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Abstract. This article considers the calculation of load-bearing capacity of flange-plate joints with bolts 
along two sides of rectangular hollow sections (RHS) under axial tension. It provides a review and com-
parison of various calculation methodologies for establishing the load-bearing capacity of RHS flange-plate 
joints, such as suggested in EN 1993-1-8:2005 and STR 2.05.08:2005 as well as those proposed in different 
countries and by other authors. Common design principles and derived results for load-bearing capacity of 
flange-plate joints have been analysed and compared. Following the numerical modelling, which has been 
done using ANSYS Workbench finite element program, the derived results for load-bearing capacity have 
been compared with analytical load-bearing capacity results for flange-plate joints of the same structure. 
The analysis has focused on one type of flange-plate joints with bolts – both preloaded and non-preloaded – 
along two opposite sides of the tube, with the flange thickness of 15 mm and 25 mm.
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Introduction

Due to technological and economic indicators, trusses 
from cold-formed rectangular hollow sections (RHS) 
have become widely used in the construction of build-
ings established for the purposes of warehousing and 
sales. Usually, floor area is especially crucial in such 
buildings; thus, solutions with fewer columns are con-
sidered. With spans of 18, 24 and 30 metres and hav-
ing in mind size restrictions for transportation, a truss 
must be divided into separate segments; therefore, the 
design of assembly connection for tensile and com-
pressive chords should be considered. In the general 
case, these assembly joints can be slip-resistant, shear 
or tension joints. Even though all of the above-named 
types of joints can be used to connect truss elements, 
this article focuses only on flange-plate joints in axial 

tension as their initial displacement is the least if com-
pared to shear joints.

Based on the effectual Lithuanian design code 
STR 2.05.08:2005 (STR), calculations of flange-plate 
joints in axial tension are made in the elastic stage, 
applying rigorous additional design and production 
restrictions (Daniunas et al. 2006). These measures 
result in a complex joint with additional stiffeners, a 
large number of preloaded bolts and a thick flange, 
faces of which might need to be milled. Therefore, the 
aim to reduce production costs necessitates changes 
in design assumptions. As an alternative to the exist-
ing code, EN 1993-1-8 (2005) allows plastic deforma-
tions that result in a more rational use of materials. 
It is unfortunate that EC-3 (EN 1993-1-8:2005) does 
not provide the design of RHS flange-plate joints, dif-
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ferently than the American AISC (Packer et al. 2010) 
or the Canadian CISC (Packer, Henderson 1997). The 
main aim of this article is to compare the calculation 
methods for RHS flange-plate joints that are provided 
in design codes with general assumptions of EC-3 and 
demonstrate the extent to which the analytical result 
would differ should the formulas of the Lithuanian de-
sign code STR be used.

In all of the above-named codes, the design of 
flange-plate joints is based on the superposition prin-
ciple, i.e. – the bearing capacity of a joint equals the 
sum of bearing capacities of joint components. In turn, 
each joint component consists of usual members, such 
as bolts, welds, a flange, and a tube wall. As lattice truss 
elements are selected from the conditions of strength 
and buckling, the tube wall strength will be ensured 
during the design of assembled joints; therefore, the 
key task is to estimate the force that could be with-
stood by bolts and welds.

Deformations of flanges give rise to additional 
prying forces that emerge in bolts. The forces are eval-
uated using equivalent T-stub models. One of the most 
prevalent models, which is used in design codes of 
various countries (AISC, CISC, EC-3), has been intro-
duced by Struik and de Back (1969). Assumptions of 
this model have been improved and analysed by Zoe-
temeijer (1974), Jaspart and Maquoi (1991), and Kulak 
et al. (2001). As a simple pair of concentrated forces 
can substitute the internal bending moment, a T-stub 
model is applicable not only for a simple tension but 
also for column-beam and column-base connections. 
A detailed analysis of the existing equivalent T-stub 
models has been made by Swanson (Swanson 2002).

