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Abstract. Tensegrity systems are a special class of spatial reticulated structures that are composed of struts 
in compression and cables in tension. In this paper, the performance of stochastic subspace algorithms for 
modal identification of complex tensegrity systems is investigated. A sub-class algorithm of the Stochastic 
Subspace Identification family: the Balanced Realization Algorithm is investigated for modal identification 
of a tripod simplex structure and a Geiger dome. The presented algorithm is combined with a stabiliza-
tion diagram with combined criteria (frequency, damping and mode shapes). It is shown that although the 
studied structures present closely spaced modes, the Balanced Realization Algorithm performs well and 
guarantees separation between closely-spaced natural frequencies. Modal identification results are validated 
through comparisons of the correlations (empirical vs. model based) showing effectiveness of the proposed 
methodology.
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Introduction

Tensegrity systems are a special class of spatial re-
ticulated structures that are composed of struts and 
tendons. Tensioned and compressed components are 
assembled in a self-equilibrated system providing sta-
bility and stiffness to the structure. The word tenseg-
rity comes from the contraction of tensile and integ-
rity. It was proposed by Richard Buckminster Fuller 
in 1962. A recent and widely accepted definition was 
proposed by Motro (2003): “A tensegrity is a system in 
stable self-equilibrated state comprising a discontinu-
ous set of compressed components inside a continuum 
of tensioned components”. This definition includes sys-
tems where compressed elements are interconnected 
as tensegrity structures. Skelton et al. (2001) proposed 

the term “class k” to distinguish the different types of 
structures included in this broader definition. A “class 
k” tensegrity structure is defined as a stable tensegri-
ty with a maximum of k interconnected compressive 
members.

The tensegrity concept has received significant in-
terest among scientists and engineers in various fields 
ranging from aerospace, robotic, architecture and civil 
engineering to modelling of biological systems (Skel-
ton, de Oliveira 2009). In aerospace technology, the 
tensegrity concept offers an alternative solution to de-
sign lightweight deployable structures as masts, solar 
arrays and antennas (Puig et al. 2010). The tensegrity 
paradigm has also inspired research on string-driven 
robotic systems (Graells Rovira, Mirats Tur 2009; Juan, 
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Mirats Tur 2008; Paul et al. 2006). Architects are inves-
tigating responsive architecture and use of tensegrity 
systems in adaptive buildings (d’Estrée Sterk 2003). 
Furthermore, the tensegrity concept is used to model 
biological systems such as cytoskeleton structures of 
unicellular organisms (Ingber 1998). Tensegrities are 
also particularly attractive for active structures as of-
ten small amounts of energy are needed for structural 
control purposes and adaptation in changing environ-
ments (Skelton et al. 2001).

Research into dynamic behaviour of tensegrity 
structures was initiated in the mid-1980s.

Motro et al. (1986) presented experimental and 
numerical work on a tensegrity structure composed 
of three bars and 9 tendons. They showed that a lin-
earized dynamic model around an equilibrium con-
figuration offers a good approximation of the non-
linear behaviour of simple tensegrity structures. Ben 
Kahla et al. (2000) developed a numerical procedure 
for nonlinear dynamic analysis of tensegrity systems. 
Murakami (2001a, 2001b) used Lagrangian and Eule-
rian approaches to derive the equations of motion of 
tensegrity structures and performed numerical simula-
tions and modal analysis of some tensegrity modules. 
Sultan et al. (2002) derived linearized dynamic models 
for two classes of tensegrity structures and showed that 
the modal dynamic range generally increases with the 
pretension. Arsenaultdub and Gosselin (2006) devel-
oped dynamic models of planar tensegrity modules 
with 1, 2 and 3 degrees of freedom. Masic and Skelton 
(2006) used a linearized dynamic model to enhance 
the dynamic control performance of a tensegrity struc-
ture. Dubé et al. (2008) presented a comparative study 
between experimental tests and numerical simulations 
carried out on a tensegrity minigrid considering static 
as well as dynamic loading. Recently, Bel Hadj Ali and 
Smith (2010) investigated dynamic behaviour of a 
five-module tensegrity structure and showed that the 
system resonant frequencies are closely related to the 
level of pretension. Korkmaz et al. (2011, 2012), have 
worked on determining control strategies for damage 
tolerance of an active tensegrity structure as well as 
on configuration of control system for deployment and 
damage tolerance of a tensegrity bridge. El Ouni and 
Ben Kahla (2014) studied the active vibration control 
of a Geiger dome using decentralized collocated inte-
gral force feedback.

