempiamuyjy strypy arba gniuzdomuyjy labai tvirty (mazo salyginio liaunio)
strypy takumo jtempiy. Santvaros jlinkiai tirio minimizavimo uzdaviniuose ribojami atsizvelgiant j EN saugos ir tinkamu-
mo ribiniy baviy patikimumo lygmenis. Straipsnyje pristatoma metodika, kurioje lieckamoji poslinkio dalis gaunama i$ prisi-
taikymo proceso, taigi yra nulemta saugos ribinio bavio ir salygiskai aukstesnio patikimumo. Tariamai tamprioji poslinkio
dalis skai¢iuojama pagal Huko désnj ir yra formuojama tinkamumo ribinio bavio. Toks dviejy patikimumo lygiy taikymas
pagristas EN reikalavimais ir leidzia projektuoti ekonomiskesne konstrukcijg, palyginti su ankstesniy tyréjy pasitlytais mo-
deliais. Metodika iliustruojama skaitiniu pavyzdziu, taikant mazy poslinkiy prielaida.

Reik$miniai ZodzZiai: optimalus projektavimas, prisitaikymas, santvara, standartai, matematinis programavimas.
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