In general, the behaviour of RHS flange-plate 
joints has been analysed underlining single cases of 
bolts either symmetrically arranged on all sides (Kato, 
Mukai 1982; Willibald et al. 2002, 2003) or on the two 
opposite sides of the flange (Packer et al. 2009). In ad-
dition, some analysis has been made on flange-plate 
joints with stiffeners (Semenov et al. 2014; Wang et al. 

2013; Perelmuter et al. 2010). The mechanism of plas-
tic hinges and the stiffness of a joint based on EC-3 
have been addressed by Karlsen and Aalberg (2012), 
Latour and Rizzano (2013) and Heinisuo et al. (2012).

1. General model of prying action

The eccentric position and flange deformations amount 
to additional prying forces in a bolt. The impact of the 
forces on the load-bearing capacity of the joint is de-
termined by the analysis of equivalent T-stub mem-
bers. One of the most popular methods for the deter-
mination of the load-bearing capacity has been offered 
by Struik and de Back. This method describes three 
failure modes of a T-stub in tension: full plasticity of 
a flange-plate (Fig. 1a); bolt failure with partial flange-
plate plasticity (Fig. 1b); and bolt failure (Fig. 1c). The 
key advantage of the method lies in its relatively simple 
equations, in which the equilibrium of shear forces and 
bending moments can be easily disturbed. They have 
no empirical coefficients; therefore, this model has no 
restrictions related to bolt diameter or strength as well 
as the least thickness of the flange. Rather conserva-
tive load-bearing capacity results could be named as a 
shortcoming in cases where thin flanges are used as the 
model does not consider material strengthening and 
expressed membrane behaviour. Considering the sym-
metry of a member, Table 1 providesthe side-by-side 
comparison of equations for one bolt from EC-3 and 
the modified Struik and de Back model for an equiva-
lent T-stub model. The modified Struik and de Back 
method was chosen instead of the original one because 
it considered the weld just as EC-3; meanwhile, other 
assumptions of the method remain unchanged and 
correspond to the original method. 

The exceptional characteristic of the model by 
Struik lies in the fact that the three failure modes are 
described using equilibrium equations with the quan-
tity α. This relative quantity shows the number of 
times the bending moment beside the T-stub wall is 
greater than the bending moment beside the bolt. In 

Fig. 1. Failure modes of a T-stub model: full plasticity of a flange-plate (a);  
bolt failure with partial flange-plate plasticity (b); bolt failure (c)
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the physical sense, the opening of the plastic hinge be-
side the bolt is the result of the hinge formation beside 
the T-stub wall; therefore, according to the module, 
α cannot be greater than one. Another dimensionless 
quantity is δ, which is found only in expressions based 
on the original Struik and de Back model. It is used to 
evaluate the impact of a bolt hole on the formation of 
plastic hinge:
 1 .h

eff

d
l

δ = −  (7)

Here, dh is the diameter of the bolt hole; leff is the effec-
tive length of a T-stub tributary to one bolt. 

The location for the formation of plastic hinges 
depends on the stiffness as the increase in the cross-
section beside the T-stub wall, the lever arm of the 
external force and bolt resultant force. The location of 
the resultant force itself depends on the distribution 
of pressure under the bolt head. In the Struik and de 

Back model, the bolt force is shifted sidewise by a half 
of the nominal diameter of the bolt; on the contrary, 
the EC-3 makes an assumption that the pressure under 
the bolt head is evenly distributed, and the resultant 
force is concentrated beside the bolt axis. According to 
Jaspart and Maquoi (1991), none of these assumptions 
correspond to the true behaviour as the assumption 
by Struik and de Back overestimates the local effect 
of the bolt and EC-3 does not consider the bending 
of the bolt. Yet another general quantity of models is 
the plastic bending moment, which is calculated by the 
formula:
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Here, t is the thickness of the flange of a T-stub 
model; fyd is the design steel yield strength.

