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Abstract. The paper focuses on the optimization of a perfectly elastic-plastic truss under repeated variable 
load. The improved mathematical model of truss volume minimization problem with strength, stiffness and 
stability constraints is presented. The assumptions of the calculation methods of the truss-like structures and 
the shakedown theory are applied. The evaluation of the stability of elements under compression is based on 
EC3 requirements and related to plastic deformations in the shakedown process to correct the interpreta-
tion of the stability constraints in mathematical programming problems. In the optimization problem, truss 
displacements are evaluated according to different reliability levels of the ultimate and serviceability limit 
states of EC. The proposed methodology is illustrated with a numerical example. The results are valid for the 
assumption of small displacements.
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Introduction 

To design more economical structures subjected to 
variable as well as repeated loading, the shakedown 
theory may be applied (Staat, Heitzer 2002; Weichert, 
Ponter 2009; Atkočiūnas 2011). This theory allows for 
the employment of the plastic properties of materials 
(particularly steel) for reducing the design structure’s 
volume (mass). Though the process of shakedown is 
explored notionally in depth (Dang Van et al. 2002), 
it is still in the focus of researchers’ and designers’ 
interests (Tin-Loi 2000; Vu et  al. 2007; Giambanco 
et al. 2012; Spiliopoulos, Panagiotou 2012). Practical 
structural design is always associated with national and 
international standards (Atkočiūnas, Venskus 2011). 
The Eurocode requirements (EN 1993-1-1 2005) allow 
for designing the structures with plastic deformations, 
though the optimization in the shakedown state has 
not been standardized. Therefore, in order to create 
a practically applicable mathematical model for the 
problem of truss volume minimization with strength, 

stiffness and stability constraints, it is necessary to 
correctly define the physical process of the shakedown 
(Cheng et al. 2012; Simon, Weichert 2012) and to assu-
re that the structure should satisfy the requirements of 
the standards. The main problems associated with this 
task are considered in the current paper. First, the pro-
blem is associated with the application of the stress-
strain dependence of the perfectly elastic-plastic truss 
to the bars under compression, which may potentially 
loose stability. The stability of bars is widely explo-
red by many authors (Kaliszky, Lógó 2002; Ziemian 
2010) and strictly regulated by the design standards. 
However, some problems of plastic state interpreta-
tion occur, when the algorithm of the stability check 
is implemented in the mathematical programming 
problem. It should be noted that the influence of bars 
under compression on the development of plastic de-
formations of a truss in the shakedown process can-
not be interpreted in the same way as the influence 
of those under tension (by a formal explanation of a 



yield condition satisfied as a strict equality). Second, 
the considered problem is associated with the displa-
cements’ constraints in the optimization problem of a 
perfectly elastic-plastic truss. Two different reliability 
levels for verification of the ultimate and serviceability 
limit states are used in the Eurocode and, in practical 
design, these limit states are usually evaluated separa-
tely. However, in searching for the optimal project of 
the structure, it is necessary to take into account both 
limit state requirements in solving one problem, i.e. 
to combine two different reliability levels in the same 
mathematical model. Therefore, a method of binary 
displacement calculation is proposed in this paper. The 
improved mathematical model of truss optimization, 
with the included strength, stiffness and stability cons-
traints, is created. The new mathematical program-
ming problem is non-convex due to the combinatorial 
complementary slackness conditions. The results of the 
numerical example of cantilever truss optimization are 
valid, when small displacement is assumed. This paper 
is based on the presentation given in an international 
conference (Atkočiūnas, Blaževičius 2012).

1. Mathematical model of optimal truss design

The numerical methods of structural mechanics are 
based on a discrete structural model. For this model, 
both general and particular mathematical models of 
problem solution (in our case, truss model) are de-
veloped. Dual relations between static (equilibrium) 
and kinematic (geometric) equations are taken into 
account, when choosing static and kinematic varia-
bles, which characterize the stress-strain state of the 
structure. The uniaxial stress state of a truss is expres-
sed by the internal (axial) force vector N = [N1 N2 ... 
Ns]T, where s is the number of finite elements (k = 1, 2, 
..., s, k ∈ K), constituting the discrete model. The varia-
ble repeated forces F(t), acting upon the elastic-plastic 
structure, are characterized by time-independent up-
per and lower bounds Fsup, Finf. A detailed analysis 
of a loading history is omitted, when the loading is 
described by all possible combinations Fj, Finf ≤ Fj ≤ 
Fsup, j = 1, 2, ..., p, j ∈ J, p = 2m, where m is the number 
of the acting forces). These combinations can describe 
vertices of any loading locus or positions of loading 
when moving load is under consideration. The forces 
Nej and the displacements uej of the elastic structure 
are determined, using the influence matrices of forces 

