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Abstract. The aim of this paper is to present a solution algorithm for determining the frame element cross-
section carrying capacity, defined by combined effect of bending moment and axial force. The distributions 
of stresses and strains inside a cross-section made of linearly hardening material are analysed. General non-
linear stress-strain dependencies are composed. All relations are formed for rectangular cross-section for all 
possible cases of combinations of axial force and bending moment. To this end, five different stress-strain 
states are investigated and four limit axial force values are defined in the present research. The nonlinear 
problem is solved in MATLAB mathematical software environment. Stress-strain states in the cross-sections 
are investigated in detail and graphically analysed for two numerical experiments. 
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Introduction

Several material models can be used for evaluation 
of plastic strains in the structural elements: perfectly 
rigid-plastic, perfectly elastic-plastic, linearly hardened 
(Čyras et al. 2004; Kalanta 2007; Jaras, Kačianauskas 
2001, 2002; Davies 2002). As it is investigated by ex-
periments (Sawko 1964; Byfield et al. 2005), the last 
model has the best correspondence to the real steel 
stress-strain dependency in the structure.

The effect of linear hardening and general nonlin-
ear material models of stress-strain state of cross-sec-
tions are analysed in many papers (Atkočiūnas, Čižas 
2009; Dulinskas et al. 2010; Van Long, Dang Hung 
2008a, 2008b). Some of them are related to the pure 
bending only, in other ones an effect of axial forces is 
evaluated, though only for very simple ‒ perfectly elas-
tic-plastic material model. Straightening of nonlinear 
stress distribution in cross-sections using equivalent 

or averaged rectangular stress blocks is suggested in 
paper (Dulinskas et al. 2010).

In most of the literature related to physically 
non-linear beam structures, simplified approaches for 
evaluation of cross-section plasticity are investigated. 
Most common are: plastic hinge approach (Landes-
mann 2010; Kalanta 2007) and semi-rigid connec-
tion approach (Hu, Zhou 2012; Sekulovic, Nefovska-
Danilovic 2008). The techniques of such approaches 
have significant computation advantage, but analysis 
in most cases is suitable for preliminary approximate 
study as it is unable to deal with the spread of material 
plasticity.

The main aim of this paper is to create and apply a 
methodology for an exact determination of elastic and 
plastic zones in a cross-section, when linear hardening 
material model and combined effect of axial force and 
bending moment are evaluated. To achieve this goal, 
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several systems of nonlinear equations must be created 
and solved, however solutions of these equations are 
complicated and still not analysed well enough (Juriev 
1977; Webster, Ellison 1967). Mathematical software 
MATLAB (Moore 2014) was used to overcome some 
of these difficulties in the present paper. Program-
ming code was created for solving such problems, i.e. 
performing numerical and graphical analysis of stress-
strain state of a rectangular cross-section.

1. Main equations of stress-strain state

Equilibrium of forces and bending moments must be 
valid in any cross-section subjected to bending mo-
ment M and axial force N:

 ( )
A

N y dA= s∫ ; ( )
A

M y y dA= s∫ , (1)

where A is area of the cross-section; y ‒ distance to 
neutral axis of the cross-section; s ‒ normal stress.

Linearly hardening material model is described 
by stress-strain diagram (Fig. 1) composed of two de-
formation stages – elastic and elastic-plastic. Normal 
stresses s and longitudinal strains e in this diagram 
are related by such equations:

 0 0E = s e ; ( ) ( )0 0hE = s − s e − e , (2)

where E and Eh are elastic and hardening modules;  s0 
and e0 ‒ limit elastic stress and strain of the material.

Elastic-plastic stage (when s > s0) can be ex-
pressed by hardening ratio α = Eh /E:

 ( )0 0Es = s + α e − e . (3)

Since hypothesis of plane sections must be satis-
fied, following relation have to be valid:

 max min
h

e − e
k = − , (4)

where k is curvature; emax, emin ‒ longitudinal strains 
at the top and bottom of the cross-section; h ‒ cross-
section height.

