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Abstract. Full range analysis of reinforced concrete (RC) members covering the post-crack and post-peak 
regimes is important for obtaining the deformation response and failure mode of structural members. When 
a RC member is subject to an increasing external load, the critical sections would exhibit cracking and/or 
softening. Due to stress relief effect in the proximity of crack opening and plastic hinging, unloading may 
occur at the adjacent regions. The variable stress states of discrete sections would lead to sectional variation 
of stiffness, which could not be accounted for by conventional structural analysis methods. In this paper, 
a nonlinear multilevel analysis method for RC frames whereby the frame members are divided into sub-
elements and sectional analysis is utilised to evaluate stiffness degradation and strength deterioration is 
developed. At sectional level, the secant stiffness is determined from moment-curvature relation, where the 
curvature is evaluated based on both transverse displacements and section rotations of the frame member. 
Unloading and reloading behaviour of concrete and reinforcing steel is simulated. In implementing the 
multilevel analysis, secant iteration is performed in each step of displacement increment to obtain the con-
vergent solution satisfying equilibrium. Numerical example of RC frame is presented to demonstrate the 
applicability and accuracy of the proposed nonlinear multilevel analysis method. 
Keywords: multilevel analysis, reinforced concrete frames, sectional analysis, stiffness degradation, stress 
relief, strain localisation, unloading.

Introduction

By extending the analysis of reinforced concrete (RC) 
members into post-crack and post-peak regimes, the 
full range analysis of structural members is useful 
for acquiring their deformation response and failure 
mode, as well as collapse mechanism in forensic struc-
tural engineering. However, the structural behaviour 
of RC members in post-crack and post-peak stages is 
complicated. Consider a RC member subjected to an 
increasing level of external load, at certain load level, 
the critical section starts to crack and softens. When 
the external load continues to increase, the cracked 

section would exhibit crack propagation and further 
softening, while other uncracked sections might be-
come critical and exhibits cracking and softening. At 
the occurrence of crack opening, which may encom-
pass crack initiation and crack propagation, there 
would be stress redistribution between concrete and 
reinforcing steel. In the region close to the crack, the 
stresses of concrete might decrease due to stress relief 
effect, hence unloading might occur at the associated 
sections. Besides, when the deformation of member is 
large, plastic hinge may form where there is high in-
tensity of rotation with occurrence of strain localisa-
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tion. In the proximity of plastic hinging, the stresses 
of concrete and steel might be relieved due to strain 
reversal effect, thus unloading might happen at the 
associated sections. Along the RC member, the stress 
states of discrete sections would be variable. The dif-
ferent degrees of stiffness degradation lead to sectional 
variation of stiffness, which could not be accounted for 
by conventional methods of structural analysis.

To tackle the above difficulty, the nonlinear 
multilevel analysis methodology of RC structures is 
developed by the authors. The multilevel analysis of 
structures involves breaking down the structure into 
lower level sub-elements and conducting analysis at 
the sub-element level. The process encompasses sub-
structuring and static condensation. Substructuring 
technique refers to subdividing the large structure 
into components, or substructures. It was first imple-
mented by Przemieniecki (1963), who analysed each 
substructure separately by assuming fixity at all sub-
structure interface boundaries initially, and followed 
by simultaneous relaxation of all boundary fixities to 
determine the boundary displacements from the so-
lution of equilibrium equations. Static condensation 
refers to the formation of equivalent stiffness matrix 
for exterior nodes that includes all interior effects, and 
such procedure greatly reduces the degrees of freedom 
in solving matrix equations. 

The mathematical theory of substructuring in 
analysis of linear elastic problems is well established. 
Row and Powell (1978) devised a general multilevel 
substructuring procedure for static analysis, and de-
veloped a static condensation procedure incorporat-
ing Choleski decomposition. Subsequently, Leung and 
Cheung (1981) introduced the two-level finite element 
method, aiming to enhance the computational effi-
ciency in solving large-scale frame problems. In their 
method, each substructure (or referred to as super-ele-
ment) is defined by the analyst and is assembled in ac-
cordance with the pre-assigned master nodes, at which 
connections between substructures are made. Inside a 
substructure, the nodal displacements are determined 
from the interpolating function of the master nodes. 