Most studies on tensegrity dynamics showed that 
for such systems the structure modal signature is relat-

ed to its state of self-stress. In fact, in tensegrity struc-
tures, the self-stress state significantly influences soft 
modes (zero-stiffness modes related to the structure 
infinitesimal mechanisms). This suggests that identify-
ing the modal parameters and monitoring their possi-
ble changes may result in the evaluation of the system 
internal forces and the detection of possible damages 
of its components. However, the structure modal pa-
rameters are not easily identified especially when the 
natural frequencies are closely spaced which is gener-
ally the case for tensegrity structures (Bel Hadj Ali, 
Smith 2009). This arises the challenge of choosing the 
appropriate identification technique for such systems. 
The traditional identification techniques that extract 
modal parameters from input and output data have 
been well developed and widely used in engineering. 
However, it is often a hard task to carry out excitation 
in field testing for large structures. Moreover, in many 
cases, ambient excitation is of complex nature and can-
not be measured (Off-shore structures, bridges, etc…). 
To obviate difficulties of traditional techniques, meth-
ods of extracting modal parameters from structural 
response data only have been deeply investigated dur-
ing the past few decades (Mrabet et al. 2014; Reynders 
et al. 2007).

Several identification techniques such as Natural 
Excitation Technique (NEXT), Frequency Domain 
Decomposition (FDD) and Stochastic Subspace Iden-
tification (SSI) are employed to identify dynamic char-
acteristics when structures are excited by unknown in-
put. The basic assumption behind such techniques is 
that the excitation is a white Gaussian noise. Detailed 
knowledge of the excitation input is thus no longer 
need.

There has been much work on output-only iden-
tification. Benveniste and Fuchs (1985) considered the 
use of stochastic realization algorithms for structure 
modal analysis. Output-only system identification 
methods have been proven efficient for system iden-
tification in many engineering applications (Bassev-
ille et al. 2000). Among available techniques, the data 
driven Stochastic Subspace Identification techniques 
is considered to be one of the powerful identification 
techniques for output-only modal analysis in time 
domain (Giraldo et al. 2009). Van Overchee and De 
Moor (1996) provided a mathematical background 
for subspace algorithms existing in the literature, in-
cluding those used to identify input-output systems or 
stochastic output-only systems. Several applications 
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of output-only identification have been reported in 
the literature. Basseville et al. (2000) investigated sub-
space-based fault detection for vibration monitoring. 
Modal analysis of mechanical and civil structures is a 
classical and widely studied subject (Magalhaes et al. 
2008; Carden, Mita 2009; Reynders et al. 2007). The 
output-only identification of complex tensegrity sys-
tems has not been studied.

In this paper, a sub-class algorithm of the SSI fam-
ily: the Balanced Realization Algorithm is investigated 
for modal identification of a tripod simplex structure 
and a Geiger dome. The tensegrity structures are as-
sumed to be time invariant in a taut and stiff configu-
ration, experiencing small and linear oscillations about 
their stable equilibrium position, allowing the struc-
tures to be considered stationeries. The structures are 
symmetric and present closely spaced modes. The Bal-
anced Realization Algorithm is presented and applied 
for output-only modal identification.

A stabilization diagram with high criteria (fre-
quency, damping and mode shapes) is employed. 
Modal identification results are validated through 
comparisons of the correlations (empirical vs. model 
based) showing effectiveness of the proposed method-
ology.