1.1. Pure bending

In this case axial force is zero – N = 0, therefore forma-
tion of the force equilibrium is unnecessary. Equilib-
rium of bending moments can be written as equality 
between moment M and internal moment generated 
by normal stresses in respect of neutral line of a rect-
angular cross-section (Fig. 2):

 ( )( ).
2

0 00 25
6

el
el el

bh
M b h h h h= s + − + s +

 
( )( )( )max 0

1 2
12 el elb h h h h− + s − s , (5)

where b is width of the section.
First term of Equation (5) corresponds to the 

internal moment generated by stresses of an elastic 
core hel; second and third terms correspond to the 
moments generated by stresses in elastic-plastic zones 
0.5hpl (Fig. 2).

For a rectangular cross-section, relations satisfy-
ing plane sections hypothesis are:

 max 2
h

e = −k ; 02

elEh
s

k = − . (6)

Nonlinear system of four equations (3), (5) and 
(6) can be expressed by any of the four unknowns – 
emax, k, hel or smax. For instance, expression of longi-
tudinal strain emax is obtained as follows:

 3 2
max max 0a b ce − e − = , (7)

where 32a E W= α ; ( )( )2
02 3 1b E M W= − s − α

 
; 

( )3
0 1c W= s − α  and W is a resistance moment of rec-

tangular cross-section.
If bending moment sign is taken to be positive, 

the only positive root of the cubic Equation (7) defines 
true maximum strain of the cross-section emax.

1.2. Combined effect of bending moment  
and axial force

Five cases of bending moment and axial force equi-
librium must be analysed for definition of five differ-
ent stress-strain states in the cross-section. Four limit 
values of axial force restrict these states. In this paper, 

Fig. 1. Stress-strain diagram of linearly hardening  
material model
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all five cases are analysed assuming that bending mo-
ment and axial force are positive (positive directions 
are shown in Fig. 3). For these positive directions, the 
curvature k and the coordinate of neutral line y0 will 
always have negative values:
1. First case. If M < M0 and N £ Nlim1 (only elastic 

strains in the cross-section),
where M0 is limiting bending moment of the cross-
section (it corresponds to the elastic stress limit); Nlim1 
is the first axial force limit. This limit defines maximum 
axial force which, together with acting bending mo-
ment, develops only the elastic strains in the cross-sec-
tion. For a rectangular cross-section these values are:

 
2

0 0 6
bhM = s ; 

( )0
lim1

6 M M
N

h
−

= . (8)

Plastic strains are not developing in this case, 
therefore normal stresses and longitudinal strains are 
calculated by well-known equations of elastic state:

 max
M N
W A

s = + ; min
M N
W A

s = − + ; max
max E

s
e = ;

    min
min E

s
e = .                                                         (9)

2. Second case. If N £ Nlim2 and smax ≥ s0 (Fig. 3a),
where Nlim2 is second axial force limit. This limit de-
fines axial force which, together with acting bending 
moment, develops normal stress smin = – s0 (Fig. 4b). 
Second axial force limit can be expressed using equi-
librium Eq. (1) and the equations of plane section hy-
pothesis:
 

2

lim 2 0 2el el
el

hN b h h h h
h

  
= s − + α − +     

, (10)

and the elastic core hel is calculated from the cubic 
equation:
 3 2 0elel elah bh ch d+ + − = , (11)

where ( )02 1a b= s − α ; ( )03 1b bh= s α − ; 6c M= ; 
3

0d bh= αs .
Values of stress-strain state when smin £ – s0 

(Fig. 3a) are calculated as follows. At first, the coor-
dinate of neutral line y0 is calculated from fifth order 
non-linear equation:

 5 4 3 2
0 0 0 0 0 0ay by cy dy ey f+ + + + + = , (12)

where ( )3 3 2 3
048 3 3 1a b= s α − α − α +

 
; 

( )2 2 2
048 2 1b N b= s α − α + ; 

( )( )2 2
03 4 1e N M bh= + s − α ; 3 2f N h= ; 

( ) ( ) ( )( )2 2 2 2 2 2
0 0 04 12 2 1 3 1 3 2 1c b M b N b h= s s α − α + + − α + s α − α −

( ) ( ) ( )( )2 2 2 2 2 2
0 0 04 12 2 1 3 1 3 2 1c b M b N b h= s s α − α + + − α + s α − α − ;

( )048 1d MN b= s − α .
Hereafter, elastic core is calculated from the cubic 

equation:
 3 0elelah bh c+ + = , (13)

where ( )012 1a b= s α − ; 

( )( ). 2 2
0 0 00 25 1 4b b h y M Ny= s − α + − + ;

( )22
0 02 6

hc bh y= αs + . 