The equivalent T-stub model can be graphically 
represented as a line OABC, as a dependence of the 

Table 1. Types of T-stub models 

Modified Struik and de Back model EC-3, Zoetemeijer
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Strength when α = 1 (Fig. 1a)
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Strength when 1 ≥ α ≥ 0 (Fig.1b)
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resultant force of the T-stub model on the flange 
thickness (Fig. 2). Its sections represent the following: 
OA – the zone of the flange-plate thicknesses, in which 
the mechanism of two hinges can develop while at-
taining the maximum of prying forces; in the thick-
ness zone AB, the bolt fails earlier than the maximum 
value of prying forces institution reached (Qi < Qmax);  
BC – support force of the T-stub model does not de-
pend on the thickness of the plate. Yet another excep-
tional part of this figure is the section OBCD. Theoret-
ically, the external force, which is a part of this section 
of the figure, neither causes the rise of prying forces 
nor causes a partial yield of the plate, which is espe-
cially important for structures affected by fatigue load-
ing. Expressions of marginal thicknesses of the plate 
are given in Table 2.

As Figure 2 demonstrates, the AB part of the 
curve of the modified Struik and de Back model 
(Swanson 2002) is shorter than that of the EC-3. In 
the case of point A, the difference between the two 
thicknesses of marginal failure thicknesses of these two 
models amounts to 2.20 mm; and in the case of point 
B – 5.28 mm.

2. Calculation of flange thickness for RHS joints

The available design regulations for tubular profile 
flange-plate joints (AISC; CISC; CIDECT), which are 
based on the Struik and de Back model, underscore 
two design cases with bolts arranges on two sides 
of the tube (Fig.  3a) and around the entire contour 
(Fig.  3b and 3c). Cases with bolts arranged beyond 
the tube boundary are considered an exception to this 
grouping; therefore, the codes do not provide such cal-
culations.

Depending on a situation, a check or design prob-
lem can be solved. During a check, the thickness of a 
flange is known; therefore, the entire calculation fo-
cuses on finding the minimum T-stub tensile capacity: 
TRd = min(Ta, Tb, Tc). Solving the design problem, the 
calculation focuses on finding the minimum number 
of bolts from the condition that the external force per 
bolt would not exceed the design bolt tensile capacity 
(TEd £ BRd); maximum thickness of the plate is cal-
culated according to the expression (10). In the case 
when plastic deformations are permitted, the thickness 
of the plate can be reduced to treq, which is determined 
using Equation (12).

Table 2. Expressions of calculations for flange marginal thicknesses under different failures 

Modified Struik and de Back model EC-3, Zoetemeijer
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Fig 2. Relationships between the T-stub load bearing capacity and flange thickness:  
modified Struik and de Back model (a); EC-3 (b)
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Ultimately, when the external force per bolt 
amounts to the bolt strength (TEd = BRd), and the co-
efficient of the relationship between acting moments 
amounts to zero ( αEd = 1), Equation (12) transforms 
into Equation (11). In this case, the least thickness of 
the plate allowed corresponds to the apparent point 
E* (Fig. 2). Once the thickness of the plate is selected, 
checking is made, i.e. the condition TEd £ BRd is checked 
using Equation (1), or TEd £ TRd – using Equation (5).

It is important to state that the direct applica-
tion of the T-stub model for RHS end plate joints is 
debatable.“Depending on the position of the bolts 
along RHS wall, and the relationship between the 
thicknesses of the end-plate and the RHS wall, the 
end plate inside the section may be subjected to sig-
nificant bending. This bending causes both bending 
and axial deformation of RHS walls, most prominent 
in the parts away from the corners” (Karlsen, Aalberg 
2012).This phenomenon complicates the direct ap-
plication of the T-stub model, because of changes in 
places where plastic hinges will form. For elimination 
of this inaccuracy, Packer et al. (2009) suggested using 
a greater external force and a bolt force lever arm: b¢ = 
b – 0.5db + t.

