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abstract. This paper reports a new simulation technique for an aeroelastic system which responds to random ex-
ternal forces. Since the aeroelastic system including the effects of unsteady aerodynamics is ordinarily described in the 
frequency domain, the Inverse Discrete Fourier Transform (IDFT) can be utilized to simulate its random response. The 
response caused by the external random noise is calculated through a transfer function first in the frequency domain 
and then converted to the time domain. The objective of the present study is to provide mathematical time history data 
for evaluating the various estimation methods of the flutter boundary from subcritical responses in flight and/or wind 
tunnel testing. An example application to the method of flutter prediction is shown. The technique can also be used to 
evaluate the effects of the active control device coping with atmospheric turbulence.
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1. introduction

Wing flutter is one of the most critical problems to be 
solved before the final stage of aircraft design. After the 
design procedure, it must be demonstrated by flight 
tests that the airplane be completely free from fluttering. 
Usually, flutter tests are first conducted by using scaled 

models to find the flutter boundaries in the wind tun-
nel. In the following actual flight tests, it will be of im-
portance to estimate the flutter boundary from the sub-
critical response data within the flight envelope. Even 
during the wind tunnel test, we sometimes lose precious 
wing models by an abrupt occurrence of fluttering. 
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Therefore, in both cases, the reliable prediction of the 
critical speed before the flutter onset is highly required. 
Although various methods have been proposed, it is 
still difficult to predict flutter. It is also difficult even 
to evaluate prediction methods because obtaining data 
by experiments and/or by analyses is not an easy task. 
The analysis includes the complicated calculation of un-
steady aerodynamic forces for the response of the aer-
oelastic systems. As for finding the flutter boundary, the 
method is thought to be matured with the aid of the 
linear theory of unsteady lifting surfaces. There is no ef-
ficient method, however, for simulating the subcritical 
response, since an unsteady aerodynamics is provided 
in the frequency domain. The other reason for the lack 
of a reliable method for prediction is that it is definitely 
difficult to obtain subcritical response data together with 
the actual flutter occurrence experimentally. Hence, the 
analytical simulation with random external loads and/or 
with random internal noise of instruments is requisite.

The phenomenon of flutter involves the unsteady 
aerodynamic forces which are induced by the wing mo-
tion itself. In order to analyse it, theoretical aerodynamic 
forces are provided with the functions of the so-called 
reduced frequency which is non-dimensionalized by a 
flow speed and a representative length. In the practical 
calculation, these forces are computed with twenty re-
duced frequencies at most for several deflection modes 
with the aid of the unsteady lifting surface theory. Values 
between frequencies are approximated by the interpola-
tion technique to reduce cumbersome calculations of the 
generalized forces solving the singular integral equation.

Nowadays, however, the performance of an electric 
computer has progressed tremendously and has made it 
easy to calculate the unsteady aerodynamic forces even 
using a small workstation. Therefore, it has become feas-
ible to compute them for literally thousands of frequen-
cies. This leads us to an idea that the time response of an 
aeroelastic system can be simulated by using thousands 
of digital data in the frequency domain through the In-
verse Discrete Fourier Transform (IDFT). Furthermore, 
if we choose the number of data, say 1024 or 2048, for 
example, we can utilize the technique of the FFT directly, 
even for the inverse transform without any approxima-
tion of interpolation between frequencies. This enables 
us to obtain the digital data of the response in time with 
a constant flow speed below the flutter from the analysis 
in the frequency domain.

This paper reports in detail the data handling of 
that conversion to simulate the aeroelastic response. It 
assumes that the response is caused by random turbu-
lence in the present report.

The results can be applied to evaluate the reliabil-
ity of various flutter prediction methods and to find the 
proper location of sensors, which depends on the flutter 

characteristics. The simulation technique is also expec-
ted to contribute to examining the active control effects 
to attenuate the gust load.

2. discrete fourier transform (dft)

The discrete Fourier transform and its inverse (Randall 
1977) are defined by the following pair of equations:
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where g(n) denotes a series of digital signal equally 
sampled in the time domain and G(m) DFT. Equation 
(2) is the inverse discrete Fourier transform which is 
abbreviated as the IDFT. The symbols m and n are in-
tegers and N selected as the multiple powers of 2, so as 
to utilize the efficient Fast Fourier Transform technique 
by Cooley and Tukey. Mathematically, the DFT is based 
on the assumption that the time signal is periodic. In 
practical cases, however, this restriction causes no prob-
lems because of the finite duration of the actual signal.