1. Dynamic model

Let’s assume that the behaviour of the studied structure 
can be described by a stationary linear dynamic sys-
tem, and that, in the frequency range of interest, the in-
put forces can be modelled as a stationary white noise. 
Consequently the model can be described through the 
following matrix differential equations: 

 

( ) ( ) ( ) ( )
( ) ( )

MZ t CZ t KZ t v t
Y t LZ t

 + + =


=

 

, (1)

where t denotes continuous time, M, C and K are the 
mass, damping and stiffness matrices respectively, 
(high dimensional) vector Z collects the displacements 
of the degrees of freedom of the structure; the exter-
nal (non measured) force ν is modelled as a stationary 
white noise with covariance matrix Q, measurements 
are collected in the (low dimensional) vector Y, and 
matrix L states where the sensors are located (sensors 
positions). The mechanical characteristics (M, C and 
K) of the system cannot be recovered from the output 
measurements. Hence, identifiable modal characteris-
tics of the system are introduced: the vibration modes 

or eigen-frequencies denoted generically by μ and the 
modal shapes or observed eigenvectors denoted ge-
nerically by yμ.

These quantities are solutions of the following 
equation:

 
2( ) 0,M C K Lμ μ μμ + μ + Ψ = y = Ψ . (2)

Sampling model represented by Equation (1) at 
rate 1/τ yields the discrete time model in state space 
form:
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where the state and the output are:
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The state transition and observation matrices are:

,sFTF e= , 1 1

0
,

I
F
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and where state noise εk+1 is zero-mean, white, 
with co variance matrix :

 

def
T

k kQ E  = ε ε  , (6)

where E(.) denotes the expectation operator. The mod-
al characteristics defined in Equation (2) are equiva-
lently found in the eigenstructure ( ), λλ ϕ of F: 

 ,eτμ = λ
def

Hμ λ λy = f = ϕ . (7 a, b)

From now on, we consider linear multi-variable 
systems described by the state space model given by 
Equation (3), where state X and observed output Y 
have dimensions 2m and r respectively. The state noise 
process (εk)k is an unmeasured Gaussian white noise 
sequence with zero mean and constant covariance ma-
trix Q.

2.Subspace identification methods

We consider linear multi-variable systems described by 
a discrete-time state space model:

 

1k k k

k k k

X FX
Y HX

+ = + ε
 = + ν

, (8)

where state X and observed output Y have dimensions 
2m and r respectively. The number of degrees of free-
dom is m and r is the number of sensors.

The state noise process (εk)k is an unmeasured 
Gaussian white noise sequence with zero mean. We 
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assume noise εk to be stationary that is of constant co-
variance matrix; the issue of robustness with respect 
to non-stationary excita tion is addressed in detail in 
the papers by Mevel et al. (2003) and Basseville et al. 
(2000).

The measurement noise process (vk)k is assumed 
to be an unmeasured Moving Average process denoted 
by MA(i), a Gaussian sequence with zero mean. In the 
sequel, we use the notational convention that i = –1 for 
no measurement noise, and i = 0 for white measure-
ment noise. Note that, with this MA assumption for 
its structure, measurement noise does not affect the 
eigenstructure of the system given by Equation (8).

Let:

 

def
T

k kG E X Y =   , (9)

be the cross-correlation between state Xk and observa-
tion Yk, and let:
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(10 a, b)
   

be the pth-order observability matrix of the system giv-
en by Equation (8) and controllability matrix of pair (F, 
G), respectively. We as sume that, for p large enough, 
both observability and con trollability matrices have 
full rank 2m.

Consider now a sequence of covariances:

 ( )
def

T
j k j kR E Y Y+= , (11)

of output Yk of a state space model represented by 
Equation (8). For q > p + 1, let Hp+1, q be the block-
Hankel matrix:
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As mentioned above, integer i reflects the assumed 
de pendency in the measurement noise sequence (vk)k. 
It should be considered as a design parameter for the 
algo rithms described in the paper.