Other unknowns in this state are calculated as fol-
lows:
 02

elh E
s

k = − ; (14)

     ( )max 00.5h ye = −k − ;

 ( ).min 00 5h ye = k + ; (15)

 ( )max 0 max1 hEs = s − α + e ; 

 ( )min 0 min1 hEs = −s − α + e . (16)

3. Third case. If N £ Nlim3 and –s0 £ smin £ 0 (Fig. 3b),
where Nlim3 is third axial force limit. This limit defines 
axial force which, together with acting bending mo-
ment, develops zero normal stress smin = 0 (Fig. 4b):

  
2

lim 3 0 0.5 0.5
2el el

el

hN b h h h h
h

  
= s − + α − +     

. (17)

The elastic core hel is calculated from the cubic 
equation:
 3 2 0elel elah bh ch d+ + − = , (18)

where ( )0 1a b= s − α ; ( )01.5 1b bh= s α − ; 6c M= ;
3

00.5d bh= αs . The values of stress-strain state when 
0 0min−s £ s £  and max 0s ≥ s (Fig. 3b) are calculated 

by solving the nonlinear system of seven equations:

Fig. 3. Distributions of stress and strains in the cross-section 
resulted by combined effect of axial force and bending 
moment: (a) second case of equilibrium; (b) third case  

of equilibrium
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 ( )max.

s + s + s +

s − s =
1 min 0 2 0

0

0.5 0.5

0 5 ;
el el pl

pl

bh b h b h

b h N
 

(19)

 
( )

( )max.

− s + s + s + +

 s − s + = − 
 

2 2
min 0 0 21 2

0 2 0

1 1 0.5
3 3

20 5 ;
3

pl pl elel el

pl pl el

b h b h b h h h

b h h h M Ny
 

(20)

 ( ) max.0 0 0 0 5hE y hs − αs + k − = s ;
  ( ) min.0 0 5E y hk + = s ; 2 0elE h− k = s ; (21)

 .0 10 5 ely h h+ = ; . 0 20 5 el plh y h h− − = . (22)

Equation (19) describes equilibrium of forces in 
the direction perpendicular to the cross-section plane; 
equation (20) is the equilibrium of bending moments 
in respect to neutral axis; equations (21) relates stress-
es and curvature in various zones of the cross-section 
height (according to the hypothesis of plane sections); 
equations (22) relates geometrical parameters of the 
cross-section height (Fig. 3b).
4. Fourth case. If Nlim3 < N < Nlim4 and 0 £ smin £ s0 

(Fig. 4d),
where Nlim4 is fourth axial force limit. This limit defines 
axial force which, together with acting bending mo-
ment, develops normal stress smin = s0 (Fig. 4c):

 lim 4 0
6MN bh

h
= s + . (23)

Characteristics of stress-strain state, when 0 £ 
smin £ s0 and smax ≥ s0 (Fig. 4d) are calculated as fol-
lows. At first, elastic core hel is calculated from cubic 
equation:
 3 2 0elel elah bh ch d+ − + = , (24)

where ( )( )0
1
6 ha b E E N bh= − − s

 
; 

( )( )00.25 6 2hb b E E W M Nh= − s − − ;

( )03 0.5 3hd E W W Nh M= s − + ;

hc ME bh= .
Hereafter, curvature is calculated from quadratic 
equation:
 2 0a b ck + k + = , (25)

where 

( ) ( ) ( )
22

0
11 1 1

2 2 2
el

el el
hhb E b hh M Nh Nh

  
 = s + α − − α − + α − + −     

( ) ( ) ( )
22

0
11 1 1

2 2 2
el

el el
hhb E b hh M Nh Nh

  
 = s + α − − α − + α − + −     

; 

( )0 0c N bh= s − s ;

( )
2

2 3 31
3 3

el
h el el h el

ha Eb E h h hh E b Eh
  

= − + − +     
. 

