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Abstract. Suspension bridges are characterized by exceptional architectural expressions and excellent technical and eco-
nomic properties. However, despite all advantages, suspension bridges have a few negative features. Suspension bridges 
with flexible cables share excessive deformation caused by the displacement of kinematic origin. In order to increase the 
stiffness of suspension bridges, an innovative structural solution refers to rigid cables used instead of the flexible ones. The 
paper describes a methodology for calculating an asymmetric single-pylon suspension bridge with rigid cables considering 
installation features. Also, the article presents the numerical simulation of the bridge and determines the accuracy of the 
proposed methodology.
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Introduction 

The structures of suspension bridges are characterized by 
the high effectiveness of overlapping large spans and ex-
ceptional architectural expression (Gimsing & Georgakis, 
2012; Ryall et al., 2000; Troyano, 2003). The main draw-
back of analogous bridges includes excessive deformation 
due to the displacement of kinematic origin and is greatly 
affected by asymmetric loading (Kiisa et al., 2012; Kulbach, 
2007; Sandovič et al., 2011). Thus, a sufficient variety of 
structural measures have been proposed to reduce the oc-
curring kinematic displacements (Juozapaitis et al., 2015; 
Goremkins et al., 2012; Jennings, 1987; Strasky, 2005). A 
huge number of analytical calculation methods for clas-
sical suspension bridges with flexible cables are based 
on nonlinear calculation in line to the deformed scheme 
(Arco & Aparicio, 2001; Clemente et  al., 2000; Gimsing 
& Georgakis, 2012; Idnurm, 2006; Jennings, 1987; Kim & 
Thai, 2010; Kulbach, 2007; Wollmann, 2001). Extensive 
research refers to examining the dynamic characteristics 
of suspension bridges (Goremkins et al., 2013; Sousa et al., 
2011; Treyssede, 2010). 

The calculation of the suspension bridge assumes that 
the main cable is absolutely flexible, i.e. has no flexural 
rigidity and is equal to EIc = 0. The made assumption is 
partly valid for analysing the complete structure of the 

bridge, but local flexure occurs above the pylons and at 
the attachment points of flexible cables and hangers. The 
methods for calculating and analysing classical suspension 
bridges with flexible cables for estimating local flexure are 
discussed in works by (Caballero & Pose, 2010; Furst et al., 
2001; Gimsing & Georgakis, 2012; Juozapaitis & Norkus, 
2005, 2007). The authors of the article (Prato & Cebal-
los, 2003) also pointed out the behavioural peculiarities of 
the main cables of suspension bridges and identified they 
were subject to the structure of the anchors of the cables 
and sufficiently large bending moments taking place at the 
bearing sections. Hence, a structural method for reducing 
the bending moments of the bearing sections of the main 
cables has been proposed.

The use of rigid cables is one of the methods for ensur-
ing the stiffness of the suspension bridge and for reducing 
kinematic displacements (Grigorjeva et al., 2010a; Juoza-
paitis et al. 2010, 2013). The simplified methodology for 
calculating the classical symmetric single-span bridge with 
rigid cables is provided in (Grigorjeva et al., 2010a). The 
article by (Grigorjeva & Juozapaitis, 2013) reports a re-
vised methodology for symmetric single-span suspension 
bridges with rigid cables. The exact calculation methods 
of classical symmetric suspension bridges with rigid cables 
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are discussed in (Juozapaitis et al. 2010, 2013). Rigid cable 
means a rigid element made from rolled steel profiles or 
trusses like the Tower Bridge in London.

The suspension bridges with the cables of finite flex-
ural stiffness are built in several ways. The first technique 
involves the erected pylons where the cable of finite flex-
ural rigidity is assembled from individual elements the 
joints of which form rigid components. After installing 
the rigid cable, hangers and a stiffening girder are built-in. 
The second method of building and installing the suspen-
sion bridge with the cables of finite flexural rigidity covers 
the fixed pylons where the rigid cable is produced from 
separate flexibly connected elements. At this stage, cable 
behaviour corresponds to the performance of an absolute-
ly flexible cable. After installing the cable, hangers and the 
stiffening girder are built-in. The cable treated as flexible 
is subjected to symmetric self-weighed and built-in loads. 
Before loading the bridge with operational loads, the in-
terconnection components of the individual elements of 
the cable are ‘stiffened’ thus giving rigidity for flexure. 
The methods for calculating the symmetric, two-pylon 
suspension bridge with respect to the installation stages 
of suspension bridges with rigid cables are presented in 
(Grigorjeva et al., 2010b).

