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Abstract. The aim of this paper is the analysis of rod cross-ply bending and stability of rod systems in the presence of cracks. 
The power concept (its theoretical base is Maxwell’s theorem about the reciprocity of displacements) and linear fracture mechanics 
methods for research of mechanical properties of rod systems in the presence of cracks nave been used. The main equation of the rod 
cross-ply bending and the common solution of this equation were obtained. The expression of the relationship between rod deflection 
and the disturbing cross-force was obtained. Some transcendental equation allows defining the inferior boundary of critical force of 
rod with a crack. 
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Introduction 
In earlier papers, elastic beam systems with cracks in 

some rods were considered [6, 1, 4, 2, 5, 8]. Some 
problems of the stress strain state and strength were 
solved. In particular an attempt to analyze of Euler’s 
problem for axially compressing rod with a crack in some 
cross-section [5, 6, 2, 7]. The low limit of Euler’s critical 
force was found. In all this research the concept of an 
elastic multicomponent hinge is used to simulate the 
influence of a crack on rod compliance. On the basis of 
this concept, there is the principle of the reciprocity works 
(Maxwell’s theorem). It allows defining a compliance of 
an equivalent elastic hinge, which influence on integral 
deformation of a rod coincides accurately with influence 
of a crack.  
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where δj is the compliance increment (additional 
generalized displacement) caused by crack influence at an 
action of the generalized force 1jQ = ; KI, KII, KIII are 
stress intensity factors caused by an action of the 
generalized force Qj; E is Jung’s module and ν is 
Poisson’s ratio; S is area of crack surface. 

If a rod system is linear, the superposition principle 
is applicable. Therefore, an influence of several force 
factors (the axial force, torsion, and bending moments) to 
the rod deformations may be considered independently 
from each other in the majority of practical cases of a 
complex loading. In this situation, the compliance of an 
equivalent elastic hinge in a direction of the appropriate 
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generalized force is constant and does not depend on 
other force factors at the given area of a crack. However, 
in some loading cases interference of force factors for the 
stress strain state of rod is possible and significant. Cases 
of a buckling and buckling-bending are such. The 
analogue of the Euler’s problem for the compressed rod 
with a crack was earlier considered. Assuming that 
influence of axial force for a stress state near a crack front 
can be neglected, the estimation of critical buckling force 
was received. It is obvious, that this estimation is the 
lower border of critical buckling force. Loss of stability at 
this value of axial force is possible at rather big lateral 
disturbing. In other words, this critical buckling force we 
characterize stability possible at the “big disturbing”.  

In the present paper the problem of a buckling and 
buckling-bending of the compressed rod with a crack is 
considered in view of influence of axial force on a stress 
state near a crack front. 

1. The cross-ply bending problem for a 
compressed rod with a crack 

The flexible elastic rod of constant cross-section in 
length L and by hinged fastening on the ends is 
considered (Figure 1). The axial force F is compressing 
the rod. In common case there is also bending load P (z). 
If the rod doesn’t have the crack in its some cross-section, 
it has the critical buckling force Fc that can be determined 
under the known Euler’s formula.  

If in cross-section with coordinate L1 there is a plane 
crack with the characteristic size l, the local compliance 
of the rod increases in this zone. A rod with an elastic 
hinge that has equivalent compliance δ can simulate the 
total influence of a crack. It is supposed that influence of 
this hinge on the change of a cross-section turn angle Δθ= 
δM(L1) for the rod (excluding, perhaps, a small zone near 
the damaged cross-section) is as such as for the rod with 
crack. 
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Fig 1. The scheme of elastic rod with a crack 

The cross-ply bending differential equation is  
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2
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Where v (z) is the rod deflection, 2 Fk
EI

=  is a task 

parameter, M (z) is bending moment, I is the principal 
moment of inertia of the rod cross-section. 