and displacements α and β: Nej = αFj, uej = βFj, j ∈ J. 
The limit force N0,k (k ∈ K) is assumed to be constant 
over the whole finite element k. Then, piecewise linea-
rized yield conditions are Φ(Nr + Nej + Nc) ≤ N0, j ∈ J, 
while Nr denotes the unknown statically admissible re-
sidual forces. The forces Nc are resulting from constant 
(invariable, permanent) loading: Nc = αFc. The opti-
mization problem of the structure is stated as follows: 
for the given load variation bounds Fsup, Finf, the vector 
of the limit forces N0, satisfying the optimality criterion 
minF(N0) and the constraints of strength, stiffness and 
stability, should be found:

find
 min F(N0),  (1)

subject to

 φmax = N0 – Gλ – Ne,max – Nc ≥  0;  (2)

 φmin = N0,cr + Gλ + Ne,min – Nc ≥  0;  (3)

 λT
max φmax = 0, λT

cr φmin = 0, λ = [λmax, λcr] ≥  0;  (4)

 N0 ≥ N0,min;  (5)

 uinf ≤ (Hλ + uej + uc ) ≤ usup;  (6)

 j = 1, 2, ..., p, j ∈ J.

The objective function can implicitly express the 
minimum cost or the volume of the structure: V  = 
LTA, where L is the vector of the element length and 
A is the vector of the element’s cross-sectional areas. 
The yield conditions (2)–(3) are written by implemen-
ting the vectors of the maximal and minimal values of 
the elastic axial forces Ne,max, Ne,min, such that Ne,min ≤ 
Nej = αFj ≤ Ne,max, j = 1, 2, ..., p, j ∈ J. Then φmax 
and φmin are the vectors of the yield condition values 
of the elements under tension and compression, res-
pectively. Yield conditions determine the vector of the 
statically admissible residual forces Nr = Gλ, ensuring 
the shakedown of the elastic-plastic system under the 
given variable repeated load (G is the influence matrix 
of residual forces). The conditions (2)–(3), supplemen-
ted with the complementary slackness conditions of 
mathematical programming (4) ensure that the prin-
ciple of minimum deformation energy of the unloaded 
system will be satisfied. Then, the components of the 
vector λ obtain the physical meaning of plastic multi-
pliers (Zouain et al. 2002; Atkočiūnas, Venskus 2011). 
The displacements in the stiffness conditions (6) are 
as follows: the residual ur = Hλ, the elastic uej and uc, 
resulting from the invariable loading (Fc). The limits 
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of the displacements of the structure uinf and usup are 
determined according to the Eurocode requirements. 
The limit axial force of the k-th element under tensi-
on is calculated basically as the product of the cross-
sectional area and yield stress: N0,k = Ak · fy, whereas 
the limit axial force of the element under tension must 
be reduced because of a possible loss of stability. The 
Eurocode methodology of reducing the limit axial for-
ce of an element under compression will be considered 
in this paper. It states that for the k-th discrete element 
N0,cr,k  = χk · N0,k, while the reduction coefficient χ is 
the function of the element’s geometrical and physical 
characteristics. The vector of the limit forces N0 and 
the vector of plastic multipliers λ are the unknowns 
in the problem (1)–(6). This optimization problem is 
non-convex due to the combinatorial complementa-
ry slackness conditions. Taking into account that the 
problem conditions depend on the unknowns, the so-
lution algorithm is iterative. Similar shakedown design 
method, with the stability evaluation and the assump-
tion that Nc = 0 and uc = 0, was used in the previous 
publication (Merkevičiūtė, Atkočiūnas 2006). 

