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Abstract. In recent decades, the use of genetic algorithm (GA) for optimization of structures has been 
highly attractive in the study of concrete and steel structures aiming at weight optimization. However, it has 
been challenging for multi-objective  optimization  to determine the trade-off between objective  functions 
and to obtain the Pareto-front for reinforced concrete (RC) and steel structures. Among different methods 
introduced for multi-objective optimization based on genetic algorithms, Non-Dominated Sorting Genetic 
Algorithm II (NSGA II) is one of the most popular algorithms. In this paper, multi-objective optimization of 
RC moment resisting frame structures considering two objective functions of cost and displacement are in-
troduced and examined. Three design models are optimized using the NSGA-II algorithm. Evaluation of op-
timal solutions and the algorithm process are discussed in details. Sections of beams and columns are con-
sidered  as design variables and the specifications of the American Concrete Institute (ACI) are employed 
as the design constraints. Pareto-fronts for the objective space have been obtained for RC frame models of 
four, eight and twelve floors. The results indicate smooth Pareto-fronts and prove the speed and accuracy 
of the method.
Keywords: NSGA-II, multi-objective optimization, moment resisting frame, reinforced concrete, weight, 
displacement, Pareto front.
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Introduction

Considering the fact that reinforced concrete (RC) 
structures compared to steel structures have more va-
riety in materials, hence optimization of RC structures 
are more complex than steel structures. Among the 
variables included in the optimization of RC structures 
are: compressive strength of concrete, steel yield stress, 
size of cross sections, and percentage of reinforce-
ments, shape and topology of the structure. To calcu-
late an RC building structural cost, three parameters 
including the required volume of concrete, weight of 
reinforcement steel, and formwork are important. It 
should be noted that labor costs should also be add-
ed to the above costs, although one can include labor 
costs in the cost of formwork, as it has been assumed 
in this article.

Optimization using genetic algorithms has been 
welcomed in recent decades by many researchers. The 
research conducted by  Hoit et  al. (1991) focused on 
minimizing the weight of the structure using Lagrangi-
an method and nonlinear techniques. In 1994, Adamu 
et al. (1994) published an article about optimization of 
the cost of RC beams. In 1997, Baling and Yao (1997) 
published a paper on the three-dimensional optimiza-
tion of RC frames using multi-layer methods. In 2003, 
the article of Camp et al. (2003) was published about 
optimization of moment resisting frames using genetic 
algorithms.

Cellular automata method was applied to opti-
mize the continuum structures (Sanaei, Babaei 2012), 
reporting interesting results. Analysis and optimiza-
tion of elastic-plastic framing structures was investi-
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gated under complex constraints (Gervytė, Jarmola-
jeva 2013). The impact of ductility levels on the cost 
of RC moment resisting frames for buildings with 5 
to 15 floors was investigated (Babaei 2015b). Optimi-
zation of RC frames to determine the best topology 
and optimal arrangement of columns have been stud-
ied in structures ranging from 5 to 10 floors (Babaei 
2015a).  Similar studies were carried out to explore 
optimal topology for steel structures (Babaei, Jabbar 
2016; Babaei, Omidi 2015).

On the other hand, it is inevitable to consider 
more than one objective function for engineering op-
timization problems. Therefore, multi-objective op-
timization has been introduced and applied in many 
fields of engineering practice (Deb 2001; Andersson 
2001; Ghosh, Dehuri 2004; Carrillo, Taboada 2012). 
In recent years, many multi-objective optimization 
methods based on genetic algorithm have been pre-
sented, including weighted sum method (WSM) (Kim, 
De Weck 2005), vector evaluated genetic algorithm 
(VEGA) (Ghosh, Dehuri 2004), strength Pareto evolu-
tionary algorithm (SPEA) (Sarker et al. 2002), Niched 
Pareto genetic algorithm (NPGA) (Horn et al. 1994), 
and non-dominated sorting genetic algorithm (NSGA) 
(Deb et al. 2000).

In recent years, the powerful algorithms of NSGA 
have been used for the optimization in various fields 
including RC structures. Some of these studies  are: 
two-objective optimization of CO2emissions and cost 
for composite building design using NSGA (Park et al. 
2012), synthesis of truss structure designs by NSGA-II 
and Node Sort algorithm (Stanković et al. 2012), and 
cost and CO2 emission optimization of steel reinforced 
concrete columns in high-rise buildings (Park et  al. 
2013). A comparative study for two meta-heuristic al-
gorithms and big bang-big crunch for optimal design 
of RC frames carried out and reported in the literature 
(Kaveh, Sabzi 2011, 2012).