Willibald et al. (2002, 2003) investigated flange-
plates with bolts on four sides of tubular cross section 
(Figs 3b, 3c). Based on his own experimental test re-
sults, Willibald concluded that theoretical assumptions 
for a T-stub had better compliance without increased 
lever arm of forces suggested by Packer. Then, a ques-

tion arises about a possibility to apply this assump-
tion to RHS flange-plate joints with other geometrical 
configuration (Fig. 3), because bending at a wall of a 
hollow section is inherent for all types of RHS lange-
plate joints. For example, Karlsen and Aalberg (2012) 
in their calculations of joint with bolts on two sides of 
RHS did not take into account possible changes in a 
shape of plastic lines and concluded that for flanges in 
thicknesses of 8 and 10.1 mm, the prediction of failure 
type was exact, but the capacity of a joint was dimin-
ished. This conclusion was based only on four tests; 
therefore, it is impossible to answer about the correla-
tion between EC-3 T-stub model and tests results.

3. Numerical simulation of the behaviour  
of a flange-plate

One of the main difficulties in determining the bear-
ing capacity of a T-stub in tension is the calculation of 
the effective length. In a general case, yield lines form 
in three-dimensional patterns and each arrangement 
of bolts should have numerous failure schemes with a 
joint instantaneously turning into a mechanism. Ap-
plying the virtual work principle to these schemes, the 
least effective yield line length must be determined 
from among all mechanisms. The length corresponds 
to the minimum total potential energy. The scope of 
this problem is too wide. Some separate solutions can 
be found in EC-3 tables. For the numerical analysis of 
this article, the case of a flange-plate joint was selected 
with bolts on both sides (Fig. 3a). In such a case, the 

Fig. 3. Examples of RHS flange-plate joints: bolts on two opposite sides of the tube (a); bolts arranged symmetrically  
along the entire contour(a, b); bolts arranged beyond the tube boundary (d)

a) b) c) d)

Table 3. Thickness of the flange according to the ultimate limit state 

Modified Struik and de Back model EC-3, Zoetemeijer
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effective length of a T-stub model per bolt equals to 
half of the joint width (75 mm).

Calculations were made using ANSYS Workbench 
software, in the Static Structural analysis system. Once 
the joint symmetry is inputted, with regard to two per-
pendicular planes, the joint and the bolt were meshed 
by SOLID187 finite elements. The bolt is simplified to 
a pin (Fig. 4), the smaller cross-section area of which is 
equal to the area of tensile stress. The initial bolt pre-
tension equals 110 kN, with the package consisting of 
a nut and a washer attached to each other by Boolean 
operation, which allows diminishing the number of 
contact friction surfaces to three, i.e. between flange 
plates, between the bolt head and the flange, and be-

tween the washer and the flange. The formulation of 
contact surfaces is augmented Lagrangian. The tube is 
connected to the plate by a 5 mm thick full penetration 
butt weld. Non-linearity of materials is modelled by 
bilinear isotropic hardening with Etan = 900 MPa for 
steel and Etan = 1100 MPa for bolt material; mechani-
cal properties are given in Table 4.

Designing the bolt strength under tension, codes 
EC 3 and STR 2.05.08:2005 use the safety factor mul-
tiplied by the characteristic strength of the bolt mate-
rial according to the ultimate strength. The numeri-
cal value of this coefficient in the EC-3 is equal to the 
relationship: k2 / gM2, where gM2 is the partial safety 
factor of the load-bearing capacity of bolts, and k2 con-
siders the type of bolt head. In a numerical sense, to 
accept the recommended gM2 values means that EC-3 
relationship changes from 0.5 to 0.72. In the code 
STR2.05.08:2005, the reliability coefficient equals 0.5.