One of the practical examples of engineering ap-
plications of multilevel analysis method was the elastic 
analysis of steel girder frame structure conducted by 
Dodds and Lopez (1980). The plane frame and gird-
er frame members were assigned to the first level of 
substructure, whereas the second and third levels of 

substructure were generated by subdividing the girder 
into triangular and quadratic plane stress finite ele-
ments. They reported a 99% reduction in computer 
time in the solution process by using substructuring 
technique. Furthermore, the substructuring technique 
has been applied to various engineering fields such as 
structural dynamics (Leung 1989), soil-structure inter-
action (Lai, Booker 1991), and automatic design opti-
misation problems (Ding, Esping 1991). 

The substructuring technique has also been ap-
plied to the nonlinear analyses such as elasto-plastic 
problem regarding steel members (Roeck et al. 1989) 
and buckling problem (Huang, Wang 1993). For analy-
sis of nonlinear problems, the load is applied typically 
in the form of either force or displacement increment 
steps. Within each incremental step, iteration process 
is required to achieve convergence. Since the structure 
stiffness may vary among iterations, reformulation and 
reassembly of the stiffness matrices are necessary. This 
costs enormous computational resource requirements. 
Nevertheless, in RC structures, the major sources of 
nonlinearity arise from cracking and plastic hinging, 
which are often confined to localised regions of the 
structure. By condensing the size of problem with re-
spect to the undamaged and damaged status, the com-
putation can be substantially economised. This may 
be accomplished by dividing the structure into two 
sets of substructures (Lam et al. 2007; Lam 2009). The 
first set is referred to as elastic substructures, which 
are known to remain elastic throughout the analysis. 
The matrix formulation of the elastic substructures is 
performed only once prior to the start of nonlinear 
analysis. The second set is referred to as nonlinear sub-
structures, which are remainder of the structure whose 
stiffnesses may be modified during load increments 
and numerical iterations. 

In the current research, the nonlinear multilev-
el analysis method for concrete frames, whereby the 
frame member is divided into sub-elements and the 
member analysis is undertaken in conjunction with 
sectional analysis to evaluate the actual load-deflection 
response, is developed. At sectional level, the stiffness 
of sub-elements is determined from the moment-cur-
vature relations, in which the curvature is evaluated 
based on the transverse displacements and section ro-
tations of the member. The procedures of the multilev-
el analysis method will be further explained hereunder. 
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1. Substructuring and condensation technique

The process of substructuring is basically a means of 
solving a discretized continuum problem which in-
volves large number of unknowns by breaking it down 
into a series of lower level problems. At the lower level, 
prior to the static condensation and substructure as-
sembly, all the internal degrees of freedom associated 
with the internal nodes of a substructure are elimi-
nated. The resulting system, which is called condensed 
substructure, consists of only the boundary degrees of 
freedom associated with the boundary nodes. The con-
densed substructure in which all interior effects are in-
clusive is assembled with other substructures through 
connections at their boundary nodes.

A brief overview of the mathematical basis of sub-
structuring for static structural analysis is presented 
in the following. The force-displacement relation of a 
substructure is given by Eq. (1):
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stiffness submatrices, { }( )j
iU  and { }( )j

bU  are respec-
tively the displacements at the internal and boundary 
nodes, { }( )j

iP  and { }( )j
bP  are respectively the external 

force vectors at the internal and boundary nodes, and 
superscript (j) refers to the jth substructure. 

After static condensation, the equations for the 
condensed matrix consisting of boundary nodes only 
are shown as follows:
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where ( ) 
 

j
bK  and { }( )j

bP  are respectively the effective 
substructure stiffness matrix and the effective sub-
structure force vector. 

In the present study, a frame member is divided 
into a number of sub-elements, in which the stiffness 
of each sub-element is determined from the moment-
curvature relations presented in later paragraphs of 
this paper. The stiffness equations of a sub-element 
can be partitioned as given by Eq. (3):
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in which   llK ,   lrK ,   rlK  and   rrK  are the par-
titioned stiffness submatrices, {Ul} and {Ur} are the dis-
placements of the end nodes of a sub-element, {Pl} and 
{Pr} are the corresponding nodal force vectors of the 
end nodes of a sub-element.