The paper provides the simplified calculation method-
ology for the asymmetric single-pylon suspension bridge 
with rigid cables considering the effects of symmetric and 
asymmetric loading and applying the second installation 
method where the cable is completely flexible under sym-
metric installation loads and the components of the indi-
vidual segments of the cable are stiffened before loading 
it with operational loads. The proposed methodology is 

versatile and easily applied to the simplified calculation 
of asymmetric single-pylon suspension bridges with flex-
ible cables at the initial stage of design.The article also 
compares the results of the discussed methodology for 
calculating bridges with rigid cables with the findings of 
numerical simulation and determines the accuracy of the 
suggested methodology.

1. The simplified analysis of the asymmetric 
single-pylon suspension bridge with rigid  
cables under symmetric loading

The proposed simplified methodology for the asymmetric 
single-pylon suspension bridge is based on the techniques 
for calculating the classical suspension bridge with rigid 
cables and has been put forward by the authors of the ar-
ticle (Grigorjeva et  al., 2010a; Grigorjeva & Juozapaitis, 
2013). The above introduced fairly simple engineering cal-
culation method is in consonance to the deformed scheme 
and refers to the following assumptions:

 – only static loads act on the bridge structure;
 – the behaviour of the structure is elastic;
 – the static load is evenly distributed on the stiffening 
girder over the entire span of the bridge;

 – the static load is evenly transferred to the rigid cable 
via hangers;

 – hangers do not extend.
Figure 1 shows an overview and calculation scheme of 

the asymmetric single-pylon suspension bridge. The rigid 
cable is subjected to dead symmetric load g and a part of 
live symmetric load pc. The stiffening girder takes a part 
of live symmetric load pb. The total live load is p.

Figure 1. A single-pylon asymmetric suspension bridge: a – general view; b – calculation model
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At the beginning of building the bridge, the cable is 
considered to be completely flexible under the action of 
the personal weight and a dead evenly distributed load. 
An increment in the sag of the cable under the dead load 
is equal to Dfg = 0. The thrust of the flexible cable under 
the dead load is calculated as follows:

2
,

8g
glH

f
≅  (1)

where f – the initial sag of the cable under symmetric dead 
loads. 

Prior to loading the bridge with operational loads, the 
interconnection components of the individual elements of 
the cable are ‘stiffened’ thus giving rigidity for flexure. A 
part pc of live load p falls on the rigid cable and a part of 
load pb – on the stiffening girder.

Considering individual flexural rigidity, the thrust of 
the rigid cable following deformation is equal to 
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where EIc – the flexural rigidity of the rigid cable (Grigor-
jeva & Juozapaitis, 2013), Dfp – the deflection of the cable 
under a part of live load pc.

Under the action of the live load, the length of the 
rigid cable increases and makes
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where EAc – the axial stiffness of the cable. 
The coherence equation of the deformation of the rigid 

cable at different levels equals 
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of the rigid cable following deformation considering the 
maximum permissible displacement at the top of the py-
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 – the initial length of the 
cable.

Solving Equations (4), (1) and (2) and the estimation 
of a part of the load on the stiffening girder show that 
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= − , where EIb – the flexural rigidity of 

the stiffening girder (Grigorjeva & Juozapaitis, 2013). The 
obtained displacement in the middle of the span is equal to 
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The sag of the span of the cable under the action of live 
load Dfp allows determining the distribution of live load 
p between the cable and the girder and identifying strain 
and internal forces of the rigid cable and the girder. 

The maximum bending moment of the cable having 
finite flexural rigidity is equal to 
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The maximum total strain of the cable having finite 
flexural rigidity equals
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The maximum bending moment of the stiffening 
girder under the live load and the maximum strain of the 
stiffening girder are determined using simple formulas 
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2. The simplified analysis of the asymmetric 
single-pylon suspension bridge with rigid  
cables under asymmetric loading

Under asymmetric loading, the calculation of the suspen-
sion bridge with rigid cables is performed at two stages. 
At the first stage, similarly to symmetric loading, the ca-
ble is treated as completely flexible. An increment in the 
sag of the cable under the dead load is equal to Dfg = 0. 
The stiffening girder is loaded with half the live load and 
equals 0.5Ip p= .

Considering the elongation of the cable and the dis-
placement at the top of the pylon, a consistent equation of 
deformation (4) of the rigid cable with trusses at different 
levels is as follows:
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The built-in bridge structure adds live load pI a part of 
which is attributed to cable pc,I and the other part is taken 
by stiffening girder pb,I.

Conforming to flexural rigidity, the thrust of the rigid 
cable after deformation is equal to
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where ,p IfD  – the deflection of the cable under a part of 
live load pc,I.

Solving Equations (10), (1) and (11) and the es-
timation of a part of the load on the cable show that 
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An increment in the sag of the middle of the span ,p IfD
allows determining a part of the live load on the stiffening 
girder taking a part of load pb,I:
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At the second stage, half the span is loaded with the 
live load in the opposite direction 0,5IIp p=  (Figure 2). 
The left part of the span takes the direction of the acting 
load downwards, and the right part goes upwards. 

