
PORTUGUESE STOCK MARKET: A LONG-MEMORY PROCESS?

Sameer Rege1, Samuel Gil Martín2

1Universidade dos Açores, CEEAplA & Departmento de Economia e Gestão, Rua da Mãe de Deus, 58 Ponta Delgada, 
9501 801 São Miguel, Açores, Portugal

2Universidad Autónoma de San Luis Potosí Avenida Pintores CP 78213 San luis Potosí, México
E-mails: 1sameer@uac.pt; 2samuel.gilmartin@gmail.com

Received 31 September 2010; accepted 23 October 2010

Abstract. This paper gives a basic overview of the various attempts at modelling stochastic processes for stock markets with 
a specific application to the Portuguese stock market data. Long-memory dependence in the stock prices would completely 
alter the data generation process and econometric models not considering the long-range dependence would exhibit poor 
forecasting abilities. The Hurst exponent is used to identify the presence of long-memory or fractal behaviour of the data 
generation process for the daily returns to ascertain if the process follows a fractional brownian motion. Detrended fluctuation 
analysis (DFA) using linear and quadratic trends and the Geweke Porter-Hudak methods are applied to detect the presence 
of long-memory or persistence. We find that the daily returns exhibit a small amount of long memory and that the quadratic 
trend used in the DFA overestimates the value of the Hurst exponent. These findings are corroborated by the use of the Geweke 
Porter-Hudak method wherein the Hurst exponent is close to the DFA using the linear trend.

Keywords: geometric brownian motion, Hurst Exponent, Long-Memory, Detrended Fluctuation Analysis, Geweke Porter-
Hudak method, stable distributions.
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Santrauka. Straipsnyje aprašomi įvairūs vertybinių popierių rinkų stochastinio procesų modeliavimo bandymai. Autoriai 
atlieka skaičiavimus naudodami Portugalijos vertybinių popierių rinkos duomenis. Identifikuotas vertybinių popierių kainų 
kitimo inertiškumas. Šis inertiškumas iš esmės keičia duomenų prognozavimo procesą. Ekonominiai modeliai, neatsižvelgiantys 
į inertiškumą ilgalaikėje perspektyvoje, tampa netinkami prognozuoti. Hursto eksponentinis metodas taikomas inertiškumo 
reiškiniui arba jo daliniam pasireiškimui identifikuoti. Tikrinama, ar tos dienos duomenys patvirtina hipotezę apie vertybinių 
kainų Brouno kitimo inertiškumą. Gevek Porter-Hudako metodai taip pat taikomi inertiškumui identifikuoti. Autoriai nustato, 
remdamiesi išvardytais metodais ir skaičiuoti imdami kiekvienos dienos vertybinių kainų duomenis, kad keliama hipotezė 
pasitvirtino.
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1. Introduction

The attempt to model the data generation process for finan-
cial data dates back to Bachelier (1900) wherein he attemp-
ted to model the French government bond and its futures. 
For further details on Bachelier’s work refer Voit (2005). 
Bachelier (1900) and Black Scholes (1973) are consistent 
with the Efficient Market Hypothesis, first formulated by 
Samuelson (1965) and Fama (1970). The efficient market is 
an idealized, complex system, wherein the essential informa-
tion about a traded asset is instantaneously incorporated in 
its price. As a foremost implication, the serial correlation of 
the rate of return is zero for any short-time scale, so that the 
return time series are random walks.  

Most of the empirical works carried during the 1960s 
support the random-walk hypothesis. Over the last 40 ye-
ars, however, financial markets have witnessed significant 
changes, and data showed important discrepancies between 
the Bachelier model and real markets. After the collapse of 
the Bretton Woods system, the value of currencies, together 
with other financial prices, commodity prices, including 
oil, and land prices were displaying fluctuations of an order 
of magnitude never experienced before. By this time, the 
electronic revolution started to adapt to financial markets 
and capital facilitating global capital movements all around 
the globe. The volume of financial transactions has since 
overwhelmed current account transactions by a factor of 
several hundreds to 1. 