Let N be the number of sub-elements in a frame 
member. The stiffness equations of the frame member 
assembled from the N sub-elements are expressed as:
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where [K] is a matrix determined from the assembly of 
the stiffness submatrices of the internal nodes, {X} and 
{P} are respectively the displacements and equivalent 
force vectors of internal nodes, superscript (1) and su-
perscript (N) represent the 1st sub-element and the Nth 
sub-element, respectively. 

By eliminating {X} from Eq. (4a), the stiffness ma-
trix, nodal displacements and equivalent force vector 
of the condensed structure are given by:
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Having determined the substructure matrices, 
the stiffness matrices and force vectors of all substruc-
tures are assembled to form the matrix equation of the 
whole structure:
 { } { }=  K U F . (6)

For each displacement increment and numeri-
cal iteration, the displacement vector { }( )j

bU  for the 
jth substructure is extracted from {U} and substituted 
into Eq. (7) to obtain the translational and rotational 
displacements of internal nodes.
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2. Material Modelling

Nonlinear stress-strain constitutive relations of con-
crete and reinforcing steel are incorporated in the 
study. Stress-path dependent unloading and reloading 
curves are included in the material modelling so as to 
allow for possible unloading and reloading due to the 
aforementioned stress relief and strain reversal effects. 
As explained in the foregoing, even under monotoni-
cally increasing loading, sections in the proximity of 
crack opening and plastic hinging may subject to un-
loading, while if the loading is further increased, the 
unloaded sections may experience reloading. These 
phenomena have significant effects on the post-crack 
and post-peak behavioural characteristics of RC mem-
bers. 

It should be noted that for the sign convention, 
compressive stresses and strains are taken as positive 
while those in tension are negative, sagging moment 
is taken as positive while hogging moment is taken as 
negative.

2.1. Stress-strain relationship of concrete

For concrete under compression, the compressive 
stress-strain curve proposed by Saenz (1964) for nor-
mal strength concrete is employed. The relationship be-
tween the concrete compressive stress σc and the con-
crete compressive strain εc is given by Eq. (8), where 
E0 is the initial elastic modulus of concrete, εco is the 
concrete strain at peak compressive stress, and Eco is 
the secant modulus at peak compressive stress.

 0
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Unloading and reloading path is assumed to fol-
low the gradient of E0 at starting point of unloading 
until it reaches zero stress. If reloading takes place at 
the unloading stage, the same unloading path is re-
tracted until reaching the envelope curve of Eq. (8).

For concrete under tension, the tensile stress-
strain curve proposed by Guo and Zhang (1987) is 
adopted. The relationship between the concrete ten-
sile stress σt and the concrete tensile strain εt is given 
by Eq. (9), where fto is the peak tensile stress, εto is 
the strain at peak tensile stress, and α is a parameter 
dependent on the concrete grade.
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Unloading path is assumed to follow the gradient 
of secant modulus at starting point of unloading (i.e. 
the path directs towards point of zero strain from the 
starting point of unloading). If reloading takes place 
at the unloading stage, the same unloading path is re-
tracted until reaching the envelope curve of Eq. (9). 

2.2. Stress-strain relationship of reinforcing steel

A bilinear stress-strain relationship of reinforcing steel 
is adopted. It comprises an initial elastic region with 
elastic modulus Es and a yield plateau of yield stress 
fy. The relationship between the steel stress σs and the 
steel strain εs is given by Eq. (10), where εps is the re-
sidual plastic strain. Bauschinger effect is not taken 
into consideration. If unloading occurs after yielding 
of steel, the stress decreases by following a straight line 
having the same gradient as Es until it reaches zero.