3. impulsive response and the transfer function

Generally, the time history of the response can be re-
garded as a convolution integral of an impulsive re-
sponse function and the external loads. An impulsive 
response function is equivalent to the inverse of the 
Laplace transform of the transfer function itself (Thom-
son 1960). Therefore, it can be calculated with the in-
verse Fourier transform when the frequency response 
function of the system is known.

For a continuous signal, the impulsive response 
function of a system is directly related to the inverse La-
place transform of a transfer function, H(s):

G(t) = L –1[H(s)]. (3)
In the Laplace transformed domain, the impulse as 

an external force can be given by a unit function. Then 
the response becomes:

G(s) = H(s) · 1. (4)
If we think that the steady state is a response by the 

harmonic excitation, Eq.(4), by putting s = iω, yields:
G(iω) = H(iω) · 1. (5)
This relationship describes the response with the 

uniformly distributed exciting force in the frequency do-
main. On the other hand, the definition of the Laplace 
transform is given by:

0

( ) ( ) stG s g t e dt
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Putting s = iω in Eq. (6) leads us to an expression for 
the steady state response by harmonic excitation:

0

( ) ( ) i tG i g t e dt
∞

− ωω = ∫ . (7)

Here, in order to clarify the relationship between 
the Laplace transform and the Fourier transform, we 
extend the impulsive response function to the negative 
region of time:

g(–t) = g(t),(t > 0). (8)
Then, the corresponding part of the function in the 

frequency domain becomes:
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Thus, we obtain the Fourier transform as:

ˆ( ) ( ) ( )e ( )i tG i G i g t dt g
∞ − ω
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ω + ω = = ω∫ . (10)

If we assume the transfer function G(s) for an aero-
elastic system including the effects of unsteady forces, 
then its frequency response function of the system be-
comes:

ˆ( ) ( )G i gω = ω . (11)
This enables us to write the impulsive response g(t) 

as an inverse Fourier transform.

 g(t) = F –1[G(iω], (t > 0). (12)
Equation (12) implies that the discrete data of the 

time history can be converted from the discrete fre-
quency data and vice versa through the relations of Eqs 
(1) and (2).

It should be noted here that the amplitudes of the 
response calculated form the transfer function in the fre-
quency domain by using the digital data with finite val-
ues are different from those obtained with a unit impulse 
in the continuous time domain. We have to adjust the 
level of each input whenever we want to compare those 
results.

Once the impulsive response function of a system 
has been obtained, then the time history for arbitrary ex-
ternal forces can be generated by the convolution integ-
ral (Nishijima et al. 2009). There is an alternative method 
to obtain the response in the time domain, i.e. the ap-
plication of the inverse Fourier transform after the mul-
tiplication of the transfer function and the Fourier trans-
form of the external forces. The present paper introduces 
the latter method, since it is more efficient for simulating 
the response.

4. processing of digital signals

The Theodorsen function for a two dimensional airfoil 
or the unsteady lifting surface theory (Küssner 1940) for 

a finite wing provide the unsteady aerodynamic forces 
due to the system motion as functions of the reduced 
frequency, i.e. in the frequency domain. Therefore, they 
cannot be expressed with the Laplace operator s which 
corresponds to the differentiation with respect to time. 
This means that the transfer function of an aerodynamic 
system is written with the matrix of complex numbers 
while its response of Eq. (2) has real numbers. When ap-
plying the IDFT to obtain time history data, we have to 
take this condition into account carefully. The procedure 
is described as follows.

(1) Assume the G(m) as the aeroelastic re-
sponse function in the frequency domain and calcu-
late (N / 2+1), values with an interval Δω from ω = 0 to 
ω = (N/2) Δω.