Other unknowns of this state are calculated as follows:
   ( )max 0 h elE h hs = s − k − ; min 0 h elE hs = s + k ; (26)

 0 max 0
max

hE E
s s − s

e = + ; min
min E

s
e = ;

             0
0 0.5ely h h

E
s

= + −
k

. (27)

5. Fifth case. If N ≥ Nlim4 (Fig 4e). In this case, plas-
tic strains are developing in the entire area of the 
cross-section and therefore hel = 0, hpl = h. Other 
unknowns are calculated as follows:

 
( .3

0
0

1 1 5 3
18

bh h Nh M
y

M
s − α − +

= ;

 
3

12

h

M
E bh

k = − ; (28)

      (max 0 0.5y he = k − ; (min 0 0.5y he = k + , (29)

 max 0 0 maxhEs = s − αs + e ;
 min 0 0 minhEs = s − αs + e . (30)

2. Problem implementation in MATLAB

Suggested methodology was applied for two numeri-
cal experiments in MATLAB environment. In the first 
experiment we analyse a 0.3´0.2 m cross-section sub-
jected to bending moment M = 1000 kNm and axial 
force N = 10000 kN. Material modulus of elasticity is 
E = 2100 MPa, hardening modulus – Eh = 210 MPa, 
yield stress – s0 = 235 MPa. Numerical and graphi-
cal MATLAB results are shown in Figure 5, where red 

Fig. 4. Distributions of stresses in the cross-section resulted by common effect of bending moment and axial force: (a) when N = 
Nlim2; (b) when N = Nlim3; (c) when N = Nlim4; (d) when Nlim3 < N < Nlim4 ; (e) when N > Nlim4
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colour indicates plastic stresses and deformations. It is 
evident that the cross-section is in the second case of 
stress-strain state, since the acting axial force is smaller 
than second axial force limit: N < Nlim2a = 27249.127 
kN. Acting bending moment is M ≥ M0 = 705 kNm, 
therefore the first axial force limit does not exist.

Since equations (11) and (18) are of the third de-
gree, in general the second and the third axial force 
limits can have two or three real values (roots). One of 
such cases is investigated in the second numerical ex-
periment (Figs 6 and 7; Table 1). In the second numeri-
cal experiment we consider a cross-section of the same 
parameters as in the first experiment except for the 
acting forces and modulus of elasticity: now E = 2100 

MPa, the section is subjected to bending moment M = 
250 kNmand axial force, which varies from 0 to 25000 
kN. We will analyse the influence of the axial force 
to the different parameters of the strees-strain state 
of the cross section. While the axial force gradually 
increases, MATLAB program finds the corresponding 
stress-strain state and collects the data in memory. Nu-
merical and graphical results are summarised in Table 
1 and Figures 6 and 7.

As seen from the results (Fig. 6a; Table 1), at first, 
while the axial force increases from zero, Equation (9) 
of elastic stress-strain state is valid (point A). When 
axial load reaches and exceeds N ≥ Nlim1 = 9100 kN 
value, the plastic deformations begins to develop in 

Fig. 5. MATLAB plot of the stress-strain state of the first numerical experiment

Fig. 6. Curves of stress variation at the bottom (a) and at the top (b) of the cross-section  
and (c) stress-strain diagrams at the points of interest

 0
0

0.0389

0.1044

0.3

M = 1000 kNm
N = 10000 kN
E = 2100000 kPa
Eh  = 210000 kPa

 = 0.1119 M0 = 705 kNm0  = 235000 kPa

Bending moment M > 0
Axial force N < N  or N  < N < N
Second case of force equilibrium