It is assumed that the values of an increment in the ini-
tial sag in the middle of the span ,p IfD and thrust ,g p IH +
remain the same and makes it possible to determine the 
distribution of live load pII between the stiffening girder 
and the rigid cable.

Loading half the span with the live load in the opposite 
direction 0,5IIp p= shows that the rigid cable takes a part 
of load ,c IIp , whereas the other share is attributed to stiff-
ening girder , ,b II II c IIp p p= −  (Grigorjeva et al., 2010b):
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With reference to ,c Ip , ,c IIp  and in line to Equations 
(8) and (7), the values of Dfp and H are specified employ-
ing the load attributed to , ,c c I c IIp p p= +  instead of load 
pI. The distribution of loads between the cable and the 
stiffening girder allows easily calculating the displace-
ments and internal forces in these elements. 

The maximum displacement of the loaded part of the 
bridge wl is calculated as follows:
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The maximum displacement of the unloaded part of 
the bridge wl is calculated as follows:
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3. The simplified analysis of the  
asymmetric single-pylon suspension  
bridge with flexible cables

The first chapter describes the versatility of the single-py-
lon asymmetric suspension bridge with rigid cables. The 
structure of the bridge is easily applicable to the simplified 
calculation of asymmetric suspension bridges with flexible 
cables and to the preliminary selection of the geometric 
characteristics of the elements constituting the bridge.

An increment in the sag of the cable under the dead 
load is equal to Dfg  = 0. The thrust of the flexible cable 
under the dead load is calculated in line to (1).

The thrust of the flexible cable following deformation 
is equal to 
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Similarly to the case of the bridge with rigid cables, for 
solving equation (4), considering the thrust of the flexible 
cable under dead load Hg (1) and thrust after deforma-
tion Hg+p calculated in consonance to formula (8) assists 
in obtaining the displacement in the middle of the span 
thus estimating only the flexural rigidity of the stiffening 
girder:
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Likewise in the case of the flexible cable, the appli-
cation of simple expressions helps with determining the 
stress/strain state of the bridge with flexible cables.

4. A comparison of the results of the simplified 
analysis of the single-pylon suspension bridge 
with rigid cables performing Fe simulation 

In order to determine the accuracy of the proposed sim-
plified methodology for calculating the single-pylon 
asymmetric suspension bridge with rigid cables, numeri-
cal simulation has been performed using the finite ele-
ment method. MIDAS/Civil software has been chosen for 
calculations.

The main span of the bridge is 50 m, the initial sag 
of the middle span of the cable is 5 m and the distance 
between hangers is 2.5 m. The total flexural rigidity of the 
bridge is 44.2 10  EI = ⋅ kNm2 and the ratio of the flexural 
rigidity of the cable to the flexural rigidity of the stiffening 
girder is ξ = 1.0. The cable is loaded with evenly distrib-
uted dead load g, half the stiffening girder is loaded with 
live load p and the ratio of the live to dead load is γ = 1.

The peculiarities of simulating suspension bridges 
with rigid cables in the MIDAS/Civil environment were 
discussed by (Grigorjeva & Juozapaitis, 2013). At the be-
ginning of the numerical experiment, employing proce-
dures established in MIDAS/Civil software and focused 
on calculating suspension bridges assists in determining 
the initial stress/strain state of the bridge under the effect 
of dead load g.

Figure 2. The calculation scheme under asymmetric loading  
at the second stage of calculation
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 At the second stage of calculation, the internal force 
of the suspension bridge under the effect of the dead load 
is attributed to the elements of the bridge applying the 
function of Initial Element Forces. The displacement in 
the middle of the bridge span under the effect of the dead 
load equals Dfg = 0. Next, the bridge is loaded with the 
live load, and the final stress/strain state of the bridge is 
determined.

A comparison of calculation results is presented in 
Table 1.

The provided results demonstrate the sufficient accu-
racy of the worked out methodology. Under symmetric 
loading, errors in the displacement at the span centre 
and in the bending moments, maximum strain of the 
rigid cable and the stiffening girder do not exceed 5% and 
those in thrust make 1%. Under asymmetric loading, the 
accuracy of the methodology is slightly lower. The maxi-
mum errors in the displacement do not exceed 13% and 
the errors in the bending moments, strain of the cable and 
stiffening girder make 7%.

Conclusions 

The paper analyses the asymmetric single-pylon suspen-
sion bridge with rigid cables and develops the methodol-
ogy for calculating the asymmetric single-pylon suspen-

sion bridge under the effect of symmetric and asymmetric 
loading. The performed numerical simulation has deter-
mined the accuracy of the proposed calculation method-
ology. The accuracy of the analytical expressions provided 
has been found to be sufficient. Under symmetric loading, 
difference in numerical simulation results do not exceed 
5%. Under asymmetric loading, the difference between the 
results obtained during numerical simulation and the ap-
plied analytical expressions do not exceed 13%.
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