There are some striking features that do not fit with the 
Geometric Brownian motion Bouchaud (2002). Empirical 
evidence from stock markets around the world shows that 
the returns 

(1)

do not follow a Gaussian distribution but are fat tailed and 
skewed. Also the volatility of the returns 2)t(r  shows hete-
roskedasticity with periods of high volatility and low volati-
lity. Also financial series often show long memory wherein 
hyperbolic decay rates of the autocorrelation function of 
the log price, at odds with the efficient market hypothesis, 
were first observed by Greene and Fielitz (1977) and Taylor 
(1986). The major implication is the possibility of earning 
speculative profits by means of remote information.

Second, contrary to the Gaussian model, the data ge-
nerating process display fat tails. The presence of kurtosis 
suggests that rare events should not be assumed away when 
it comes to managing risk. These distributions can be accu-
rately described by power-law distributions. The exponent 
corresponding to emerging markets can be less than two, 
in which case the variance diverges to infinity. 

Moreover, periods of hectic activity and relatively quies-
cent ones coexist. Such a clustering in the volume of acti-
vity and volatility leads to a multifractal-like behavior of 
returns. The leverage effect, a negative correlation between 

(past) returns and (future) volatilities in turn leads to ne-
gative skewness in the distribution of returns.

In this paper we investigate the presence of some of the-
se facts, with a special focus on long-term dependency. The 
intuition behind long memory is that the longest cycle in a 
sample will be proportional to the number of observations 
(Mandelbrot et al. 1997). There is no definitive conclusion 
about the existence of long memory in financial returns. 
Green and Fielitz (1977), Taylor (1986), Barkoulas et al. 
(2000), Taqqu et al. (1999), Ding et al. (2001), Sadique and 
Silvapulle (2001) and others claim that financial markets 
exhibit long memory. Other scholars do not reach a clear-
cut conclusion, such as Lo (1999). However, in the post 
Bretton-Woods era the dominant view is that long-term 
dependence exists in liquid markets up to a lag of a ten-
minute order. 

In face of this evidence it is important to investigate 
different stochastic processes and fit statistical distributions 
that mimicked the actual data as close as possible. 

The first step toward this is to identify whether the pro-
cess exhibits long or short memory or the assumption that 
the data does not exhibit memory holds. The presence of 
memory will then dictate the choice of models used to 
forecast the underlying process. 

The mathematical definition of a stationary process 
with long-memory or long-range dependence or persisten-
ce is given by its autocorrelation function ρk such that

                            for some 0 < c  and 0 < λ < 1  (Cowpertwaite 

and Metcalfe 2009: 160). For a long-memory process the 
autocorrelation function decays slowly at a hyperbolic rate 
as opposed to an exponential rate for a Brownian motion. 
This implies that the autocorrelations are not summable or 
in other words                    .  The spectral density defined 

as:                                 (Fourier frequency ω ) tends to 

infinity at zero frequency f (ω) → Cfωλ–1 as ω → 0. We 
use the Hurst (1951, 1955) exponent (H) to identify the 
presence or absence of memory. Hurst used the rescaled-
range statistic over a period k and found it proportional 
to kH for some H > 1 / 2. The Hurst parameter is defined 
by H = 1 – λ / 2 and hence ranges from 1 / 2 < H < 1. If λ = 
1 ⇒ H = 1 / 2 and the process is a Brownian motion with 
no long-range dependence.

The next section gives a succinct introduction to the 
various approaches used in literature and to justify the met-
hodology adopted to identify the plausible data generation 
process. The empirical evidence follows with the methodo-
logy and results. The final section concludes.

2. Literature Survey

Two main approaches are used to fit models to financial 
time series like stock prices or options data. 
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1. Identifying the underlying distribution for the data 
generation process by calibrating the actual observa-
tions to Stable Distributions

2. Fitting econometric models like ARCH, GARCH, 
FARIMA, FIEGARCH based on the existence of 
memory in the evolution of prices. The existence of 
memory in the process is based on the value of the 
Hurst exponent.

Stable Distributions
The data generation process of the stock prices is assu-

med to be a random walk of size xi ∀i = 1,2,..., n with n i.i.d. 
changes at each instant of time δt. The position of the ran-
dom walk in time nδt equals the sum of the n i.i.d xis. Thus

 The simplest example is xi = s; ∀i = 1, 2, ..., n. 