     At elastic stage: σ = εs s sE  for ε ≤s y sf E ; (10a)

     After yielding: σ =s yf  for ε >s y sf E ; (10b)

     During unloading or reloading:  
     ( )σ = ε − εs s s psE .                                              (10c)

3. Numerical Procedures

Figure 1 depicts the flowchart of procedures of the 
multilevel analysis method. The nonlinear multilevel 
analysis method for RC frames comprises two levels 
of nonlinear substructuring technique, and involves 
nonlinear member analysis and nonlinear sectional 
analysis. The numerical procedures are described in 
detail below. 

3.1. Nonlinear sectional analysis

The assumption of plane sections remain plane after 
deformation is adopted. It implies that the bending 
strain in the section is proportional to the distance 
from the neutral axis. Define x-direction to be parallel 
to the neutral axis and y-direction to be perpendicular 
to the neutral axis. Denote the curvatures of the beam 
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about the x- and y- axes respectively by κx and κy, the 
strain in the beam section is given by:
 Aε = ε + κ + κy xx y , (11)

where εA is the axial strain at sectional centroid and 
(x, y) indicates the location of the point being consid-
ered. The strains of concrete in compression zone and 
tension zone and the strain of reinforcing steel may be 
evaluated from Eq. (11).

Having determined the strains, the correspond-
ing stresses developed in the concrete and steel rein-
forcement may be computed from the corresponding 
stress-strain relationships of the materials. The stresses 
developed in the section must satisfy the conditions of 
axial and moment equilibria. The equilibrium equa-
tions are expressed as follows:
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(12)
where PA is the applied axial load, Mx and My are the re-
sisting moments about y-axis and x-axis, dAc is the part 
of sectional area being considered, As is the area of re-
inforcing steel and subscripts c and s represent concrete 
and steel respectively. If there is no axial load applied 
to the member, a value of zero is substituted for PA. 
In the computer implementation of Eq. (12), numeri-
cal integration using Gauss quadrature is performed. 

After obtaining the curvatures from the transverse 
displacements and section rotations of the member, an 
iterative process based on Newton-Raphson’s method 
is employed to calculate the axial strain εA. At the start 
of iteration, suppose there is an unbalanced axial force 
Q, the value of axial strain in the (i)th iteration is evalu-
ated as:

 ( ) ( ) ( )1
A A 1

−
−

−
ε = ε −

∂
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i i
i i

Q Q
Q

, (13)

where Qi–1 and Qi are respectively the unbalanced 
axial force at the (i–1)th and (i)th iteration, ∂ ∂εQ  is 
the finite difference approximation corresponding to 
axial strain interval limited by [εA–(0.5)ΔεA, εA+(0.5)
ΔεA]. A value of the axial strain increment ΔεA equal 
to 1.0×10-6 appears to be numerically stable. The itera-
tion is repeated until attaining convergence, where the 
unbalanced axial force is smaller than the allowable 
tolerance. This is usually rapidly achieved. 

Having determined the value of εA by numerical 
iteration, the moment equilibrium condition is em-
ployed to evaluate the resisting moments. With the 
inclusion of unloading and reloading curves in the 
materials constitutive model, the moment-curvature 
relation so obtained is able to account for strain rever-
sal effects and is well suited for post-crack and post-
peak analysis. The flexural stiffness of the sub-element 
is updated in accordance with the tangent stiffness 
matrix of the section, [S], which is determined using 
finite difference approximation as given by Eq. (14). 
With the known moment and curvature values, the 
secant stiffness of the sub-element is obtained.
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Fig. 1. Flowchart of nonlinear multilevel analysis

BEGIN

Dene geometry, material properties, boundary 
condition and loading of substructures

 

END

Nonlinear 
member 
analysis

Yes

No

 

Evaluate, condense and assemble stiffness matrices and 
load vectors for each substructure

 

Retrieve transverse displacements and 

 

rotations at

 

internal nodes

 
Conduct sectional analysis to update 

 

stiffness of sub -elements

 

Re-condense and re-assemble stiffness matrices of each 
substructure

Solve governing equations to obtain displacements of 
boundary nodes of each substructure

Yes

Force equilibrium is 
achieved? 

Compatibility of 
displacement is achieved? 