Choosing the eigenvectors of F as a basis for the 
state space of model of Equation (8) yields the fol-
lowing particular repre sentation of the observability 

matrix introduced in Equation (10a) (Basseville et al. 
2000):

 

( )1p

p

O +

f 
 fΔ θ =  
  fΔ 



,  
   (13)

where diagonal matrix Δ is defined as Δ = diag(λ), and 
Λ and f are as defined in Equation (7a, b). For any 
other state basis, the observability matrix Op+1 can be 
written as:
 ( )1 1p pO O U+ += θ

 
(14)

for a suitable 2m ́  2m invertible matrix U. Because of 
the definition of Hp+1,q, Op and Cq in Equation (12) 
and Equation (10 a, b) respec tively, a direct computa-
tion of the Rj’s from the model equations :

 ( )1
1 0i j

i jR HF G j+ +
+ + = ≥  (15)

leads to the following well known factorization prop-
erty:

 ( )1
1, 1

i
P q p qH O F C+

+ += . (16)

Let W1, W2 be two user-defined invertible weight-
ing matrices of size (p+1)r and qr, respectively. Let:
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p q
D

W H W p p V⊥
+
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 
  (17)

be the Singular Value Decomposition (SVD) of this 
matrix, where D = diag(σ1 ,…, σ2m) contains the 2m 
non-zero sin gular values in decreasing order, the 2m 
columns of ma trix P are the corresponding left singu-
lar vectors, and the (qr – 2m) columns of matrix p⊥

are the left singular vectors associated with singular 
value 0. Note that P is full column rank (f.c.r.). The 
factorization property of the Hankel matrix Equation 
(16) results in:

 ( )1
1 1, 2 1 1 2    T i T

p q p qW H W W O F C W+
+ +=

 
(18)

with, for example: 1 2
1 1pW O PD+ = , where T is a non-

singular transformation. The observability matrix can 
then be recovered, up to a change of basis or equiva-
lently for some pair (H, F) as:

 ( ) 1 21
1 1,pO H F W PD T−

+ = . (19)

The particular choice of factor D1/2, together with 
T iden tity, corresponds to the balanced realization 
(BR) case when weighting matrices W1 and W2 are 
identity. Any other non-singular factor may be used.

The pair (H, F) is recovered from Op+1 (H, F) in a 
stan dard way (Peeters, Ventura 2003). The eigenstruc-
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ture of the state transition matrix F is then recovered 
from: 1F −= fΔf , ob tained, e.g., by eigenvalue solving.

In practice, one has only a limited data sample of 
a certain length and therefore only empirical correla-
tions may be computed. The block Hankel matrix will 
consequently be generically of full rank. In this case, 
truncation of the SVD will be necessary. The estimat-
ed observability matrix will no longer enjoy the shift 
structure and the state matrices will be only estimates 
of the true ones. This is one source of error that can be 
found in the identification results. Therefore the Bal-
anced Realization Algorithm (BR) is employed.

3. Numerical examples

3.1. The tripod simplex

The tripod simplex tensegrity system shown in Figure 
1 is chosen as a case study. It is made up of six nodes 
whose coordinates are listed in Table 1, and twelve ele-
ments: nine cables and three struts. The boundary con-
ditions were chosen in such a way to block the three 
lower nodes 1, 2 and 3 in all directions (X, Y and Z). 
Hence, the structure has nine degrees of freedom de-

fined as follows: three degrees of freedom per upper 
node, respectively for nodes 4, 5 and 6 and in the order 
X, Y then Z. The three lower cables become redundant 
and can be omitted, since they do not contribute to 
the system dynamic characteristics. The cable elements 
have an elastic modulus of elasticity of 0.4 1011 N/m2, 
a cross-section area of 0.2810–4 m2, a unit weight of 
2.05 N/m and an unstretched length of 1 m. The struts 
have an elastic modulus of elasticity of 0.2 1012 N/m2, 
a cross-section area of 3.25 10–4 m2 and a unit weight 
of 27.9 N/m.

Table 1.Initial coordinates of the tripod simplex structure

Node X (m) Y (m) Z (m)

1 0.5774 0.00 0.00

2 –0.2444 0.5000 0.00

3 –0.2665 –0.4617 0.00

4 –0.4523 0.3015 0.9194

5 0.94 –0.5424 0.9194

6 0.5094 0.2793 0.9194

The system in its initial configuration has one in-
finitesimal mechanism and a single state of self-stress. 
An initial pretension of its components is needed to 
stabilize it. Thus, a geometric nonlinear analysis was 
performed to determine the pre-stressed geometry of 
the simplex tripod. Once equilibrium is reached, the 
nine natural frequencies of vibration of this structure 
and their corresponding mode shapes were deter-
mined. The resulting natural frequencies of the system 
are listed in Table 2 and referred to as exact.

