Share:


The impact of ageing on the bitumen stiffness modulus using the CAM model

    Małgorzata CHOLEWIŃSKA Affiliation
    ; Marek IWAŃSKI Affiliation
    ; Grzegorz MAZUREK Affiliation

Abstract

This article presents the results of the viscoelastic properties of the polymer-modified bitumen produced in Warm Mix Asphalt technology. A Fischer-Tropsch synthetic wax and a liquid surface-active agent (fatty amine) were used as bitumen viscosity-reducing modifiers. All tested parameters were determined after short-term and long-term ageing. The complex modulus G* and phase angle δ were measured with a cone-plate rheometer. All dynamic tests were performed at 60 °C within the frequency range from 0.005 Hz to 10 Hz. On the basis of the rheological index R determined using the Christensen−Anderson−Marasteanu (CAM) model, it was found that the fatty amine additive slowed down the age-hardening process in the bitumen. In contrast, the synthetic wax increased the stiffness of the bitumen at all levels tested, regardless of the type of ageing simulation process.

Keyword : Christensen−Anderson−Marasteanu (CAM) model, long-term ageing, short-term ageing, viscoelasticity, warm mix asphalt technology

Published in Issue
Mar 27, 2018
Abstract Views
1243
PDF Downloads
1074
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Airey, G. D. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, (82), 1709-1719. http://doi.org/10.1016/S0016-2361(03)00146-7

Anderson, D. A., Christensen, D. W., Bahia, H. U., Dongré, R., Sharma, M. G., Antle, C. E., & Button, J. (1994). Binder characterization and evaluation. Volume 3: Physical Characterization. SHRP-A-369. National Research Council, Washington D.C.

Anderson, D. A., & Marasteanu, M. (2010). Continuous models for characterizing linear viscoelastic behavior of asphalt binders. ISAP Workshop on Asphalt Binders and Mastics, 16-17 September 2010.

Chapra, S. C., & Canale, R. P. (2010). Numerical Methods for Engineers (6th ed.). Mc Graw-Hill.

Cholewińska, M., Iwański, M., & Mazurek, G. (2017). Viscoelas-tic properties of polymer modified bitumen in warm mix asphalt technology in terms of ageing. Procedia Engineering, (72), 401-408. http://doi.org/10.1016/j.proeng.2017.02.007

Cholewińska, M., Mazurek, G., & Iwański, M. (2014). Properties of bitumen with modifying additives after short-term ageing. Budownictwo i Architektura, 13(1), 15-27.

Iwański, M., & Mazurek, G. (2011). The influence of the low-viscosity modifier on viscoelasticity behaviour of the bitumen at high service temperatures. 8th International Conference Environmental Engineering, 19-20 May 2011. Vilnius, Lithuania.

Iwański, M., & Mazurek, G. (2013). Optimization of the synthetic wax content on example of bitumen 35/50. 11th International Conference “Modern Building Materials, Structures and Techniques”, 16-17 May 2013. http://doi.org/10.1016/j.proeng.2013.04.054

Iwański, M., & Mazurek, G. (2015). Effect of Fischer-Tropsch synthetic wax additive on the functional properties of bitumen. Polimery, (4), 272-278. http://doi.org/10.14314/polimery.2015.272

Judycki, J. (2014). Influence of low-temperature physical hardening on stiffness and tensile strength of asphalt concrete and stone mastic asphalt. Construction and Building Materials, (61), 191-199. http://doi.org/10.1016/j.conbuildmat.2014.03.011

Judycki, J., & Jaskuła, P. (2002). The influence of ageing and action of water and frost on changes of properties of asphalt mixes. VIII Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB, Krynica: 221-233.

Kim, Y. R. (2009). Modelling of asphalt concrete. McGraw-Hill.Kleizienė, R., Vaitkus, A., & Čygas, D. (2016). Influence of asphalt visco-elastic properties on flexible pavement performance. The Baltic Journal of Road and Bridge Engineering, (4), 313-323. http://doi.org/10.3846/bjrbe.2016.36

Król, J. B., Kowalski, K. J., Radziszewski, P., & Sarnowski, M. (2015). Rheological behaviour of n-alkane modified bitumen in aspect of warm mix asphalt technology. Construction and Building Materials, (93), 703-710. http://doi.org/10.1016/j.conbuildmat.2015.06.033

Li, X., Zofka, A., Marasteanu, M., & Clyne, T. R. (2006). Evaluation of field ageing effects on asphalt binder properties. Road Materials and Pavement Design, (7), 57-73. http://doi.org/10.1080/14680629.2006.9690058

Marasteanu, M., & Anderson, D. (1996). Time temperature dependency of asphalt binders- an improved model. Journal of the Association of Asphalt Paving Technologists, (65), 407-448.

Marasteanu, M., & Anderson, D. A. (1999). Improved model for bitumen rheological characterization. Eurobitume Workshop on Performance Related Properties for Bituminous Binders (133). Luxembourg.

PN-EN 12607-1. (2014). Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. RTFOT method.

PN-EN 14770. (2012). Bitumen and bituminous binders. Determination of complex shear modulus and phase angle. Dynamic Shear Rheometer (DSR).

PN-EN 13632. (2012). Bitumen and bituminous binders. Visualisation of polymer dispersion in polymer modified bitumen.

Słowik, M., & Bilski, M. (2017). An experimental study of the impact of aging on Gilsonite and Trinidad Epuré modified asphalt binders properties. The Baltic Journal of Road and Bridge Engineering, (2), 71-81. http://doi.org/10.3846/bjrbe.2017.09

Yusoff, Md., & Izzi, N. (2012). Modelling the linear viscoelastic rheological properties of bituminous binders (PhD thesis). University of Nottingham.