Nonlinear 
sectional 
analysis

D
isp

la
ce

m
en

t i
nc

re
m

en
t l

oo
p

 

Ite
ra

tio
n 

lo
op

 

No



Engineering Structures and Technologies, 2015, 7(4): 168–176 173

The updated secant stiffness of the sub-elements 
will be assembled into the condensed frame member 
and used for the higher level analysis.

3.2. Nonlinear member analysis

For each member of a RC frame, it is divided into a 
number of substructures, which are connected at the 
boundary nodes. Within each substructure, the topol-
ogy of sub-elements is defined by the internal nodes, 
which may be located at equal intervals or designated 
by the analyst. For illustration purpose, Figure 2 shows 
a continuous RC beam composed of three substruc-
tures which are modelled by plane frame elements and 
the beam is subdivided into a total of (N1 + N2 + N3) 
sub-elements. The first substructure has (N1–1) inter-
nal nodes, whilst the second and the third substruc-
tures have (N2–1) and (N3–1), respectively. The mate-
rial properties and loading conditions of the member 
is used for defining the initial conditions of the sub-
elements. Prior to the member analysis, nonlinear sec-
tional analysis for evaluating the stiffness of all sub-
elements is performed. 

To model the effect of plastic hinging, suitable 
element size and element properties need to be em-
ployed to represent the plastic hinge region. From the 
authors’ experience, numerical snap-back instability 
might occur if the assumed plastic hinge length dif-
fers significantly from the actual value, and if improper 
element size is used where the length of element is well 
shorter than the plastic hinge length. The plastic hinge 
length of reinforced concrete members had been vastly 
researched over the past decades and a number of pre-
diction formulas had been proposed for beams (Mat-
tock 1964, 1967; Corley 1966; Mendis 2001) and for 
columns (Park et al. 1982; Zahn et al. 1983; Zahn 1985; 
Paulay, Priestley 1992; Bayrak, Sheikh 1997; Paultre 
et al. 2001). By comparing the experimental plastic 
hinge length results of reference concrete members 
such as those tested by Tanaka and Park (1990) against 

the predictions by different formulas, the mean value 
of formulas proposed by Corley (1966) and Mendis 
(2001) for beams and the formula proposed by Zahn 
et al. (1983) and Zahn (1985) for columns were found 
to be leading to desirable results (Lam 2009). Upon the 
formation of plastic hinge, the elements representing 
the plastic hinge zone should be altered to allow for the 
possible rigid-body rotation and inelastic curvature 
pertinent to the plastic hinging behaviour. The shear 
modulus is adjusted by the shear retention factor to re-
flect the reduction of flexural shear rigidity (Ng 2007). 
The bond slip between concrete and reinforcement is 
simulated by connecting rotational springs with frame 
element in series, and the stiffness of rotational springs 
is established from the actual moment-curvature rela-
tions (Lam 2009).

For a given RC frame, it is analysed by applying 
prescribed incremental displacement to the control 
nodes of the members in small steps. Under a pre-
scribed displacement, having condensed the sub-ele-
ments into a frame element and assembled the con-
densed frame elements, Eq. (6) is solved for the trans-
lational and rotational displacements of the boundary 
nodes. From the nodal displacements of boundary 
nodes, the nodal displacements of each internal node 
can be determined based on Eq. (7). The curvature 
of each sub-element is then evaluated based on both 
transverse displacements and section rotations of the 
sub-element. From the curvatures so obtained, the 
strain distribution can be determined as per Eq. (11), 
and the corresponding stresses developed in concrete 
and reinforcing steel can be computed according to the 
respective material stress-strain relationships. The axial 
strain which satisfies the axial equilibrium condition is 
evaluated by the iterative process as formulated in Eq. 
(13). The stiffness of the sub-elements is determined 
as the secant slope of the moment-curvature relation. 
Consequently, the condensed frame element is formu-
lated again and assembled into the global structure for 
frame analysis. The above numerical procedure is re-
peated for each displacement increment step until the 
required load level is attained. 