(2) The corresponding duration time (a theoretical 
periodic interval in the time domain) and the sampling 
period of the digital signal become, respectively:

T = 2π / Δω and Δt = T / N. (13)
(3) In order to hold the causality, the following 

complex conjugate values are allotted for )(mG with 
)1(),...,12/( −+= NNm :

G(m) = Conj[G(N–m)]. (14)
(4) For the value on the middle folding point, we 

enforce:
Im[G(N / 2)] = 0.  (15)
(5) Since the present simulation is for the aeroelastic 

subcritical response, the static deformation is not neces-
sary. Hence,

G(0) = 0. (16)
(6) Application of the IDFT to G(0),…, G(N–1), as 

formed, yields a time history consisting of an N number 
of digital data.

5. governing equation of an aeroelastic system

Assuming D(iω) as the impedance matrix of a mech-
anical system and A(ω) as the unsteady aerodynamic 
matrix, we can write the governing equation for an aer-
oelastic system with the generalized coordinates q as:

[D(s) + A(ω)]q = f, (17)
where the f in the right hand side of the equation denotes 
the generalized external force, which will be a random 
aerodynamic noise in the present case. If we re-denote 
the transfer function of the system in the frequency do-
main as H(ω), then it can be obtained from Eq. (17) as:

H(ω) = [D(iω)+A(ω)]–1. (18)
Then the impulsive response of the system, includ-

ing the effects of the unsteady aerodynamic forces, is 
written for each component as:

Hij(t) = F –1[Hij(ω)], (t > 0). (19)
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6. a typical section airfoil

As an example problem, we shall use a typical section of 
a two-dimensional airfoil, shown in Figure 1. 

Fig. 1. Typical section airfoil

Each parameter is defined in the non-dimensionalized 
form. Unlike the flutter analysis, the frequency Ω is 
normalized with respect to the pitching frequency αω  
instead of the so-called reduced frequency. Defining the 
generalized coordinate vector by T{  , }h α , we obtain a 
part of the transfer function excluding aerodynamic 
forces as:

2
2

2 2

1 0
( )

0

x R
D s s

x r r
α

α α α

  
= +   

      
, (20)

where R is the frequency ratio and 2rα  is the moment of 
inertia of the section which has been non-dimensional-
ized by the representative length and mass.

The work by Bisplinghoff et  al. (1955) provides 
a two-dimensional incompressible unsteady aerody-
namic matrix for Eq.  (17) with the Theodorsen func-
tion having the argument of reduced frequency. We 
denote the mass ratio as µ and the non-dimensional 
speed * / ( )U U b α= ω . Additionally, the non-dimen-
sional dynamic pressure and the time are introduced 
by 22 * /Q U= µ  and t tα∗ = ω , respectively. As the 
flow is fixed to a certain speed in the present case, the 
Theodorsen function *( ) ( / )C k C U= Ω can be rewritten 
as ( )C Ω . Then the aerodynamic matrix can be given by:
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In the following numerical examples, the parameters 
of the system the same parameters as for the case(n) 
on the P538 of the reference are selected. Those are 

210,    0.2,    0.1,    0.25,    and 0.3e x r Rα αµ = = = = = .
This combination of parameters results in the flutter crit-
ical dynamic pressure result of 0.80FQ = with the fre-
quency 0.62FΩ = .

7. finite state model

In order to compare the results obtained by the present 
IDFT procedure, a time domain method using the fi-
nite state model is introduced. The aerodynamic effect 
is embedded in the system of differential equations 
approximately with the augmented state. For unsteady 
aerodynamic terms, the following form of the finite state 
(Baldelli et al. 1995) is used:

3
2

2 1 0
1

( , )  iL
a

ii

A
F s A s A s A

s=

 
= + + + + λ 

∑q q , (22)

where the symbol q denotes the generalized coordinate 
vector. The coefficients in Eq. (22), 2 1 0, , ,  and 

iLA A A A
are determined by using the least square method ac-
companied with the calculation of the DPM (Ueda 
1983) for the frequencies from 0.01 to 2.0. The interval 
of the frequency is selected as 0.01 and for the three ar-
bitrary parameters iλ s as 0.1, 0.5, and 1.5.

