Evaluation of enterprise survival: case of Latvian enterprises

    Natalia Scacun Affiliation
    ; Irina Voronova Affiliation


Authors study the nature of insolvency both from the legal point of view and scientist position as well as updating tendencies of an insolvency of enterprises in recent years. The subject of the study has been selected company’s survival potential that is analyzed with financial ratio analysis using bankruptcy prediction models. Considering research results, authors identify models that are applicable to a particular industry. Authors put primary metal industry (NACE 24) for the study. The aim of the paper is to investigate the survival potential of enterprises by testing existing parametric models of insolvency forecasting and assessing their potential for use in the economic conditions of Latvia. During the investigation has been reviewed the concept of the financially healthy company and its relation with the main success development factors.

Keyword : non-financial company distress, solvency forecasting models, parametric models, Latvian enterprises, metal industry, model validation

How to Cite
Scacun, N., & Voronova, I. (2018). Evaluation of enterprise survival: case of Latvian enterprises. Business, Management and Economics Engineering, 16, 13-26.
Published in Issue
Jul 13, 2018
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy: predict and avoid bankruptcy, analyze and invest in distressed debt. Wiley Finance.

Altman, E. I. (1993). Corporate financial distress and bankruptcy. John Wiley & Sons.

Amini, H., Cont, R., & Minca, A. (2016). Resilience to contagion in financial networks. Mathematical Finance, 329-365.

Arasu, R., Balaji, C. D., Kumar, S. P., & Thamizhselvi, N. (2014). Applicability of Fulmer and Springate Models for predicting financial distress of firms in the finance sector – an emperical analysis. Journal of Finance and Risk Management, 4(1), 1-9.

Alferov, V. N., & Khudyakova V. V. (2017). Monitoring kreditosposobnosti zayomshikov kak mehanizm atikrizisknogo upravlenija. Strategii biznesa, 36(4), 1-11. Retrieved from

Baykina, S. (2010). Uchet i analiz bankrotstva. Moskva: Dashkov i Kо.

Berzkalne, I. & Zelgalve, E. (2013). Bankruptcy prediction models: a comparative study of the Baltic listed companies. Journal of Business Management, 7(1), 72-82.

Boratynska, K. (2016). Corporate bankruptcy and survival on the market: lessons from evolutionary economics. Oeconomia Copernicana, 7(1), 107-129.

Buston, C. (2016). Active risk management and banking stability. Journal of Banking and Finance, 203-215.

Gepp, A., Kumar, K., & Bhattacharya, S. (2010). Business failure prediction using decision trees. Journal of Forecasting, 29(6), 536-555.

Ginoglou, D., Agorastos, K., & Hatzigagios, T. (2002). Predicting corporate failure of problematic firms in Greece with LPM logit probit and discriminant analysis models. Journal of Financial Management & Analysis, 15(1), 1-15.

Gruszczynski, M. (2015). Issues in modelling the financial distress and bankruptcy of companies. Quantitative Methods in Economics, 16(1), 96-107.

Januška, M. (2004). Mūsdienu prasības bilances kontu uzskaitei un analīzei. Rīga: Merkūrijs.

Joo-Ha, N., & Taehong, J. (2000). Bankruptcy prediction: evidence from Korean listed companies during the IMF crisis. Journal of International Financial Management and Accounting, 11(3), 178-197.

Kanapickiene, R., & Marcinkevicius, R. (2014). Possibilities to apply classical bankruptcy prediction models in the construction sector in Lithuania. Economics and Management, 19(4), 317-332. Retrieved from

Keasey, K., Pindado, J., & Rodrigues, L. (2015). The determinants of the costs of financial distress in SMEs. International Small Business Journal, 33(8), 862-881.

Krusinskas, R., Lakstutiene, A., & Stankeviciene, J. (2014). The research of reliability of bankruptcy prediction models in Lithuanian companies. Transformations in Business and Economics, 13(2), 102-123. Retrieved from

Laakso, T., Laitinen, E., & Vento, H. (2010). Threat of insolvency and successful company reorganization. Helsinki: Talentum Media Oy.

Liang, D., Lu, C.-C., Tsai, C.-F., & Shih, G.-A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: a comprehensive study. European Journal of Operational Research, 252, 561-572.

Lursoft. (n.d.). Uzņēmumu datu bāzes. Retrieved from

Maksātnespējas likums. (n.d.). Retrieved from

Mavlutova, I., Zalitis, U., Mavlutova, A., & Mavlutov, B. (2014). Evaluation of enterprise solvency in lending practice of commercial banks: evidence from Latvia. RISEBA, 90-108. Retrieved from

Nelson, P. B. (1981). Corporations in crisis: behavioral observations for bankruptcy policy. United States: Praeger.

Petersen, C., & Plenborg, T. (2012). Financial statement analysis: valuation, credit analysis and executive compensation. England: Pearson Education Limited.

Pitrova, K. (2001). Possibilities of the Altman Zeta Model Application to Czeck Firms. E & M Ekonomie a Management, 3, 66-76. Retrieved from

Saksonova, S. (2006). Uzņēmuma finanšu vadības praktiskās metodes. Rīga: Merkūrijs LAT.

Singh, B. P., & Mishra, A. K. (2016). Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies. Financial Innovation, UNSP, 2(6).

Shneidere, R. (2009). Finanšu analīzes metodes uzņēmuma maksātnespējas prognozēšanai. Rīga: Lietišķās informācijas dienests izdevniecība.

Swedbank. (2016). Kā saprast, vai mans uzņēmums strādā ienesīgi? Retrieved from

Savickaya, G. V. (2006). Metodika kompleksnogo analiza hozyajstvennoj deyatelnosti. Moskva: Infra-M.

Теreshchenko, А. (2000). Finansovaya sanaciya i bankrotstvo predpriyatij. Kiev: KNEU.

Ventura, J. (2008). The bankruptcy handbook: everything you need to know to avoid bankruptcy, get rid of debt, and rebuild your credit. United Kingdom: Kaplan Publishing.

Waszkowski, A. (2011). Methods of classification models. Oeconomia, 95-106. Retrieved from

World Steel Association. (2015). Retrieved from