Mode 1, shown in Fig. 3a, corresponds to a rota-
tion of the upper triangular cables in the horizontal 
plane with respect to the centroïdal axis of the tripod 
simplex. It is a torsion accompanied with a stretch-Fig. 1. The tripod simplex structure

Fig. 2. The stabilized tripod simplex (a) General view( b) front view(c) Top view

Z

Y

X

a) b) c)
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ing of the element. For mode 2 (see Fig. 3b), a rota-
tion of the upper triangular cables with respect to an 
axis parallel to the direction of the seventh cable and 
intersecting mid-spans of the eighth and ninth cables 
is observed. Similar deformations are obtained for the 
third mode (Fig. 3c) as for the second one which oc-
curs at almost the same natural frequency, thus a rota-
tion of the upper triangular cables with respect to an 
axis parallel to the direction of the eighth cable and 
intersecting mid-spans of the seventh and ninth cables 
is observed. The fourth mode (Fig. 3d) is character-
ized by a deformation of the upper triangular cables 
in such a way that when the eighth cable is stretched, 
cables number 7 and 9 are shortened and vice versa 
when the seventh and ninth cables are elongated, cable 
number 8 is shortened. These deformations are accom-
panied with alternate rotations of the upper triangular 
cables with respect to the rotational axes character-
izing the second and third modes. Similar deforma-
tions are obtained for the fifth mode (Fig. 3e) as for the 
fourth one which occurs at almost the same natural 
frequency, thus the fifth mode characterized by a de-
formation of the upper triangular cables in such a way 
that when the ninth cable is stretched, cables number 
7 and 8 are shortened and vice versa when the sev-
enth and eighth cables are elongated, cable number 9 
is shortened, and the same rotations are observed. In 
the sixth mode (Fig. 3f), the upper triangular cables 
shorten (shrinkage) as the simplex stretches vertically 
along the Z axis and elongate (expansion) as the sim-
plex shortens vertically. For mode 7 (Fig. 3g), a rota-
tion of the upper triangular cables with respect to an 
axis parallel to the direction of the seventh cable and 

intersecting mid-spans of the eighth and ninth cables 
is observed. This rotation is followed by a deformation 
of the upper triangular cables in such a way that when 
the seventh cable is stretched, cables number 8 and 
9 are shortened and vice versa when the eighth and 
ninth cables are elongated, cable number 7 is short-
ened. Similar deformations are obtained for the eighth 
mode (Fig. 3g) as for the seventh one which occurs 

Table 2. The exact and identified natural frequencies of the tripod simplex structure

Mode w exact
(rad/s)

w id. (rad/s)

Sensors (locations)

9 8
(1 2 3 4 5 6 7 8)

7
(1 2 3 4 5 6 7)

6
(1 2 3 4 5 6)

5
(1 2 3 4 5)

4
(1 3 5 8)

3
(3 4 7)

1 6.723 6.688 6.575 6.7103 6.733 6.852 6.711 6.553

2 57.194 57.060 56.999 56.164 55.791 55.932 56.564 57.546

3 57.197 57.673 57.192 56.917 57.112 57.123 57.577

4 131.217 130.685 129.835 129.685 129.491 129.002 127.848 127.371

5 131.219 131.261 131.908 131.234 133.289 130.124 132.725 129.469

6 156.611 156.800 156.242 156.294 157.106 156.027 157.506 151.489

7 755.773 756.168 750.265 744.163 755.309 750.766

8 755.790 756.260 755.077 755.262 756.324 755.016 762.064 755.910

9 766.354 766.832 767.444 763.797 763.518 764.262 766.525 765.711

Fig.3. The nine mode shapes of the Tripod simplex structure

a) b) c)

d) e) f)

g) h) i)
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at almost the same natural frequency, thus a rotation 
of the upper triangular cables with respect to an axis 
parallel to the direction of the ninth cable and inter-
secting mid-spans of the seventh and eighth cables is 
observed. This rotation is followed by a deformation 
of the upper triangular cables in such a way that when 
the ninth cable is stretched, cables number 7 and 8 are 
shortened and vice versa when the seventh and eighth 
cables are elongated, cable number 9 is shortened. In 
the ninth mode (Fig. 3h), the upper triangular cables 
elongate (expansion) as the simplex stretches vertically 
along the Z axis and shorten (shrinkage) as the sim-
plex shortens vertically.