8. Numerical examples

8.1. Impulsive response
For a certain dynamic pressure below the critical 
speed, the impulsive response is calculated by apply-
ing the IDFT to the transfer function which is given 
by Eq.  (18). The discrete values of the function are 
computed for / 2 1024N =  frequencies with a fre-
quency increment, 0.01∆Ω = . This corresponds to 
2048 data in the time domain with the sampling rate,

* 0.3068t∆ = . In the practical calculation, this distri-
bution may be appropriately cut for higher frequencies 
above 5Ω = , since the two natural frequencies in this 
case are 0.3Ω = and 1. Figure 2 illustrates the response 
of *( ) hh t h hα αα= +  due to the α impulse.

It should be noted that a unit impulse, which is 
Dirac’s delta function mathematically in the continu-
ous space, corresponds to a finite value of 1/ t∆  solely 
at the starting point of the discrete data series and that 
the constant amplitude in the frequency domain must be 
1/ ( )N t∆  to make each signal level of power the same. 
It can be seen from the figures that the results obtained 
by the IDFT agree well with those obtained by the finite 
state model in the time domain.

(a) Impulsive response by the finite state model
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Fig. 2. Comparison of methods

(b) Impulsive response by the inverse Fourier transform

8.2. Random noise
Random noise can be generated by the present method 
as follows. First, let us assume the transfer function of 
Eq. (18) as a unit matrix. Then, the components of ran-
dom external forces in Eq. (17) are calculated in the fre-
quency domain with:

( ) ( )e miF m m ϕ= Φ , (23)
where the phase mϕ is provided with a uniformly dis-
tributed random number between 0 and 2π . In the case 
of the white Gaussian noise, the spectrum ( )mΦ  should 
be the Gaussian distribution. The IDFT conversion after 

these calculations gives a series of random signal. Sim-
ilar noise can also be generated in the time domain by 
superimposing the cosine function in the entire inter-
val (Shinozuka, Jan 1972). Results by both methods are 
compared in Figure 3 for the series of random signal 
having the unit average amplitude and the standard de-
viation of 0.3.

The results agree well with each other as both pro-
cedures are theoretically equivalent. It should be noted 
that the present method is much more efficient due to 
the FFT algorithm in terms of computation time.

Time history

Wavelet transform 

Power spectrum  

Fig. 3. (a) Time Domain Method, (b) Present IDFT Method

a) b)
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8.3. Simulation of random response of a typical 
section airfoil
For the same dynamic pressure as that in the example in 
8.1, an aeroelastic response due to a random noise has 
been calculated. The results are depicted in Figure 4(a). 
Figure 4(b) shows its power spectrum. The smooth curve 
in the figure corresponds to the power spectrum of the 
impulsive response, i.e. the response without noise. It 
can be seen that the randomness is properly included 
in the response.

Furthermore, the dependency on the dynamic pres-
sure for the cross spectrum between the h and α  in the 
response is illustrated in Figure 4(c). The figure reveals 
the coupling of the two modes going into flutter at the 
dynamic pressure of Q = 0.8.

9. application of the idft simulation method

An example application of the present technique has 
been carried out on the flutter prediction using the 
wavelet transform (Ueda et al. 2009). The definition of 
the wavelet is given by:

1( , ) ( )W t bf b a f t dt
aa

∞
ψ −∞

− = ψ   ∫ , (24)

2

022

1( ) exp exp( )
22

tt i t
 

ψ = − ω σ πσ . (25)

Here Gabor’s mother wavelet was used as described 
in Eq. (25).

In Figure 5, the simulated response signals of the 
α motion are displayed for several dynamic pressures. 
They can be deemed as the output of a “virtual exper-
iment” for the purpose of examining flutter prediction 
methods. These data have been applied to the wavelet 
prediction method. The result is shown in Figure 6.

It can be seen from the figure that the present simu-
lation technique provides a reasonable output of the vir-
tual experiment.

(a) Time history of random response (Q = 0.6) 

(b) Power spectrum

(c) Dependency of cross spectra on Q

Fig. 4. Results of simulation

Fig. 5. Simulated response signals for each dynaic pressure

Fig. 6. Wavelet flutter prediction from the simulated signals 
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10. concluding remarks

The method using the inverse discrete Fourier transform 
to simulate the random response of an aeroelastic sys-
tem has been proposed and demonstrated. It is expec-
ted to be utilized for evaluating various methods used to 
predict flutter and the performance of the active control 
technique to attenuate the response against the atmo-
spheric turbulence.
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