The following section deals with the optimization 
process by introducing objective function, constraints, 
code specifications and design variables for RC mo-
ment resisting frames. Section 2 describes the NSGA-
II algorithm for optimal design. Section 3 includes test 
models to illustrate the capability of the algorithm. Sig-
nificant conclusions are drawn at the end of the paper.

1. Optimization process

1.1. Objective functions definition

In this paper, two different objective functions are pre-
sented. The first objective function  is the structural 
cost and the second criterion to be optimized is the 
maximum lateral displacement. For this purpose, the 
cost is calculated on the basis of three parameters: vol-
ume of the required concrete, weight of the required 
reinforcement, and the cost of formwork and labor. 
Both objective functions have to be minimized. There-
fore, the first objective function for cost minimization 
is introduced as follows:

 
= ( , , )c s c fF f P P P ,  (1)

where Fc is the objective function to minimize con-
struction cost, Ps is the cost of the required reinforce-
ment, Pc is the cost of the required concrete and Pf is 
the cost of formwork and labor. 

Design variables are assumed to be the  dimen-
sions of cross sections and the cross sectional area of 
reinforcement bars. Standard problem formulation is 
as follows:

 
=1Minimize ( , , )s c fF f P P P ; (2)

 
= + +∑1

element
s s c fF C LA C Lbh C Lp ; (3)

 
=2Minimize max(roof displacement)F ,  (4)

where, Cc is the cost of concrete per unit volume, Cs 
is the cost of reinforcement per unit volume, Cf is the 
cost of formwork per unit area, L is the cross section 
length, As is the cross section area of reinforcement, b 
is the cross sectional width of the beams or columns, h 
is the cross sectional length of the beams or columns, 
and p is the perimeter of the cross sections.

1.2. Constraints and penalty functions definition

Almost all engineering optimization problems include 
constraints, which have to be satisfied by each feasi-
ble design. In optimal design of RC moment resisting 
frames, there following constraints are applied.

The stress constraints are as:

 

σ
≤ =

σ
1, 1 to .i

a
i

i n  (5)

In addition, the displacement constraints are:

 δ ≤ δ =max , 1 toi i m , (6)

where si and σa
i are the existing and allowable bend-

ing stresses, respectively; δi and δmax are the story and 
allowable displacements, respectively.
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To satisfy all constraints in an optimization prob-
lem, one of the popular methods developed in the 
literature is to define penalty functions. On the other 
hand, from the construction point of view, columns 
of the lower levels must have larger dimensions than 
the columns located in the upper floors, as well as, the 
reinforcing bars and their number in  the upper col-
umns must be less than or equal to the lower columns. 
Other restrictions related to the design code require-
ments must also be satisfied. In the penalty approach, 
if a constraint is not satisfied, the objective (cost or 
displacement) functions are penalized. In this method, 
in addition to simplifying the objective function, re-
strictions will be applied in such a way that the cost 
of structures or  their displacement is increased, so 
automatically a penalized design would have a little 
chance to be selected as an optimal solution. Many 
methods are developed in the literature to introduce 
penalty function. In this article, the penalty function 
is applied as follows:
 Ci = aiVi; (7)

 
=

Φ =∑
1

n

i
i

C . (8)

In these equations Ci is the penalty function for 
each of the constraints,  ai is  penalty factor of each 
constraint, Vi is  the amount of each penalty, and j is 
the total penalty. Based to the problem, penalty coef-
ficient values   are obtained through trial and error, and 
are unique values for each of the structures (Carrillo, 
Taboada 2012).

1.3. ACI Specifications

In this study, the American Concrete Institute (ACI) 
Code restrictions for each of the  elements  and all 
the requirements for the number and location of rein-
forcing bars are applied and satisfied through design-
ing the structural elements. Constraints are applied 
using a penalty function as introduced in the previous 
section. There are different methods for calculating 
penalties. Constraints need to be satisfied by two types 
of elements in a frame structure; columns and beams. 
In a column there is an interaction between axial load 
and bending moment and this interaction has to be 
considered to evaluate the strength of a column, in-
stead of a separate design for axial force and bending 
moment. To apply penalties to a column, which is un-
der axial load and bending moment, the following for-
mula is used, using the description in Figure 1.