1.1. Plastic deformations under stability conditions

When mathematical programming is used for optimal 
shakedown truss design, the complementary slackness 
conditions of mathematical programming (4) are writ-
ten down alongside strength conditions. The multi-
pliers λ = [λmax, λcr] obtain the physical meaning of 
plastic multipliers for the elements under tension and 
compression, respectively. In designing the elastic-
plastic bar structures, the stress-strain state is usually 
simplified, using the so-called Prandtl diagram. It is 
further used to explain the emergence of plastic de-
formations in the shakedown process (Fig. 1). When a 
positive side of the graph (positive stress f and strain ε) 
referring to the elements under tension is conside-
red, it is evident that plastic deformations occur only 
when the elastic state (the section 0-A) is over, when 
the stress reaches the yield stress value, i.e. f = fy (the 
section A-B). A more complicated case is found, when 
the elements under compression are examined. In the 
simplest case, when the element’s buckling is not con-
sidered, a negative side of the graph is symmetric to 
the positive one, i.e. the element is deformed according 
to the curve 0-D-E. The same case is found, when the 
critical stress reaches the yield stress fcr  = fy. Accor-
ding to the Eurocode, such case refers to the elements 

with very small non-dimensional slenderness:  
(it should not be confused with plastic multipliers λ).

When stability verification is implemented in the 
mathematical programming problem, it is found that, 
in the general case, the deformations emerge according 
to the curve 0-C-F. However, contrary to the case of 
tension, the plastic deformations of the elements un-
der compression (when the limit state is reached, i.e. 
after the loss of stability) are not defined in the EC 
and cannot be evaluated. Therefore, a true deforma-
tion curve of the element under compression is only 
elastic – 0-C, if C ≠ D, or elastic-plastic – 0-D-E, when 
D = C and E = F. Thus, the solution algorithm of the 
mathematical programming problem comes into conf-
lict with the Eurocode requirements. Therefore, the 
above-mentioned complementary slackness conditions 
(4) are inadequate for ensuring the shakedown of a 
truss. This inaccuracy is eliminated by introducing a 
new condition in the mathematical model, which en-
sures that plastic multipliers (i.e. plastic deformations) 
can emerge only due to the limit stress of the elements 
under tension or in very stocky elements (small non-
dimensional slenderness) under compression:

	 λcr,k (N0,k – N0,cr,k) = 0, k = 1, 2, ..., s, k ∈ K. (7)

This condition ensures that slender elements un-
der compression (when N0,cr,k ≤ N0,k, χ	≤ 1) cannon 
cause the occurrence of nonzero plastic multipliers. 
The correct determination of the plastic multipliers λ 
is an essential task because they are used in the same 
problem for calculating the residual forces and displa-
cements.

Fig. 1. Stress-strain graph of perfectly elastic-plastic material
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1.2. Displacement constraints according  
to the Eurocode

In the Eurocode standards, all design calculations are 
divided into two groups and are aimed at verifying 
the ultimate and serviceability limit states. Two diffe-
rent reliability levels are used for these limit states. In 
using the partial factor method, these levels are achie-
ved by applying the respective representative values 
of the action. When the strength (2) and stability (3) 
conditions of the mathematical model are there for 
the ultimate limit state verification, the serviceability 
limit state for the structure must be secured as well. 
A structure can be reliable only if none of the limit 
states is exceeded. Therefore, stiffness conditions (6) 
(displacement constraints of the truss nodes) must be 
introduced into the model. Regarding Eurocode they 
can be specified as follows:

   ( )inf sup≤ + + ≤r ej cu u u u u , j = 1, 2, ..., p, j ∈ J, (8)

where usup and uinf are the known vectors of the upper 
and lower admissible bounds of displacement variation. 
The displacement of a perfectly elastic-plastic truss 
consists of two components: the residual ur = Hλ and 
pseudo-elastic +ej cu u . The residual component is ob-
tained from the shakedown process (by using the plas-
tic multipliers λ and the influence matrix H); therefore, 
it is determined by the ultimate state with a high relia-
bility level. The vector ur is calculated in the optimi-
zation process of a structure subjected to variable repe-
ated loading of design values. Therefore, for all possible 
combinations of loading j, Fjd = γE · Fjk (where index 
d means the design value, k is the characteristic value 
and γE is a partial factor for the action). The pseudo-
elastic component is calculated, using the Hooke’s law, 
and determined by the serviceability limit state with a 
lower reliability level. It is calculated, using all possi-
ble combinations of the characteristic loading values:

 
,  j = 1, 2, ..., p, j ∈ J. (9)

This approach, based on the dual reliability le-
vel, allows for designing a more economical structure, 
compared to the earlier presented models because lo-
wer reliability is used for the displacement constraints 
than the strength and stability conditions.