The structure is excited using random forces. A 
total of 30000 data points were generated at a sampling 
frequency of 4000 Hz. 2% noise is added to the outputs 
in order to simulate measurement noise.

There exist several implementations of the sto-
chastic subspace method; one of these is the Balanced 
Realization Algorithm (BR). This method is based on 
the SVD decomposition of the Hankel matrix Hp+1,q 
associated with the state system of Equation (8).

Practical experience with real data as investigated 
by (Reynders et al. 2007) showed that it is better to 
over specify the model order and to eliminate spuri-
ous numerical poles afterwards. This can be done by 
constructing stabilization diagrams. By rejecting less 
singular values, models of increasing order are deter-
mined. Each model yields a set of modal parameters 
and these can be plotted in a stabilization diagram. The 
criteria used are 1% for eigenfrequencies, 5% for damp-
ing ratios and 99% for mode shape vectors (MAC). A 
mode (frequency, damping and modal shape) is con-
sidered stable if it satisfies these three criteria.

The stabilization diagram of a multi-patch trial 
with all the sensors is implemented. Since all the avail-
able sensors are used, the animated mode shapes can 
be plotted.

Different sensor locations have been studied 
to identify the nine mode shapes of the tripod sim-
plex and their corresponding natural frequencies and 
damping ratios. Table 2 shows the values of the exact 
and identified natural frequencies for each sensor pool. 
Table 3 shows the values of the exact and identified 
damping ratio for different sensor pools. 

The inspection of these two tables indicates that 
the identified natural frequencies and damping ratios 
for most sensor pools were well identified. However, in 
the case when six sensors placed along degrees of free-
dom 1, 2, 3, 4, 5 and 6 and the case when five sensors 
placed along degrees of freedom 1, 2, 3, 4 and 5 were 
used, mode seven was not identified. It is to be noted 
that mode seven occurs at almost the same frequency 
as mode 8 and displays symmetric deformation shape. 
This was also observed for the case when three sen-
sors placed along degrees of freedom 3, 4 and 7 were 
used, mode three was not identified. This mode occurs 
at almost the same frequency as mode 2 and displays 
symmetric deformation shape. This may be attributed 
to identifiably conditions which is known to be depen-
dent on the sensor locations (this issue is not treated 
in this paper) and to the persistency of the excitation. 
Since it is difficult to separate these close modes based 
only on frequencies, we have introduced in this work 
the use of the MAC value in the stabilization diagram 
in order to separate the modes. The MAC between the 
exact and identified mode shapes of the tripod simplex 
structure are presented in Table 4. The inspection of 

Table 3. The exact and identified damping ratios of the tripod simplex structure

Mode V exact
(%)

V id. (%)

Sensors (locations)

9 8
(1 2 3 4 5 6 7 8)

7
(1 2 3 4 5 6 7)

6
(1 2 3 4 5 6)

5
(1 2 3 4 5)

4
(1 3 5 8)

3
(3 4 7)

1 5.00 5,12 5,78 4,93 4,39 4,86 3,06 4,79
2 5.00 4,87 5,12 4,43 3,50 5,45 6,87 4,77
3 5.00 5,12 4,26 4,85 5,85 3,15 4,39
4 5.00 5,16 5,51 5,89 7,44 4,91 7,47 4,59
5 5.00 7,58 4,76 4,95 3,82 7,70 5,69 6,32
6 5.00 5,64 4,84 5,64 6,96 5,77 5,75 4,85
7 5.00 4,86 5,23 6,20 4,86 5,74
8 5.00 4,67 4,70 5,01 5,29 5,10 5,37 5,07
9 5.00 5,83 5,26 5,11 5,01 5,48 5,28 5,41
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this table reveals that in general, the mode shapes were 
well identified except for the close modes and depend-
ing on sensor locations.