The question is what happens to the probability distri-
bution of Sn as n increases? If the functional form of the 
density function is invariant under the summation then 
the distribution is classified as stable. Thus if xi follows a 
normal distribution with mean μ and variance σ2, then

, follows a normal distribution with mean

nμand variance nσ2 .
Are there distributions that are stable with finite mo-

ments? Khintchine and Lévy (1936) derived the general for-
mula for the entire class of stable distributions. Lévy stable 
distributions lack closed form density functions except for 
normal, Cauchy or Lorentzian and Lévy-Smirnov distribu-
tions. These distributions can be easily expressed in terms of 
the characteristic function, which is the Fourier transform 
of the distribution function (p(x)) given by φx(t) = E[eitx] = 
∫p(x)eitxdx.  

The general form of the characteristic function of stable 
distributions is given by 

(2)

where index of stability (tail index, tail exponent or charac-
teristic exponent) α in (0,2) (for α > 2, p(x)<0), a skewness 
parameter β in [-1,1], a scale parameter σ > 0 and location 
parameter μ in R. For details refer Mantegna and Stanley 
(2004); Weron (2001):

Lévy-Smirnov: α = 1/2, β = 1,
Cauchy or Lorentzian: α = 1, β = 0,
Normal or Gaussian: α = 2, β = 0,

when β = 0, the distribution is symmetric about μ. The pth 
moment of a Lévy stable distribution is finite if p < α. Thus 
all Lévy stable distributions have infinite variance except 
the normal. This has implications for risk management 
as Value at Risk studies normally attempt to estimate the 
probability of loss beyond a certain number of standard 
deviations below the mean. 

Self-Similarity
Since one is modelling the distribution of the returns, 

the analysis may be sensitive to the scaling of the time fac-
tor. The point to consider is whether the distribution

of returns 
)t(P

)t(P)tt(P
)t(r

−+
=

∆∆ self-similar? In other

words is the distribution of returns taken over different 
time intervals (Δt = $ 1, 2, 5, 10 minutes, 1 hour, 1 day, 2 
days etc.) different? Mantegna and Stanley (2004) show that 
non-Gaussian stable distributions are self-similar when 
appropriately scaled. The next question is to find the appro-
priate scaling factor that reflects self-similarity. The appro-
ach to finding the scaling factor is to find the probability of 
return to the origin; p(Sn) = 0 and show that the rescaled 
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Truncated Lévy Flight (follows follows Mantegna and 
Stanley (2004)).

When each step takes time that is proportional to its 
length it is termed as a random walk. However when each 
step takes the same time regardless of the length, the ran-
dom walk is termed as flight. When the steps are distributed 
according to a Lévy process it is termed as Lévy Flights. 
Except for the Gaussian distribution which is a stable Lévy 
distribution and hence scalable having a finite variance, 
no other Lévy distribution has finite variance though all 
are stable and scalable. Student’s t distribution does not 
possess scaling properties but has finite variance. The only 
distribution that possesses a finite variance and scaling 
behaviour over a large range is the Truncated Lévy Flight 
defined by: 

(3)

where pL(x) is a symmetric Lévy distribution and c is a 
normalising constant. Mantegna and Stanley (2004) show 
that TLF distribution converges to the gaussian for large 
values of n i.e. 

Estimation of Tail Index α (follows Weron (2001)). When 
α< 2, the tails of the Lévy distribution are asymptotically 
equivalent to a Pareto law, i.e. if X ~ Sα(σ, β, μ), α < 2, σ = 1, 
μ = 0, then x → ∞

p (X > x) = 1 – F(x) → Cα(1 + β)x–α,

p (X < – x) = F(x) → Cα(1 – β)x–α,

∑
=

=
n
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Log-log linear regression
To estimate the tail index, a linear regression is fit to 

the dependent variable log(1 – F(x)), where F(x) is the 
 cumulative density function of x > 0 v/s the independent 
variable log(x); ∀x > 0. This estimator is sensitive to the 
sample size and choice of number of observations.

