Can climate-smart agriculture help to assure food security through short supply chains? A systematic bibliometric and bibliographic literature review


Purpose – This paper aims to reveal potential research possibilities for enhancing climate-smart agriculture through short supply chains.

Research question – How can short supply chains assure food security and the promotion of climate-smart agriculture?

Research methodology – Bibliographic and bibliometric coupling techniques were employed using data from 1990–2022. The raw data was processed using the VOSviewer 1.6.18 software version.

Findings – The results confirm the positive effect of the systemically important relationship between the short supply chain and food security.

Research limitations – Climate-smart agriculture is a complex and multifaceted phenomenon. Additional variables may have moderating and mediating effects on the impact of short supply chains on food security.

Practical implications – The results establish the importance of having a short supply chain for food security in different aspects of the process from the harvest to the table.

Originality and value – This study confirms the rationale for developing shorter food supply chains to assure food security and climate-smart agriculture when possible.

Keyword : climate-smart agriculture, food security, short supply chain, bibliographic analysis, VOSviewer

How to Cite
Morkūnas, M., Rudienė, E., & Ostenda, A. (2022). Can climate-smart agriculture help to assure food security through short supply chains? A systematic bibliometric and bibliographic literature review. Business, Management and Economics Engineering, 20(2), 207–223.
Published in Issue
Jul 14, 2022
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abdelkader, A., & Elshorbagy, A. (2021). ACPAR: A framework for linking national water and food security management with global conditions. Advances in Water Resources, 147, 103809.

Abdullah, & Naved Khan, M. (2021). Determining mobile payment adoption: A systematic literature search and bibliometric analysis. Cogent Business & Management, 8(1), 1893245.

Alabi, M. O., & Ngwenyama, O. (2022). Food security and disruptions of the global food supply chains during COVID-19: building smarter food supply chains for post COVID-19 era. British Food Journal.

Aleksiev, G., & Petrova, N. (2021). Short food supply chains in Bulgaria – sustainability and disruptions. Trakia Journal of Sciences, 19(1), 187–191.

Barbosa, M. W. (2021). Uncovering research streams on agri-food supply chain management: A bibliometric study. Global Food Security, 28, 100517.

Barrett, C. B. (2020). Actions now can curb food systems fallout from COVID-19. Nature Food, 1, 319–320.

Beausang, C., Hall, C., & Toma, L. (2017) Food waste and losses in primary production: Qualitative insights from horticulture. Resources, Conservation and Recycling, 126, 177–185.

Bhandari, A. (2017). Women’s status and global food security: An overview. Sociology Compass, 11(5), e12479.

Benedek, Z., Ferto, I., Marreiros, C. G., De Aguiar, P. M., Pocol, C. B., Cechura, L., Poder, A., Paaso, P., & Bakucs, Z. (2021). Farm diversification as a potential success factor for small-scale farmers constrained by COVID created lockdown. PLoS ONE, 16, e0251715.

Borsellino, V., Schimmenti, E., & El Bilali, H. (2020). Agri-food markets towards sustainable patterns. Sustainability, 12(6), 2193.

Buzby, J. C., & Hyman, J. (2012). Total and per capita value of food loss in the United States. Food Policy, 37(5), 561–570.

Carolan, M. (2016). The sociology of food and agriculture. Routledge.

Castro, O. A. J., & Jaimes, A. W. (2017). Dynamic impact of the structure of the supply chain of perishable foods on logistics performance and food security. Journal of Industrial Engineering and Management, 10(4), 687–710.

Chan, C. Y., Tran, N., Pethiyagoda, S., Crissman, C. C., Sulser, T. B., & Phillips, M. J. (2019). Prospects and challenges of fish for food security in Africa. Global Food Security, 20, 17–25.

Chauhan, C., Dhir, A., Akram, M. U., & Salo, J. (2021). Food loss and waste in food supply chains. A systematic literature review and framework development approach. Journal of Cleaner Production, 295, 126438.

Constantin, M., Beia, S. I., Dinu, M., Pătărlăgeanu, S. R., Petrariu, R., & Deaconu, M. E. (2021). Economic implications of food consumption behavior changes in Romania during the Covid-19 pandemic. Economic Engineering in Agriculture and Rural Development, 21(3), 287–292.

De Fazio, M. (2016). Agriculture and sustainability of the welfare: The role of the short supply chain. Agriculture and Agricultural Science Procedia, 8, 461–466.

De Haen, H., & Hemrich, G. (2007). The economics of natural disasters: Implications and challenges for food security. Agricultural Economics, 37, 31–45.

de Hooge, I. E., van Dulm, E., & van Trijp, H. C. M. (2018). Cosmetic specifications in the food waste issue: Supply chain considerations and practices concerning suboptimal food products. Journal of Cleaner Production, 183, 698–709.