 = ~

 =  27249.127

 = ~

 = ~

 =  31780.873
 = ~

 = ~

 =  34100

  =  –0.078334

  =  0.065493

  =  0.19559

  =  0.038919

  =  375359.9828

  =  –262929.5393

  =  0.78029
  =  –0.2449

  =  –3.4173

Cross section

E

Eh

Stress  Strain

 

 

lim2a lim2b lim2c

s0e

N lim2c

N lim2b

N lim2a

N lim1

N lim4

N lim3c

N lim3b

N lim3a

mins

0–s
0s

0–e

mine

0e

0e0s
maxs maxe

0.2

Eh

elh

pl1h

pl2h

0y

mins

maxs

maxe

mine

k

Axial force N
0 0.5

St
re

ss
 

 

10 5

–3

–2

–1

0

1

2

3

A

B

C

D

E

F

 function of N

 

0

1

2

3

4

5

A

B C

D

E

F

    
 

   
   
   
   

   
   
   

   

    

    

    

    

    

    

    
       
  

   
   
   
   

   
   
   

   

    

    

    

    

    

    

    

    

 

   
   
   

   
   
  

    
       
      

   
   
   
   

   
   
   

   

    

    

    

    

    

    

    

    

    
       
  

   
   
   
   

   
   
   

   

    

    

    

    

    

    

    

    

 

   
   
   

   
  

    
          

    

   
   
   
   

    

  

   
   
   

   
   

104  

    
       
      

  

   
   
   

   
  

    
          

    

   
   
   
   

    

  

   
   
   

   
   
  

    
     
  

 

 

   
   
   

   
   
  

    
       
      

   
   
   
   

   
   
   

   

    

    

    

    

    

    

    

    

DA E FB C

mins minsmins mins
0s 0s

0s
mins

maxs maxs
0s 0s 0s 0s 0s

maxs maxs maxs maxs

0s

0s 0s
min–s

N lim4

mins  function of Nmaxs

N lim3cN lim3bN lim1

N lim2b N lim2c

2 2.51 1.5

m
in

s

St
re

ss
 

m
ax

s

0 0.5               2 2.51 1.5
104  

10 5

Axial force N

a) b)

c)



Engineering Structures and Technologies, 2016, 8(3): 94–100 99

the top of the cross-section (point B), meanwhile the 
bottom layers of the cross-section remains in the elas-
tic state and therefore Equations (24)–(27) are used 
to define the stress-strain state of the section (fourth 
case of equilibrium). If axial force increases further, 
the cases of equilibrium vary in such order (Table 1): 
3rd case (point C), 2nd case (point D), 3rd case (point 
E), 4th case and finally 5th case (point F). As seen from 
the curve of smin variation (Fig. 6a), the stress between 
points B and D decreases, despite that axial force still 
increases. At the same time the area of plastic defor-
mations at the top of cross-section increases very fast, 
meanwhile plastic deformations are zero or very small 
at the bottom. Such a big difference between develop-
ment of plastic deformations at the top and the bottom 
of cross-section causes temporary decrease of smin. 
Normal stress at the top of the cross-section smax and 
the absolute value of curvature k non-linearly but con-
stantly increases with the increase of axial force and 
area of total plastic deformations (Figs 6b, 7).

Fig. 7. Variation of the curvature of the cross-section  
for the second numerical example

Conclusions

 – The stress-strain state of a rectangular cross-section 
made of linearly hardening material under com-
bined effect of bending moment and axial force was 
investigated in detail. Numerical experiments dem-
onstrate non-linear variations of stresses and strains 
as functions of axial force. An important observation 
is that a temporary decrease of normal stress at the 
bottom of the cross-section is possible even if axial 
force is constantly increasing.

 – Stress-strain relation functions obtained in this pa-
per are useful in the applications of analysis and op-
timization problems of linearly hardening material 
(e.g. steel) frame structures. These applications are 
under current investigation by the authors and show 
promising results. 

 – Presented derivation techniques and methods of 
analysis can easily be adapted and applied for other 
types of cross-sections. 

 – Described methodology can be applied for different 
and more complicated models of physically non-
linear materials (i.e. linear-softening or stress-strain 
diagrams composed of more than two linear seg-
ments).
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