 −
=Column penalty BO AO

AO
. (9)

For beams, it is less complex to apply penalties 
than for columns. It needs only to calculate the ratio of 
the applying bending moment to the bending strength 
of the section. When this ratio is less or equal to 1, 
then there is no need for penalty, otherwise the ele-
ment must be penalized. Reinforcement ratio limits for 
columns and beams, distance between bars, and other 
code regulations are imposed to all structural models 
of this study.

2. NSGA-II algorithm

Inspired from the nature, GA is one of the me-
ta-heuristic algorithms that have been welcomed 
by many researchers in recent decades. Genetic algo-
rithms are used to solve single objective optimization 
problems while NSGAs are developed to solve multi-
objective optimization problems. GA selects the most 
qualified chromosomes and sends them  to the next 
generation. Through selection, crossover, and muta-
tion operations, the algorithm finds the best solution. 
Non-dominated sorting algorithm II (NSGA-II) algo-
rithm, suggested in 2000 by Deb and his colleagues 
(Deb et al. 2000), is an algorithm based on genetic al-
gorithm (GA) for multi-objective optimization prob-
lems (Andersson 2001; Ghosh, Dehuri 2004; Deb et al. 
2000; Deb 2001). Compared to the first version of the 
algorithm, the second version of the NSGA is faster. 
In both versions of the algorithm, all members of the 
population are compared to each other based on the 

Fig. 1. Penalty calculation in columns
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objective functions. In NSGA-II congestion distance is 
used as an important parameter to improve the algo-
rithm. This parameter provides an appropriate diver-
sity for the members of the population.

3. Test models and results

In this paper, three different sample models were 
studied to evaluate the performance of the algorithm. 
The topologies of the models are similar to those 
studied in the previous works of the literature (Kaveh, 
Sabzi 2011, 2012). These models of three-span struc-
tures with four, eight and twelve floors are considered 
as representative structures for low, medium and high 
rise buildings. For all models a story height of 3.3 m 
and a span of 7.5 m are considered. Uniform live and 
dead loads are applied to beams and lateral loads are 
distributed between beam-column joints. According to 
the ACI regulations three load combinations are con-
sidered to design structural elements as follows:

               U = 1.2D + 1.6L;
 U = 1.2D + 1.0L ± 1.0E;

               U = 0.9D + 1.0E.                          (10)
Uniform dead and live loads of DL = 22.3 KN/m 

and LL  = 10.7 KN/m are applied, respectively. The 
compressive strength of concrete  is assumed to be
′ = 2280 kg/ cmcf and the yield strength of steelis con-

sidered as fy  = 4200 kg/cm2. The termination crite-
ria for the algorithm can be the convergence or the 
number of iterations. Based on some evaluations im-
plemented for this algorithm the number of iterations 
is applied as the termination criteria. To find the best 
population number and the best number of iterations 
different populations with different iterations are ex-
amined and ultimately a population of 100 members 
and number of repetitions of 100 obtained to be ef-
fective.

3.1. First model

Topology and loadings for this model, which is a rep-
resentative of low rise buildings, is illustrated in Fig-
ure 2. Columns and beams are grouped into two differ-
ent types. The costs for unit volume (m3) of concrete of 
30 USD, unit weight (kg) of steel of 0.50 USD and unit 
area (m2) of formwork of 4.42 USD are considered for 
cost estimation.

In Figures  3 and 4, the population diversity in 
the first iteration and the Pareto-front are shown. To 

obtain reliable results, ten runs are implemented and 
finally the best ones are shown in the figures.

Cross-sectionsfor columns and beams are em-
ployed from 30×30  (cm2) as the smallest section 
to  70×70  (cm2) as the largest section.  To determine 
the efficiency of the algorithm  the  stress  ratios for 
structural elements are captured. Since in this model 
two groups for beams and two groups for columns are 
defined to be representative for twelve members, the 
average maximum stress in these groups of beams and 
columns are shown in Figures  5 and 6.  These stress 
ratios are shown for the optimal solutions of the 1st, 
20th, 50th, and 100th populations as representative of 
all members.

Fig. 2. Topology of the first model

Fig. 3. The population diversity in the first model

Fig. 4. Pareto-front obtained in the first model
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In Figures 7 and 8 the population number of the 
first front and congestion distance   are illustrated. As 
it is clear in these figures, when the population size in 
the first front was increased during the iterations the 
algorithm decreased the congestion distance. In other 

words, the population diversity in the first front was 
improved through the iterations. As shown in Figure 7, 
after about 32 iterations all of the population members 
are selected to be a member of the first front. In other 
words, the algorithm distributes the solutions through 
the objective space in an efficient way so that no solu-
tion is dominated by another one. It should be noted 
that the congestion distance (C.D.) in Figure 8 is a fac-
tor to define density estimation of the solution for any 
specific Pareto front. It is defined as the distance of 
two neighbouring solutions on either side of a solution 
along each objective axis.