Devin, B., & Richards, C. (2018). Food waste, power, and corporate social responsibility in the Australian food supply chain. Journal of Business Ethics, 150, 199–210.

Diaz-Ruiz, R., Costa-Font, M., López-i-Gelats, F., & Gil, J. (2018). A sum of incidentals or a structural problem? The true nature of food waste in the metropolitan region of Barcelona. Sustainability, 10, 3730.

FAO, IFAD, & WFP. (2013). The state of food insecurity in the world 2013. The multiple dimensions of food security. Rome.

FAO, IFAD, UNICEF, WFP, & WHO. (2021). The state of food security and nutrition in the world 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome.

Ferguson, G., Perez-Llantada, C., & Plo, R. (2011). English as an international language of scientific publication: A study of attitudes. World Englishes, 30(1), 41–59.

Floris, N., & Schwarcz, P. (2018). Potential of short food supply chains, their role and support within the rural development policy in the Slovak Republic. Acta Regionalia et Environmentalica, 15, 15–21.

Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165–169.

Garnett, T. (2013). Food sustainability: problems, perspectives and solutions. Proceedings of the Nutrition Society, 72(1), 29–39.

Gillman, A., Campbell, D. C., & Spang, E. S. (2019). Does on-farm food loss prevent waste? Insights from California produce growers. Resourources, Conservation and Recycling, 150, 104408.

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.

Goossens, Y., Berrens, P., Custers, K., Van Hemelryck, S., Kellens, K., & Geeraerd, A. (2019). Correction to: How origin, packaging and seasonality determine the environmental impact of apples, magnified by food waste and losses. International Journal of Life Cycle Assessment, 24, 688–693.

Gregory, P. J., Ingram, J. S., & Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2139–2148.

Gružauskas, V., Baskutis, S., & Navickas, V. (2018). Minimizing the trade-off between sustainability and cost effective performance by using autonomous vehicles. Journal of Cleaner Production, 184, 709–717.

Grzybowska, K., Awasthi, A., & Hussain, M. (2014, September 7–10). Modeling enablers for sustainable logistics collaboration integrating – Canadian and Polish perspectives. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland (pp. 1311–1319).

Gunders, D. (2012). Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. Natural Resources Defense Council (NRDC).

Habib, R., & Afzal, M. T. (2019). Sections-based bibliographic coupling for research paper recommendation. Scientometrics, 119(2), 643–656.

Hartikainen, H., Mogensen, L., Svanes, E., & Franke, U. (2018). Food waste quantification in primary production – the Nordic countries as a case study. Waste Management, 71, 502–511.

Hermsdorf, D., Rombach, M., & Bitsch, V. (2017). Food waste reduction practices in German food retail. British Food Journal, 119(2), 2532–2546.

Hickey, M., & Ozbay, G. (2014). Food waste in the United States: A contributing factor toward environmental instability. Frontiers in Environmental Science, 2, 1–6.

Hoang, V. (2021) Modern short food supply chain, good agricultural practices, and sustainability: A conceptual framework and case study in Vietnam. Agronomy, 11, 2408.

Hobbs, J. E. (2020). Food supply chains during the COVID‐19 pandemic. Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie, 68(2), 171–176.

Ilbery, B., & Maye, D. (2005). Alternative (shorter) food supply chains and specialist livestock products in the Scottish–English borders. Environment and Planning A, 37(5), 823–844.

Janousek, A., Markey, S., & Roseland, M. (2018). We see a real opportunity around food waste: exploring the relationship between on-farm food waste and farm characteristics Agroecology and Sustainable Food Systems, 42(8), 933–960.

Jarzebowski, S., Bourlakis, M., & Bezat-Jarzebowska, A. (2020). Short food supply chains (SFSC) as local and sustainable systems. Sustainability, 12(11).

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179–194.

Kaur, H. (2021). Modelling internet of things driven sustainable food security system. Benchmarking: An International Journal, 28(5), 1740–1760.

Kiss, K., Ruszkai, C., & Takács-György, K. (2019). Examination of short supply chains based on circular economy and sustainability aspects. Resources, 8(4), 161.

Krishna Bahadur, K. C., Haque, I., Legwegoh, A. F., & Fraser, E. D. G. (2016). Strategies to reduce food loss in the global south. Sustainability, 8(7), 1–13.

Li, Y., Li, Y. F., Kappas, M., & Pavao-Zuckerman, M. (2018). Identifying the key catastrophic variables of urban social-environmental resilience and early warning signal. Environment International, 113, 184–190.