Hill estimator 
It is the non-parametric method to estimate the tail 

behaviour based on order statistics, where the upper tail is 
of the form 1 – F(x) = Cx–α .The sample is ordered so that 
X(1) ≥ X(2) ≥ ... ≥ X(N), the Hill estimator based on k largest

order statistics is 
1

1 1

1
−

= + 














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


= ∑

k

i k

n
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log

k
)k(α

Weron (2001) finds that Hill estimator also over estima-
tes the tail index parameter α and one needs to use high 
frequency data for asset returns and analyse only the most 
outlying values to correctly estimate α.

Brownian and Fractional Brownian motion
A Fractional Brownian Motion (FBM) (Vasconcelos 

2004), is a Gaussian process{WH(t), t > 0} with zero mean 
and stationary increments whose variance and covariance 
are given by 

E[W2
H (t)] = t2H

E [WH (s)WH(t) = 1/2(s2H + t2H – t – s2H),

where 0 < H < 1. It is a self similar process WH (at) d = 
aHWH (t) ∀ a > 0. The parameter H is called the self-si -
milarity exponent or the Hurst exponent. For H = 1/2, the 
FBM reduces to the usual Brownian motion where incre-
ments ∆Wt = WH(t + ∆t) – WH(t) are i.i.d when H ≠ 1/2 , 
increments ∆Wt are known as fractional white noise dis-
playing long-range correlation 

E[∆Wt+k ∆Wt] = 2H(2H – 1)k2(H–1) for; k → ∞ 

Processes with lower H have a greater volatility than tho-
se processes with a higher H. Fractional Differencing: 
FARIMA (p,d,q) process A fractionally differenced ARIMA 
process {xt}, FARIMA(p,d,q) has 

the form φ(L)(1 – L)d xt = ψ (L)wt for some 
2

1

2

1
<<− d . 

We fit yt = (1 – L)d xt = [φ(L)]–1ψ(L)wt where 

and L is the backward lag operator. The autocorrelati-
on function ρk of a FARIMA (0,d,0) process tends to 

for large n. The process is stationary pro-

vided                     and provides a relationship between 

the differencing parameter d and the long-memory para-
meter λ when 0 ≤ d. 2d – 1 = –λ implying, if λ = 1; d = 0. 
Thus the series has no long-range dependence if d = 0.

3. Methodology

We use two methods to estimate the long-range dependen-
ce in the daily returns of the PSI20. 

1. Heuristic method called the Detrended Fluctuation 
analysis.

2. Semi non-parametric approach using the GPH test 
based on Geweke and Porter-Hudak (1983).

Detrended Fluctuation Analysis
The Hurst exponent was initially estimated by using 

the rescaled-range (RS) analysis of Hurst (1951). We adopt 
the Detrended Fluctuation Analysis (DFA) methodology 
as described in Peng et al. (1994), Moreira et al. (1994) 
and Vasconcelos (2004) for estimating the Hurst exponent. 
Costa and Vasconcelos (2003) find the DFA more reliable 
than the RS analysis for estimation of the Hurst exponent. 
Various studies have been carried out to estimate the Hurst 
exponent to determine the existence of fractional Brownian 
motion and multi fractality. Razdan (2001) finds that the 
Bombay stock exchange exhibits fractional Brownian mo-
tion with mono-fractality using the RS analysis. Da Silva 
et al. (2007) estimate the Hurst exponent for the Brazilian 
exchange rate market using the RS analysis find it close to 
0.5 implying a Brownian motion.

1.  Given a time series r(t), t = 1, 2 ..., T of say daily 
returns, obtain the cumulative time series X(t).

2. 

3. Break X(t) into N non-overlapping intervals of equal 

length τ where 



=
T

t
intN , where N is an integer.

4. For each of the intervals τ, fit a linear regression 
Yτ(t) = an + bnt∀t ∈τ where an and bn are obtained 
from an OLS estimation procedure.

5. Compute the rescaled function Fτ for each τ.

6.                                                     

7. Repeat steps 3,4,5 for different values of τ and obtain 
Fτ for each τ.

8. The Hurst exponent H is obtained from the scaling 
behaviour of Fτ, Fτ = CHτH where CH is a constant 
independent of the time lag τ .