For the purpose of analysis, two groups of mod-
els were selected with flange thicknesses equal to 15 
and 25 mm. Analytical solutions of these models, in 
which no partial reliability factors were used and bolt 
strength accepted according to the yield stress, are 
depicted in Figure 5. The relationships between loads 
and deformations are depicted in Figure 6. Fig. 4. Calculation model of a bolt

Fig. 5. Analytical solutions of the model

Table 4. Strength and mechanical properties of joint materials 

Property SteelS355 (EC-3) Bolt 10.9 (ISO 898-1)

Modulus of elasticity E 210 000 MPa 201 000 MPa

Poisson’s ratio u 0.3 0.3

Yield stress fy, fyb 355 MPa 900 MPa
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As depicted in Figure 5, for the Struik and de 
Back model with Packer’s modified lever arm, the load 
for the formation of a one-hinge mechanism is 10% 
lower than for the modified Struik and de Back model 
and 4.4% lower than for EC-3. Because Struik and de 
Back and EC-3 models are conservative, in the case 
of a mechanism of two hinges, results with the Packer 
assumption would be even more conservative.

The main difference between joints with bolts 
that are preloaded and non-preloaded lies in the stiff-
ness of the joint, i.e. in the case of preloaded bolts, it 
is close to infinity. In joints with non-preloaded bolts, 
tensile forces emerge instantaneously as soon as the 
external load is applied (Fig. 7). On the contrary, in 
joints with preloaded bolts, the rise of tensile forces is 
delayed because, at the initial stage, tensile forces must 
eliminate the advance compression of flanges. As soon 

as flange compression force approaches zero, the joint 
starts gapping and the bolt takes over all of the forces, 
i.e. the relationship between the force in the bolt and 
the joint load stops being linear (Fig. 7). In the analysis 
of structures unaffected by dynamic loads, the initial 
state of bolt stress has no impact on the load-bearing 
capacity (Fig. 6), yet must be considered during the 
analysis of the redistribution of internal forces. 

To avoid brittle failure, it should be considered 
that the effective weld length is shorter than the pe-
rimeter of the tube (Fig. 8). It depends on the stiff-
ness of the flange as well as dimensions of the tube, 
i.e. rounding of corners. Packer et al. (2010) states, 
that the approximate effective length of the fillet weld 
should be taken equal to the sum of lengths of tube 
side edges, alongside which bolts are arranged.

Fig. 6. Relationship between the jointload anddeformation

Fig. 7. Relationship between force in bolt and external load
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Conclusions

1. Although from the first glance the modified Struik 
and de Back T-stub model does not seem similar 
to EC-3 due to different designations, it defines the 
same limit states. If bolt hole can be disregarded and 
the pressure is accepted as equally distributed un-
derneath the bolt head, equations of both models 
would be the same. These models are universal and 
suitable for the design of joints with preloaded and 
non-preloaded bolts. 

2. In calculations of joints with non-preloaded bolts, 
such as column bases, prying forces arise as soon as 
the load is applied; therefore, it seems irrational to 
design such bolts based on the condition that pry-
ing forces do not emerge (Q = 0).

3. The difference between the analytical and numeri-
cal models, in the case where the mechanism of two 
hinges emerges (t = 15 mm), amounts to 23%. For 
the case where one hinge emerges (t = 25 mm), the 
difference reduced to 10% if calculated according to 
EC-3; and to 2.6% if calculated based on the modi-
fied Struik and de Back model. If the partial reliabil-
ity coefficient is used, which is applied in the STR 
code, then, according to the STR, the bearing ca-
pacity of the joint would equal to the gapping force 
(Fig. 7).

4. In the case of the analysed joint, the assumption by 
Packer did not serve the purpose as the estimated 
load for the formation of a two-hinge mechanism 
was conservative in comparison with EC-3, modi-
fied Struik and de Back model and numerical sim-
ulation results. One-hinge failure load was 4.5% 
less than that of EC-3, but failure modes for both 

cases corresponded to numerical simulation re-
sults (Fig. 8). To assess the possibility to apply EC-3 
T-stub model for joints with bolts on two opposite 
sides of RHS, additional experimental and numeri-
cal investigations are required.
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