4. Numerical example

A two storey RC frame specimen, which was tested by 
Vecchio and Emara (1992), is analysed. It has a cen-
tre to centre span of 3500 mm and a storey height of 
2000 mm as shown in Figure 3. The dimensions of all Fig. 2. Substructuring of two-span continuous beam

Concentrated  
load  

Internal 
nodes

 

Boundary 
nodes

…
 

…
 

N1 sub-elements N2 sub-elements N3 sub-elements

…
 

Concentrated 
load
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frame members were 300 mm wide by 400 mm deep. 
All members were similarly reinforced with four No. 
20 deformed steel bars as tension reinforcement, four 
No. 20 deformed steel bars as compression reinforce-
ment and No. 10 closed stirrups with a centre to cen-
tre spacing of 125 mm as shear reinforcement. The 
longitudinal reinforcement was anchored at all ends 
of members by welding the steel bars to stiff bear-
ing plates. The geometry and section details of frame 
members are depicted in Figure 3. 

The material properties of the RC frame are as 
follows. The compression strength of concrete was 30 
MPa. The tensile strength and initial elastic modulus 
of concrete were taken to be 1.8 MPa and 26 GPa re-
spectively. The longitudinal reinforcement had a yield 
strength of 418 MPa, an ultimate stress of 596 MPa, and 
an elastic modulus of 192.5 GPa. The shear reinforce-
ment had a yield strength of 454 MPa and an ultimate 
stress of 640 MPa. In the load test, a constant axial 
load of 700 kN was first applied to each column under 
force-control mode. Lateral load was then monotoni-
cally applied under displacement-control mode, until 
the ultimate capacity of the frame was reached.

The nonlinear multilevel analysis is employed 
to determine the load-deflection response of the RC 
frame. The frame is modelled by four columns (C1, 
C2, C3 and C4) and two beams (B1 and B2), as shown 
in Figure 4. Each column member is subdivided into 
8 sub-elements of identical length and has 2 exter-
nal nodes and 7 interior nodes, whereas each beam 
member is subdivided into 12 sub-elements of identi-
cal length and has 2 external nodes and 11 interior 
nodes. The constant axial load of 700 kN applied to 
each column is simulated by prescribed axial forces as 
the initial condition, while the lateral load is simulated 
by prescribed incremental displacements at joint J5 of 
the model. At each displacement increment, upon de-
termining the deformed shape of the frame, flexural 
and shear stiffnesses of all sub-elements are updated. 
Compatibility and equilibrium checking is carried out 
for the frame structure in each iteration.

Comparison between experimental and analytical 
results of lateral displacement at joint J5 is presented 
in Figure 5. The numerical results of layered finite ele-
ment analysis by Vecchio and Emara (1992) are in-
cluded in the figure. It can be seen from Figure 5 that 

Fig. 3. Details of RC frame
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the load-displacement curve obtained from nonlinear 
multilevel analysis closely resembles the experimental 
load-displacement curve. The analytical value of ulti-
mate load capacity is approximately 7% lower than the 
experimental value. In contrast, the layered finite ele-
ment analysis gave accurate prediction of the ultimate 
load capacity, but the overall load-displacement curve 
deviated more significantly from the experimental re-
sults. On the whole, the accuracy of nonlinear multi-
level analysis is highly desirable.

Conclusions

In this study, a nonlinear multilevel analysis method 
for reinforced concrete (RC) frames has been de-
veloped whereby the frame member is divided into 
sub-elements and member analysis is undertaken in 

conjunction with sectional analysis to evaluate the 
load-deflection response. Formulations for the non-
linear substructuring technique and the static conden-
sation procedure have been presented. The method is 
computationally efficient compared to nonlinear finite 
element analysis. Moreover, with the unloading and 
reloading behaviour of concrete and steel reinforce-
ment taken into consideration, the method has good 
capability to simulate nonlinearities of RC structures 
that arise not only from the material constitutive mod-
elling and stiffness degradation, but also from cracking 
and plastic hinging. Numerical example of a RC frame 
specimen tested in the literature has been presented to 
demonstrate the applicability of the nonlinear multi-
level analysis, the results of which are found to be in 
close agreement with the experimental results. 
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