1.3. The improved model  
of truss volume optimization

The improved mathematical model of the problem of 
volume minimization of a perfectly elastic-plastic truss 

with new displacement constraints and plastic defor-
mation conditions can be expressed as follows:

find
 min LTA,  (10)

subject to
 φmax = N0 – Gλ – Ne,max ≥  0;  (11)

 φmin = N0,cr + Gλ + Ne,min ≥  0;  (12)

   λT
max φmax = 0, λT

cr φmin = 0, λ = [λmax, λcr] ≥  0;   (13)

	 λcr,k (N0,k – N0,cr,k) = 0, k = 1, 2, ..., s, k ∈ K;  (14)

 A ≥ Amin;  (15)

   ( )inf sup≤ + + ≤r ej cu u u u u , 1,..., =j p , ∈j J . (16)

The model consist of the yield conditions (11)–
(12), the complementary slackness conditions of mat-
hematical programming (13), the complementary con-
ditions for plastic multipliers (14), the construction 
regulation constraints (15) and the displacement 
constraints (16). Amin is the vector of the minimum 
values of cross-sectional areas of all elements (usu-
ally, it is determined by joint construction or other 
design requirements). The unknowns of the problem 
(10)–(16) are the vector of the element’s cross-sectio-
nal areas A and the vector of plastic multipliers λ. The 
influential matrices of the elastic forces, elastic displa-
cements, residual forces and residual displacements α, 
β, G, H, used for calculations, are dependent on the 
variable cross-sectional areas A. Therefore, the solution 
algorithm is performed in an iterative manner (Fig. 2). 

Fig. 2. Flowchart of the proposed solution algorithm
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This model suits for either – discrete or continuous – 
optimization. The discrete optimization is more practi-
cal, but, the continuous optimization can also be used. 
For example, using section properties, obtained from 
the continuous optimization, it is possible to choose 
nearest fitting discrete cross-section from assortment.

2. Numerical example

The minimum volume problem of the cantilever truss 
with parabolic compression chord, shown in Figure 3, 
is considered. The truss is subjected to the action of 
permanent (constant) Fc and moving (variable) Fj 
loads (characteristic values in kN are given in the 
Fig. 3). Following partial factors are used for the de-
sign values of the loads: λGj,sup = 1.35 for the moving 
load and λQ,1 = 1.3 for the permanent load. The main 
task is to solve the problem (10)–(16), i.e. to determi-
ne the cross-sectional areas A of the elements and the 
volume V of the whole structure. The bars of the truss 
are grouped into four groups: compression (bottom) 
chord A1, tension (top) chord A2, vertical web A3 and 
inclined web A4. The prescribed minimum values of 
the cross-sectional areas are equal to A1,min = A2,min = 
A3,min = A4,min = 0.006 m2. The sections of the bars 
are square hollow (SHS) with selected heights of b1 = 
16 cm, b2 = 14 cm, b3 = b4 = 10 cm. These values can 
be changed according to the optimization results. The 
elasticity modulus of the material is E = 210 GPa, whi-
le the yield stress fy = 235 MPa.

The presented method of binary displacement 
calculation is used in both cases. The following total 
displacement constraint is imposed: uv ≤ 35 mm. In 
order to evaluate the changes made in the new mat-
hematical model, two different cases of truss optimi-
zation are considered:

Case C1  – truss volume optimization using the 
classical model (1)–(6);

Case C2  – truss volume optimization using the 
improved model with new complementary conditions 
for plastic multipliers (10)–(16). 

The results of the numerical optimization calcu-
lations are shown in the Table 1. Truss plastic deforma-
tions in the particular optimization cases are illustra-
ted in Fig. 4. Optimal truss volume values were found: 
V = 0.15916 m3 in the case C1, and V = 0.17269 m3 
in the case C2. 