.
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9. Use OLS regression on the log [Fτ] = log [CH] + 
Hlog [τ] to obtain H.

To check for multi fractality modify step 6 to 

                                                                            .

Spectral Density using the GPH test
A time series N

tt }y{Y 1== is said to be integrated of 
order d, signified as I(d) if it has a stationary, invertible 
autoregressive moving average (ARMA) representation 
after applying the difference operator (1 – L)d where L is the 
backward lag operator. The series is fractionally integrated 
when d is not an integer Geweke and Porter-Hudak (1983) 
suggested a semi-parametric estimator of d in the frequency 
domain. They consider the data generating process (1 – L) d  
yt = zt where zt ∼ I(0) . 

Representing the process in frequency domain fy(ω) = 
1 – exp(–iω)–2d fz(ω) where fz(ω) and fy(ω) are spectral 
densities of zt and yt respectively. The spectral density of 
the fractionally integrated process yt is given by 

(4)

for j = 1, 2, ..., nf where 
N

j
j

πω 2
= and fz(ωj) is the spectral 

density corresponding to zt. The fractional difference pa-
rameter d can be estimated using the regression: 

(5)

where β = ln{fz(0)} and
                               

. 

Geweke and Porter-Hudak (1983) showed that using 
a periodogram estimate, the least squares estimate of d 
using the above regression is distributed in large samples 
if the number of observations nf (T) = Tα with 0 < α < 1 as 
a normal distribution

                                                                            where

and                            . 

Under the null hypothesis of no long memory (d = 0), the 

t-statistic                                             has a limiting 

normal distribution.

4. Results

Data and Simulation Presentation
The section begins with the presentation of the data and 

distribution of the returns. This is followed by the analysis 
of the results. 

The maximum return we find is 13.3486% while the 
minimum return is –12.8696%. Figure 1A shows the daily 
movement of the PSI20 (top) along with the daily returns 
(middle) and the volatility (bottom) of the returns. Figure 
1B shows the distribution of the actual returns with a nor-
mal distribution superimposed on it. The actual distributi-
on has a greater kurtosis and fatter tails which the normal 
distribution is unable to capture. The normal distribution 
has been fit using the maximum likelihood method with 
the parameters equated to the mean and the variance of 
the actual distribution. 

B: actual distribution and normal distribution

A: price, returns, volatility

Fig. 1. PSI20: Level, Returns, Volatility and density of daily 
returns and estimated normal fit 

,
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Detrended Fluctuation Analysis
The modified DFA method is used to identify the pos-

sible multi-fractal behaviour of the returns data and to find 
the evolution of the Hurst exponent over time across diffe-
rent time horizons with a moving window of 1day.

value of the exponent.  Whether this is consistently true 
over the entire range was checked using a moving window 
of 1 day with a period of 3 years (750 days) for estimating 
each exponent.

Figure 3 gives a graphic representation of the linear and 
quadratic trend polynomials fit using the entire range of 
data consisting of 4251 points. The difference between Xt 
and Yt is used for Fτ where Xt is the cumulative series of the 
daily returns minus the mean of the series of daily returns. 
Eventually the nature of the errors between the series Xt 
and its fit Yt will determine the Hurst exponent. In our case 
we find that the quadratic trends tend to overestimate the 
Hurst exponent implying that the quadratic trend may not 
be the appropriate fit for the local trends.

21

1

2

2

1

12

2
/

H HHH
C 





+
−

+
+

+
=

Yτ (t) = an + bnt + cnt2

Fig. 2. Hurst exponent with Linear and Quadratic Trends

Linear Trend

Yτ (t) = an + bnt     

  Quadratic Trend

Figure 2 shows the variation of log(Fτ) on the y-axis vs 
log(τ) on the x-axis for linear and quadratic trends when 
estimated using the whole data series. The straight lines 
are obtained for various values of the Hurst exponent 0.5, 
0.55, 0.6 and 0.65 using 

log (Fτ) = log(CH) + H log (τ),                     (6)

where                                                                 . The quadratic 

trend tends to overestimate the exponent over the entire 
data set. When using the entire data set we obtain a single 