For the damping ratios however, the identified 
values were less accurate than for the frequencies. This 
observation is inherent to the stochastic identification 
algorithms which were reported in the literature (Mag-
alhães et al. 2009).

In order to validate the identified modal parame-
ters, model based data correlations were computed and 
compared to the empirical ones (or those equivalently 
the spectra). The sensors 3, 4 and 7 were used to iden-
tify the experimental natural frequencies, damping ra-
tios, mode shapes and correlations from the first 30000 
data samples. The superposed correlations are shown 
in Figure 4. The inspection of this figure indicates that 
the modal model reproduces well the empirical corre-
lations and this may be attributed to the fact that most 
of the modes were well identified.

A second procedure to validate the system iden-
tification is the spectral analysis. Three spectra are 
presented in Fig. 5. They are compared with those ob-
tained by applying FFT to measurements. From these 
comparisons, it’s shown that the structure model pa-
rameters are well identified since model and data spec-
trum fit in spite of the divergence in the auto spectrum 
of the sensor 3. In fact, the peaks in this Figures (5a, 
b, c) are better identified than the valleys. This can 
be understood from the implementation of the Cov-
SSI method that doesn’t guarantee the positive real 
sequence condition (Van Overchee, De Moor 1996). 
Therefore, the extended covariance matrices might not 
be positive. Thus, the spectrum divergences are well 
justified.

Table 4. MAC between the exact and identified mode shapes of the tripod simplex structure

Mode w exact
(rad/s)

Mac (identified mode – exact mode)

Sensors (locations)

9 8 7 6 5 4 3

(1 2 3 4 5 6 7 8) (1 2 3 4 5 6 7) (1 2 3 4 5 6) (1 2 3 4 5) (1 3 5 8) (3 4 7)

1 6.723 99.99 99.99 99.99 99.99 99.99 99.99 99.99

2 57.194 97.86 89.80 85.01 97.09 94.17 95.73 99.58

3 57.197 99.69 95.10 92.55 98.24 98.81 85.90

4 131.217 97.23 91.64 97.26 98.76 95.42 98.20 98.77

5 131.219 97.09 97.60 92.55 92.46 81.77 85.94 85.90

6 156.611 99.87 99.84 99.95 99.28 99.87 98.99 84.73

7 755.773 90.04 98.34 97.04 94.26 94.52

8 755.790 93.91 96.73 98.60 95.01 98.54 86.49 85.67

9 766.354 99.22 96.79 96.17 99.30 98.23 99.46 88.89

Fig. 4. Empirical correlations vs. model based ones of the 
Tripod simplex structure
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3.2. Geiger dome

The second example considered is a small scale tenseg-
rity dome of a Geiger type. The model of the Geiger 
type structure (El Ouni, Ben Kahla 2014) is shown in 
Figure 6. 

The small scale tensegrity dome of a Geiger type 
is made up of 32 nodes and 73 elements: 13 vertical 
struts (numbered from 1 to 13) and 60 strings (num-
bered from 14 to 73). The boundary conditions were 
chosen in such a way to restrain the motion of nodes 
7, 12, 17, 22, 27 and 32 in all directions (X, Y and Z). 
Hence, the structure has 78 degrees of freedom defined 
as follows: three degrees of freedom per inner node in 

Fig. 5. Cross spectrum of the Tripod simplex structure (a) 
Auto spectrum sensor 3, (b) Cross spectrum between 3 and 4, 

(c) Cross spectrum between 3 and 7

Fig. 6. The tensegrity dome of a Geiger type
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the order X, Y then Z. The coordinates of all nodes are 
given in Table 5. 

All the elements have an elastic modulus of elas-
ticity of 1.6 1011N/m2 and a density of 7.85 103 Kg/m3. 
The cross-section area of the struts is equal to10–4 m2. 
The cross-section area and initial pre-tension of cable 
elements are given in Table 6. The structure is excited 
by a white noise. Only five sensors measurements and 
a sampling frequency fs = 30 Hz are available for the 
identification.