Table 1. Optimization results

Element Bottom 
chord

Top 
chord

Vertical 
web

Inclined 
web

C1 A, m2 39.068 29.494 20.975 14.556
t, mm 6.43 5.55 5.64 3.83

C2 A, m2 37.730 30.572 18.264 19.982
t, mm 6.20 5.76 4.87 5.36

The complementary conditions for plastic multi-
pliers (14) in the case C2 did not allow to emerge plas-
tic deformations in the elements under compression 
as it was in the case C1. Thus different stress state and 
different distribution of residual forces and plastic de-
formations are found. Bigger value of the truss volume 
is found in the case C2. The distribution of the cross-
sectional areas also differs. The optimal cross-sectional 
areas of the bottom chord and vertical web elements 
are found to be smaller, meanwhile cross-sectional are-
as of the top chord and inclined web elements – bigger 
in the case C2. 

Constraint of the node displacement is satisfied as 
strict equality in both cases. However, due to reduced 
possibility of plastic deformations emergence, heavier 
but in also more buckling resistant structure was de-
signed using the new optimization model (10)–(16).

Fig. 3. Geometry and loading of the truss
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Conclusions

Practical implementation of optimal shakedown design 
should not be based only on theoretical improvements, 
but should take into account the existing design stan-
dards. When the stability requirements are implemen-
ted in a mathematical programming problem, some 
difficulties in evaluating plastic multipliers arise. The 
complementary slackness conditions are not adequate 
to ensure the shakedown state. The improved mathe-
matical model of truss volume minimization problem 
with strength, stiffness and stability constraints is pre-
sented. Different reliability levels are used for the ve-
rification of the ultimate and serviceability limit states 
of trusses in the suggested mathematical model. Thus, 
the shakedown theory acquires the potentiality to be 
used in actual standardized truss design.
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OPTIMALIOS PRISITAIKANČIOS SANTVAROS PROJEKTAVIMAS  
TAIKANT EUROKODO REIKALAVIMUS 

G. Blaževičius, J. Atkočiūnas

Santrauka. Straipsnyje nagrinėjamas idealiai tamprios ir plastinės santvaros, veikiamos kintamosios kartotinės apkrovos, 
optimizavimas. Taikomos santvarinių konstrukcijų skaičiavimo techninės ir prisitaikymo teorijos prielaidos. Sudarytas 
pagerintas santvaros tūrio minimizavimo uždavinio matematinis modelis su stiprumo, standumo ir stabilumo apriboji-
mais. Konstrukcijos gniuždomųjų elementų galimas stabilumo praradimas tikrinamas pagal Europos projektavimo normų 
(EN) reikalavimus, siejamus su prisitaikymo proceso plastinėmis deformacijomis. Straipsnyje pateikiamos naujos sąlygos, 
papildančios optimizavimo uždavinį ir patikslinančios stabilumo apribojimų interpretaciją prisitaikymo procese. Skirtin-
gai nei tempiamųjų, gniuždomųjų strypų plastinės deformacijos (viršijus saugos ribinį būvį, t. y. išklupus) neapibrėžtos 
EN ir nėra vertinamos. Tad klasikinės matematinio programavimo griežtumo sąlygos yra nepakankamos idealiai tamprios 
plastinės santvaros prisitaikymui užtikrinti. Šis netikslumas pašalinamas pritaikius naują sąlygą, užtikrinančią, kad nenu-
liniai plastiniai daugikliai gali atsirasti tik dėl tempiamųjų strypų arba gniuždomųjų labai tvirtų (mažo sąlyginio liaunio) 
strypų takumo įtempių. Santvaros įlinkiai tūrio minimizavimo uždaviniuose ribojami atsižvelgiant į EN saugos ir tinkamu-
mo ribinių būvių patikimumo lygmenis. Straipsnyje pristatoma metodika, kurioje liekamoji poslinkio dalis gaunama iš prisi-
taikymo proceso, taigi yra nulemta saugos ribinio būvio ir sąlygiškai aukštesnio patikimumo. Tariamai tamprioji poslinkio 
dalis skaičiuojama pagal Huko dėsnį ir yra formuojama tinkamumo ribinio būvio. Toks dviejų patikimumo lygių taikymas 
pagrįstas EN reikalavimais ir leidžia projektuoti ekonomiškesnę konstrukciją, palyginti su ankstesnių tyrėjų pasiūlytais mo-
deliais. Metodika iliustruojama skaitiniu pavyzdžiu, taikant mažų poslinkių prielaidą.
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