Yτ (t) = an + bnt + cnt2

Fig. 3. Cumulative Sum of daily returns minus mean dauly 
returns with Linear and Quadratic Trends

Linear Trend   

Quadratic Trend

Yτ (t) = an + bnt      
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Figure 4 shows the movement of the Hurst exponent 
(y axis) over the same time periods (x axis) for 3500 pe-
riods with a moving window of 1 day. Initially we use 750 
days to estimate the Hurst exponent and then advance one 
day till the end of the data period. We have used the linear 
and quadratic trends to estimate the exponent. The Hurst 
exponent (lower series) estimated using the linear trend 
exhibits a lower average value as opposed to the quadratic 
trend (higher series). Except for a small period where the 
values of the Hurst exponent exhibit opposite behaviour (fall 
for the quadratic trend and rise for the linear trend) they 
both exhibit similar behaviour. The Hurst exponent based 
on the quadratic trend lies completely above 0.5 implying 
an unequivocal long-range dependence in the daily returns 
while the exponent based on the linear trend shows some 
periods when the exponent falls below 0.5. This implies anti-
persistence and a faster return to the original level. 

Table 2. GPH Test for estimating fractional difference 
 parameter d

Estimate Std Error t-value Pr(>|t|)

β –9.9135 0.0537 –184.675 <2e–16

d –0.0786 0.0137 –5.747 1.04e–8

We have the following relationships λ = 1 – 2d and H = 
1 – λ / 2. Thus from Table 2 we infer

 
This shows a small persistence in the behaviour of daily 

returns. The Hurst exponent estimated using the Geweke 
and Porter-Hudak method is in close approximation with 
the linear trend used to estimate the Hurst exponent using 
the detrended fluctuation analysis.  

Comparison with Other Studies
Podobnik et al. (2006) use the linear trend to estima-

te the Hurst exponent. Using their terminology, the DFA 
follows a scaling law HF ττ ∝  they estimate the power-
law auto-correlations H and find that all the indices for 
the ten transition economies in Europe exhibit power-law 
auto-correlations or in other words have a Hurst expo-
nent different from 0.5 implying long-range dependence. 
Alvarez-Ramirez et al. (2008a) find the Hurst exponent 
varies substantially from persistence (above 0.5) to anti-
persistence (below 0.5). They infer that the end of Bretton-
Woods era in 1972 had a major impact on the efficiency 
of the markets wherein they use the Hurst exponent as a 
proxy for the market efficiency and conclude that markets 
became more efficient. Contrary results to Alvarez-Ramirez 
et al. (2008a) are obtained by Onali and Goddard (2009) 
where they find no evidence of long-range dependence 
in the returns of the Italian Mibtel index. Wang, Liu and 
Gu (2009) studies the improvement in efficiency of the 
Shenzen stock market using the multi-fractal DFA and find 
that the Hurst exponent falls consistently across time thus 
concluding that the market became more efficient over 
time. Cajueiro and Tabak (2007) investigate the long-range 
dependence of LIBOR interest rates on maturities of fixed 
income instruments for six countries. They find that the 
long-range dependence falls with increased maturity for 
four countries out of six and rises for the remaining two. 
Serlitis and Rosenberg (2007) estimated the Hurst exponent 
for the NYMEX futures and found the series to be anti-
persistent and thus price corrections occur much faster. 
Since the futures prices are intricately linked to the spot 
and option prices, the anti persistence may be a result of the 
movements in the other markets where in the traders move 
much faster to rebalance their positions. On the contrary, 
with crude oil prices, Alvarez-Ramirez et al. (2008b) find 
the existence of persistence or a Hurst exponent in the 
range of 0.6–0.7 implying that the spot markets take time 
to adjust to information in the short run.

Fig. 4. Hurst Exponent for various durations (1 day moving 
 window)
Table 1. Summary of Hurst Coefficients over time

Trend mean Std deviation

Linear 0.5515 0.0757

Quadratic 0.7520 0.0718

Spectral Density using the GPH test
We see from Figure 5 that the autocorrelations and the 

partial autocorrelations do not decay exponentially but 
show some persistence even at lags close to 35. 