The same spectral analysis procedure used for 
the tripod simplex structure to validate system iden-
tification is employed for the Geiger dome. In Fig-
ures 7–11, five spectra are presented and compared 
with the spectra obtained by the application of FFT to 
measurements. These comparisons show clearly that 
the parameters of the structure model are well identi-
fied since the data spectra and the model fit despite the 
divergence that appeared in all the cross spectrum and 
the autospectrum of sensor 3.

By inspecting Figure 9, we clearly notice that all 
valleys and peaks are well superposed except the valley 
that is close to the Nyquist frequency (15Hz). These 
facts enable us to conclude that peaks are better iden-
tified than the valleys in all data and model spectra. 
In fact, we can understand that from the implementa-
tion of the SSI-cov method through which a positive 
real sequence condition (Basseville et al. 2000) cannot 
be guaranteed. For that reason, we might not have 
positive extended covariance matrices. As a result, the 
spectrum divergences in that case, are well justified.
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Table 5. Initial coordinates of the smart Geiger’s dome

Node N° X(m) Y(m) Z(m) Node N° X(m) Y(m) Z(m)

1 0 0 0.21 17 –0.30 0.519615 0

2 0 0 0.15 18 –0.20 0 0.185

3 0.20 0 0.185 19 –0.20 0 0.45

4 0.20 0 0.45 20 –0.40 0 0.115

5 0.40 0 0.115 21 –0.40 0 –0.115

6 0.40 0 –0.115 22 –0.60 0 0

7 0.60 0 0 23 –0.10 –0.173205 0.185

8 0.10 0.173205 0.185 24 –0.10 –0.173205 0.45

9 0.10 0.173205 0.45 25 –0.20 –0.346410 0.115

10 0.20 0.346410 0.115 26 –0.20 –0.346410 –0.115

11 0.20 0.346410 –0.15 27 –0.30 –0.519615 0

12 0.30 0.519615 0 28 0.10 –0.173205 0.185

13 –0.10 0.173205 0.185 29 0.10 –0.173205 0.45

14 –0.10 0.173205 0.45 30 0.20 –0.346410 0.115

15 –0.20 0.346410 0.115 31 0.20 –0.346410 –0.115

16 –0.20 0.346410 –0.115 32 0.30 –0.519615 0

Table 6. Cross-section area and initial pre-tension of different cable families of the Geiger dome

Cable family Cable number Cross-section area (10–4m2) Initial pre-tension (KN) Initial pre-stress (MPa)

1 14–19 0.01 0.20 200

2 20–25 0.01 0.144 144

3 26–31 0.02 0.519 259.5

4 32–37 0.02 0.519 259.5

5 38–43 0.04 1.304 326

6 44–49 0.04 1.304 326

7 50–55 0.01 0.15 150

8 56–61 0.02 0.48 240

9 62–67 0.01 0.15 150

10 68–73 0.04 1.13 282.5

Fig. 7. Cross spectrum between sensors 1 and 5 of the Geiger dome
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Fig. 8. Cross spectrum between sensors 5 and 20 of the Geiger dome

Fig. 9. Autospectrum sensor 3 of the Geiger dome

Fig. 10. Cross spectrum between sensors 1 and 3 of the Geiger dome
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Conclusions

For tensegrity systems the structure modal signa-
ture is directly related to its state of self-stress. Thus 
identifying the modal parameters and monitoring 
their possible changes would result in the evaluation 

of the system internal forces and the possible detec-
tion of possible damages of its components. A simplex 
tensegrity structure with closely-spaced modes and a 
Geiger dome are considered here as an output-only 
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modal identification case studies. The Balanced Reali-
zation Algorithm has been investigated for the output-
only modal identification task. Different sensor loca-
tions have been studied to identify the mode shapes 
of tensegrity systems and their corresponding natural 
frequencies and damping ratios. Although the struc-
tures are considered stationeries, the BR algorithm 
performed quite well regarding the fact that the struc-
ture presents symmetries and therefore closely-spaced 
modes. The stabilization diagram was necessary to 
identify close modes by imposing a high value for the 
MAC. When a limited number of sensors are used, it 
is noticed that close modes were difficult to identify.
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