Lioutas, E. D., & Charatsari, C. (2020). Smart farming and short food supply chains: Are they compatible?. Land Use Policy, 94, 104541.

Magalhães, V., Ferreira, L. M. D. F., & Silva, C. (2019). Causes of food loss and waste: An analysis along the food supply chain. In J. Reis, S. Pinelas, & N. Melão (Eds.), Springer Proceedings in Mathematics & Statistics: Vol. 280. Industrial Engineering and Operations Management I. IJCIEOM 2018. Springer.

Marsden, T., Banks, J., & Bristow, G. (2000). Food supply chain approaches: exploring their role in rural development. Sociologia ruralis, 40(4), 424–438.

Maseda, A., Iturralde, T., Cooper, S., & Aparicio, G. (2022). Mapping women’s involvement in family firms: A review based on bibliographic coupling analysis. International Journal of Management Reviews, 24(2), 279–305.

McKenzie, T. J., Singh-Peterson, L., & Underhill, S. J. R. (2017). Quantifying postharvest loss and the implication of market-based decisions: A case study of two commercial domestic tomato supply chains in Queensland, Australia. Horticulturae, 3(3), 44.

McLaughlin, D., & Kinzelbach, W. (2015). Food security and sustainable resource management. Water Resources Research, 51(7), 4966–4985.

Mena, C., Adenso-Diaz, B., & Yurt, O. (2011). The causes of food waste in the supplier-retailer interface: Evidences from the UK and Spain. Resources, Conservation and Recycling, 55(6), 648–658.

Mirabelli, G., & Solina, V. (2019). Blockchain and agricultural supply chains traceability: Research trends and future challenges. Procedia Manufacturing, 42, 414–421.

Mithun Ali, S., Moktadir, M. A., Kabir, G., Chakma, J., Rumi, M. J. U., & Islam, M. T. (2019).Framework for evaluating risks in food supply chain: Implications in food wastage reduction. Journal of Cleaner Production, 228, 786–800.

Molnár, A., Gellynck, X., & Weaver, R. D. (2010). Chain member perception of chain performance: The role of relationship quality. Journal on Chain and Network Science, 10(1), 27–49.

Morkunas, M., & Balezentis, T. (2021). Is agricultural revitalization possible through the climate-smart agriculture: a systematic review and citation-based analysis. Management of Environmental Quality: An International Journal, 33(2), 257–280.

Morkunas, M., Žičkienė, A., Baležentis, T., Volkov, A., Štreimikienė, D., & Ribašauskienė, E. (2022). Challenges for improving agricultural resilience in the context of sustainability and rural development. Wyzwania dla poprawy resilencji w rolnictwie w kontekście zrównoważonego rozwoju i rozwoju obszarów wiejskich. Problemy ekorozwoju, 17(1), 182–195.

Nchanji, E. B., & Lutomia, C. K. (2021). Regional impact of COVID-19 on the production and food security of common bean smallholder farmers in Sub-Saharan Africa: Implication for SDG’s. Global Food Security, 29, 100524.

Opitz, I., Berges, R., Piorr, A., & Krikser, T. (2016). Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North. Agriculture and Human Values, 33(2), 341–358.

Paciarotti, C., & Torregiani, F. (2021). The logistics of the short food supply chain: A literature review. Sustainable Production and Consumption, 26, 428–442.

Peira, G., Bollani, L., Giachino, C., & Bonadonna, A. (2018). The management of unsold food in outdoor market areas: Food operators’ behaviour and attitudes. Sustainability, 10(4), 1180.

Raak, N., Symmank, C., Zahn, S., Aschemann-Witzel, J., & Rohm, H. (2017). Processing- and product-related causes for food waste and implications for the food supply chain. Waste Management, 61, 461–472.

Rauschmayer, F., Bauler, T., & Schäpke, N. (2015). Towards a thick understanding of sustainability transitions – Linking transition management, capabilities and social practices. Ecological Economics, 109, 211–221.

Reddy, P. P. (2015). Climate resilient agriculture for ensuring food security (Vol. 373). Springer India.

Renting, H., Marsden, T. K., & Banks, J. (2003). Understanding alternative food networks: exploring the role of short food supply chains in rural development. Environment and Planning A, 35(3), 393–411.

Rijpkema, W. A., Rossi, R., & van der Vorst, J. G. A. J. (2014). Effective sourcing strategies for perishable product supply chains. International. Journal of Physical Distribution & Logistics Management, 44, 494–510.