Fig. 5. ACF and PACF of Daily returns

.
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5. Conclusion

We have used two approaches to investigate the presence 
of long-range dependence in the daily returns of the PSI20. 
The detrended fluctuation analysis, a heuristic approach 
with a liner and quadratic trends over a large range of the 
returns series exhibit long-range dependence with a Hurst 
exponent greater than 0.5. This implies that the market is 
slow to respond to the shocks on the whole. It depends to 
be seen if the Hurst exponents are different during the rise 
and the fall as normally markets are quick to fall but slow 
to rise. The quadratic trend in the DFA method tends to 
obtain higher values of the Hurst exponent and may not 
be an appropriate fit. 

We have used another semi-parametric approach to 
corroborate our estimates of the Hurst exponent using the 
Geweke and Porter-Hudak method. We find that the Hurst 
exponent estimated using this approach is closer to the 
linear trend used in the DFA supporting the claim that 
the quadratic trend may not be an appropriate fit to be 
used in the DFA. 

We propose the use of Fractional GARCH models to 
estimate the differencing parameter d and their use for fo-
recasting as opposed to the traditional GARCH models.

Although there is a vast amount of empirical findings 
dealing with the issue of long-term dependence, its under-
lying causes remain obscure. Anti-persistence can be more 
easily interpreted on the grounds, for instance, of a learning 
process leading to price overreactions that are immedia-
tely adjusted. Indeed, to the eye, short-memory processes 
appear indistinguishable from a white noise (Mandelbrot 
et al. 1997). Long memory, on the contrary, indicates the 
existence of importance pieces of information that are not 
immediately incorporated in the price. 

This fact suggests that there can be sources of informa-
tion easily captured by prices, while others do not. There 
are several reasons why this may occur. A fractal or a mul-
ti-fractal series suggests the action of interacting systems 
generating positive feedback. During ‘normal’ periods in 
which those systems operate rather independently, the ‘low-
scale’ information that becomes operative is that giving rise 
to short memory. Suddenly, the high-range information 
dominates the markets and long-term dependence appears. 
For instance, in the benchmark of the current financial 
crisis, few scholars call into question that the huge amount 
of liquidity created by expansive monetary policies applied 
in the US and the Euro zone gave rise to a house bubble. 
This process, which resembled that occurred in Japan in the 
mid eighties, was for a long time compatible with a good 
performance of financial markets, growth, trade and other 
macroeconomic variables. According to Kindleberger and 
Aliber (2005) a situation like this becomes unsustainable 
whenever the ratio of the price of urban land to wage rises 

above a threshold level. In such a case, market adjustments 
push down land prices, giving rise to a scarcity of liquidity. 
Financial markets then collide with the real side of the 
economy making valuable units of information that were 
not operative prior to the process of revulsion
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data and the Direcção Regional da Ciência, Tecnologia e 
Comunicações for funding the research.
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Appendix: R Code

# code to calculate the Hurst Exponent using Detrended
# Fluctation Analysis
# file name is psi20-close.txt
# it has 4 columns, dd mm yyyy cl for day, month, year
# and close price
file.choose()
pt20<-read.table(“psi20-close.txt”, header=T)
names(pt20)
attach(pt20)

dp     <- length(cl)
dr = dp-1
retc    <- seq(0,0,length.out=dr) 
volretc <- seq(0,0,length.out=dr) 
fdc     <- seq(0,0,length.out=dr) 

for (j in 1:dr)
{
retc[j]    = (cl[j+1]-cl[j])/cl[j]
fdc[j]     = cl[j+1]-cl[j]
volretc[j] = retc[j]^2
}

dretc <- retc - mean(retc)
m1 <- mean(retc)
m2 <- sd(retc)

# drawing graphs from here
par(mfrow=c(3,1))
plot(cl,type=”l”,panel.first=grid())
plot(retc,type=”l”,panel.first=grid())
plot(volretc,type=”l”,col=’green’,panel.first=grid())

# obtain the cumulative sum of returns 
# reduced by mean of returns
X <- seq(0,0,length.out=dr)
X <- cumsum(dretc)
S <- sd(dretc)