3.2. Second model

As with the first example, a span of 7.5 m and a height 
of 3.3 m are considered for this example also. Beams 
are grouped into three types and columns are grouped 
into four types as illustrated in Figure 9. Gravity loads 
include live loads and dead loads, same as the previ-
ous example. Grouping and loadings assumed for this 
sample are shown in Figure 9.

By examining the initial population in the first 
iteration and the obtained Pareto front from the 
100th iteration (Fig. 10), robustness of the algorithm 
for multi-objective optimization is clear. Considering 
this figure and results for the population diversity, the 

Fig. 5. Stress ratio of the first model beams groups

Fig. 6. Stress ratio of the first model columns groups

Fig. 7. The population number in the first front  
for the first model
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Fig. 9. Topology of the second model
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cost in the initial population varies from 7000 USD to 
37000 USD, while in the final population it varies from 
7000 USD to 18000 USD. The maximum roof displace-
ment in the first population is about 30 cm, while it is 
obtained 6 cm in the final population, which shows a 
sharp decrease.

In this model, to compare the stress ratio of 
beams and columns, four optimal solutions of the 1st, 
10th, 30th, and 100th from the Pareto-front are selected, 
as shown in Figures 11 and 12. As expected the maxi-
mum amount of stress ratio is obtained for the first 
solution (with the lowest cost), while the minimum 
stress ratio is obtained for the 100th solution (with the 
lowest displacement).

For this model, population number in the first 
front and the congestion distance are calculated and 
presented in Figures 13 and 14. It is observed that af-
ter 34 iterations all members of the population were in 
the first front. In other words, the algorithm distributes 
the solutions efficiently through the objective space. 
The maximum congestion distance has declined in two 
phases, which reflects the strength of the algorithm in 
sorting members in a front.

3.3. Third model

This example is considered to represent a tall structure. 
Similar s pan lengths and story height are considered 
as assumed for the previous examples. The only differ-
ences are the number of stories and the lateral loads, 
as shown in Figure 15. Trade-off between two objec-
tive functions, cost and maximum roof displacement, 
is demonstrated in Figure 16. Figures 17 and 18 illus-
trate the stress ration of beams and columns for four 
optimal solutions selected from the final Pareto-front. 
These four optimal solutions are representatives of the 
scenarios in Pareto-front showing from the upper to 
the lower limit of the objective functions. The popula-
tion number in the first front and the congestion dis-
tance are calculated and presented in Figures 19 and 
20. It is observed that after 34 iterations all members 
of the population were in the first front and similar to 
the previous examples the algorithm works efficiently.

Fig. 10. Pareto-front of the second model

Fig. 11. The maximum stress ratio of beams  
for the second model

Fig. 12. The maximum stress ratio of columns  
for the second model
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Conclusions

In this paper, a bi-objective algorithm of optimization 
of RC moment resisting frame has been investigated 
using the NSGA-II method. Two objective functions, 
including the total structural cost and the maximum 
roof displacement, which are in conflict, are defined 
and applied for the bi-objective optimization of RC 
models.  Discrete variables including dimensions of 
sections of beams and columns were employed as de-
sign variables. Three models were considered for rep-
resentative for four, eight and twelve-story buildings. 
Stress ratio for beams and columns, amount of conges-
tion distance in the first front, and changing strategy 
for the size of the first front were presented. Trade-offs 
between cost and displacement objective functions 

Fig. 15. Grouping of beams and columns in the third model

Fig. 16. Pareto-front for the third model

Fig. 17. The stress ratio of beams for the third model

Fig. 18. The stress ratio of columns for the third model

Fig. 19. The population number in the first front  
for the third model

Fig. 20. Maximum values   of the congestion distance  
in the third model
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showed potential optimal solutions, however, as shown 
in the article body, focusing more on displacement op-
timization leads to sensitive design for cost function. 
In other words, the trade-off curve is stretched along 
the cost function more than the displacement func-
tion, indicating that the most cost-effective structure 
does not have a very large displacement but the most 
stiffed structure, with the lowest displacement, needs 
very large sections, which leads to an expensive design. 
Results showed smooth Pareto-front curve for all mod-
els, which means that the algorithm is robust enough 
to find dominant solutions with a reasonable diversity.
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