Rivera-Ferre, M. G., López-i-Gelats, F., Ravera, F., Oteros-Rozas, E., di Masso, M., Binimelis, R., & El Bilali, H. (2021). The two-way relationship between food systems and the COVID19 pandemic: Causes and consequences. Agricultural Systems, 191, 103134.

Sellitto, M. A., Vial, L. A. M., & Viegas, C. V. (2018). Critical success factors in short food supply chains: Case studies with milk and dairy producers from Italy and Brazil. Journal of Cleaner Production, 170, 1361–1368.

Shah, S. H. H., Lei, S., Ali, M., Doronin, D., & Hussain, S. T. (2019). Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes, 49(3), 1020–1045.

Smith, K., Lawrence, G., MacMahon, A., Muller, J., & Brady, M. (2016). The resilience of long and short food chains: A case study of flooding in Queensland, Australia. Agriculture and Human Values, 33(1), 45–60.

Stanciu, M., Popescu, A., & Rasvan, R. I. (2022). Short food supply chains and young pepople’s attitude towards healthy eating. Economic Engineer-ing in Agriculture and Rural Development, 22(1), 2285–3952.

Stevano, S., Johnston, D., & Codjoe, E. (2020). Better decisions for food security? Critical reflections on the economics of food choice and decision-making in development economics. Cambridge Journal of Economics, 44(4), 813–833.

Teller, C., Holweg, C., Reiner, G., & Kotzab, H. (2018). Retail store operations and food waste. Journal of Cleaner Production, 185, 981–997.

Thurner, S., Liu, W., Klimek, P., & Cheong, S. A. (2020). The role of mainstreamness and interdisciplinarity for the relevance of scientific papers. PloS ONE, 15(4), e0230325.

Todorova, S. (2020). Short food supply chains as drivers of sustainability in rural areas. Scientific Papers. Series “Management, Economic Engineering in Agriculture and Rural Development”, 20, 483–491.

Torero, M. (2020). Without food, there can be no exit from the pandemic. Nature, 580, 588–589.

Tuomala, V., & Grant, D. B. (2021). Exploring supply chain issues affecting food access and security among urban poor in South Africa. The International Journal of Logistics Management, 33(5), 27–48.

Tweeten, L. (1999). The economics of global food security. Applied Economic Perspectives and Policy, 21(2), 473–488.

Ulian, T., Diazgranados, M., Pironon, S., Padulosi, S., Liu, U., Davies, L., Howes, M.-J. R., Borreli, J. S., Ondo, J., Pérez-Escobar, O. A., Sharrock, S., Ryan, P., Hunter, D., Lee, M. A., Barstow, C., Łuczaj, Ł., Pieroni, A., Cámara-Leret, R., Noorani, A., Mba, C., Nono Womdim, R., Mumin-janov, H., Antonelli, A., Pritchard, H. W., & Mattana, E. (2020). Unlocking plant resources to support food security and promote sustainable agriculture. Plants, People, Planet, 2(5), 421–445.

Vojtovic, S., Navickas, V., & Gruzauskas, V. (2016). Sustainable business development process: The case of the food and beverage industry. Organizacja i Zarządzanie, 68, 225–239.

Wohner, B., Gabriel, V. H., Krenn, B., Krauter, V., & Tacker, M. (2020). Environmental and economic assessment of food-packaging systems with a focus on food waste. Case study on tomato ketchup. Science of the Total Environment, 738, 139846.

Workie, E., Mackolil, J., Nyika, J., & Ramadas, S. (2020). Deciphering the impact of COVID-19 pandemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Current Research in Environmental Sustainability, 2, 100014.

Xue, L., Liu, G., Parfitt, J., Liu, X., Van Herpen, E., Stenmarck, A., O’Connor, C., Östergren, K., & Cheng, S. (2017). Missing food, missing data? A critical review of global food losses and food waste data. Environmental Science & Technology, 51(12), 6618–6633.

Xu, Z., Elomri, A., El Omri, A., Kerbache, L., & Liu, H. (2021). The compounded effects of COVID-19 pandemic and desert locust outbreak on food security and food supply chain. Sustainability, 13(3), 1063.

Yang, S., Xiao, Y., & Kuo, Y. H. (2017). The supply chain design for perishable food with stochastic demand. Sustainability, 9, 1195.

Yu, Y., Li, Y., Zhang, Z., Gu, Z., Zhong, H., Zha, Q., Yang, L., & Chen, E. (2020). A bibliometric analysis using VOSviewer of publications on COVID-19. Annals of Translational Medicine, 8(13).

Zhu, L. (2017). Economic analysis of a traceability system for a two-level perishable food supply chain. Sustainability, 9, 682.