# Detrended fluctuation Analysis
DFA <- function(tau,X1)
{
dr = length(X1)
In = as.integer(dr/tau) 

Yn <- matrix(nr=In,nc=tau)
for (i in 1:In)
for (j in 1:tau)
Yn[i,j] = X1[(i-1)*tau+j]

coeffx <- matrix(nr=In,nc=2)
tempy  <- seq(0,0,length.out=tau) 
tempx  <- seq(0,0,length.out=tau) 
for (i in 1:In)
{for (j in 1:tau)
{
tempy[j] = Yn[i,j]
 tempx[j] = j
}
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y.ld <- lm(formula =  tempy ~ tempx)
coeffx[i,1] = coef(y.ld)[1]
coeffx[i,2] = coef(y.ld)[2]
}

lYt = In*tau
Yt <- seq(0,0,length.out=lYt)
Xt <- seq(0,0,length.out=lYt)

for(i in 1:In)
for (j in 1:tau)
{
Yt[(i-1)*tau+j] = coeffx[i,1]+coeffx[i,2]*j
Xt[(i-1)*tau+j] = X1[(i-1)*tau+j]
}

XtYtSq <- sum((Xt-Yt)^2)
Ft <- sqrt((1/lYt)*XtYtSq)
return(Ft)
}

EH <- function(Ft,taui)
{
hurst.ld <- lm(formula =  log(Ft) ~ log(taui))
cCH = coef(hurst.ld)[1]
cHH = coef(hurst.ld)[2]

 return(cHH)
}

pX = 4
Ip = floor(length(X)/pX)
nX <- matrix(nr=Ip,nc=pX)
dnX <- matrix(nr=Ip,nc=pX)
cumdnX <- matrix(nr=Ip,nc=pX)

FtA <- matrix(nr=(Ip-2),nc=pX)
tauA <- matrix(nr=(Ip-2),nc=pX)
HurstC <- seq(0,0,length.out=pX)
nS <- seq(0,0,length.out=pX)

for (i in 1:Ip)
for (j in 1:pX)
{
nX[i,j] = retc[(j-1)*Ip+i]
}

nXmu <- seq(0,0,length.out=pX)
X1 <- seq(0,0,length.out=Ip) 

for(j in 1:pX)
{
nXmu[j] <- mean(nX[,j])
nS[j] <- sd(nX[,j])
}

for (j in 1:pX)
dnX[,j] = nX[,j]-nXmu[j]

for (j in 1:pX)
cumdnX[,j] = cumsum(dnX[,j])

for(j in 1:pX)
{
X1[] <- cumdnX[,j]
ls = length(X1)-2
Ft <- seq(0,0,length.out=ls) 
Fs <- seq(0,0,length.out=ls) 
taui <- seq(0,0,length.out=ls)

for (i in 1:ls) 
{
taui[i] = i+2
Ft[i] = DFA(taui[i],X1) 
Fs[i] <- Ft[i]/nS[j]
}

FtA[,j] <- Fs
tauA[,j] <- taui
HurstC[j] <- EH(Fs,taui)

}

H <- seq(0,1,length.out=21)
Ch <- seq(0,0,length.out=21)

for (i in 1:21)
Ch[i] = sqrt(2/(2*H[i]+1)+1/(H[i]+2)-2/(H[i]+1))

tauH1 <- seq(0,0,length.out=(Ip-2))
tauH2 <- seq(0,0,length.out=(Ip-2))
tauH3 <- seq(0,0,length.out=(Ip-2))

tauH1 = taui^(0.5)
tauH2 = taui^(0.55)
tauH3 = taui^(0.6)

FH1 <- Ch[11]*tauH1
FH2 <- Ch[12]*tauH2
FH3 <- Ch[13]*tauH3

par(mfrow=c(2,2))
for (j in 1:4)
{
 plot(log10(taui),log10(FtA[,j]),type=’l’,col=’dark red’,panel.
first=grid())
lines(log10(taui),log10(FH1),type=‘l‘,col=‘blue‘)
lines(log10(taui),log10(FH2),type=‘l‘,col=‘dark green‘)
lines(log10(taui),log10(FH3),type=‘l‘,col=‘orange‘)
}
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