The common solution of the equation (2) looks like 
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where *( )v z is the particular solution of equation 

(2); iC  are the constants of integration (i = 1, 2, 3, 4) 
which are determined from boundary conditions 

1(0) 0, ( ) 0,Lν ν= =  (4) 

and the conditions in cross-section with a crack 

1 1 1 1 1( ) ( ), ( ) ( ) ( ),L L L L M Lν ν θ θ δ− + − += = +  (5) 

Here the particular case of bending load is 
considered. It is supposed that the concentrated force P 
acts in the cross-section with a crack. In this case, a 
bending moment is expressed by formula 
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It is easy to check that the particular solution of 
equation (2) in this case has the following view:  
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The expressions of the integration constants after 
some transformations have the following views: 
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where v0=v (L1) is the rod deflection in cross-section 
with crack   

In a result the common solution of an equation (2) 
looks like in this case of bending load  



I. Pavelko, V. Pavelko / AVIATION – 2004, Vol VIII, No 4, 27–31 

- 29 - 

1 1 1
0 12 2

1

1 1 1
0 12 2

1

( ) ( )sin ,           0
sin

( )
( ) ( )sin ( ) ,

sin ( )

P L L L P L L zkz if z L
kL k LEI k LEI

z
P L L L P L z Lk L z if L z L

k L L k LEI k LEI

ν
ν

ν

 − − + − ≤ ≤   = 
− −−   + − ≤ ≤  −  

 (8) 

The expressions of the cross-section turn angles are 
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The rod deflection in cross-section with crack v0 is 
not known. Using (9) and (5), it is possible to express this 
deflection v0  as a function of axial compressing force F, 
normal disturbing force P, and the compliance δ.  
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where 0 0 0, ,L P P Fν ν δ δ δ= = =  and 

0 L EIδ =  is the bending compliance of rod when there 
is not a crack. 

2. The elastic compliance of the equivalent 
hinge 

It is obvious that critical force F* at the fixed 
parameters of a problem is determined by the size of a 
crack and the compliance of an equivalent hinge 
appropriate to it. 

In a considered problem of stress intensity factor 
(SIF) KI=KIb-KIt, where KIb is SIF at a bending, and KIt is 
SIF at compression. Let crack area be a function one 
parameter l. As a rule then   
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where A and W is the area and the axial moment of 
resistance of a rod cross-section, B is its characteristic 
size (for example, height), φ (l/B) and ψ (l/B) are 
correction functions on influence of the sizes and form of 
cross-section.  

It is supposed that there is not the shear strain at the 
crack front. This means that KII=KIII=0. Then the 
compliance δ of an equivalent elastic hinge is 
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where t is cross-section second characteristic size 
(for example, width); M is an appropriate bending 
moment in cross-section with an equivalent hinge that 
depends as from axial force as from bending moment 

0 0M Fv  M= + , (13) 

Here M0 is bending moment in the same cross-
section at absence of axial force. 

Let the rod has rectangular cross-section with the 
width t and the height B. Let too the crack front is straight 
line that is parallel to horizontal axis of symmetry of 
cross-section. Then  
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The top limit of integration in the formula (14) 

*
* ll

B
=  is defined by some size l*. This size is or the 

crack actual size l, or a root l0 of the equation KIb - KIt = 0 
if 0<l0<l. A crack opens completely in the first case and 
partly in the second case. It is obvious that l*=0 if the 
crack is not opened at loading.  

3. Condition of closed state of crack  
In the common case, the crack is in closed state 

when maximal normal stress in cross-section is not 
positive. It means  

0 0 1Fv M A
F W
+

≤ , (15) 

Using (10) and (15) and accepting 0δ = , one can 
define the limit value P0 of force P. If P≤P0, then the 
crack is closed to loading. 
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where 
c

FF
F

= , 
Ii
A

=  is the rod cross-section 

radius of inertia, 
i i
B

= . 

It is seen that 0P  is a function of F and 1L . This 
limit force depends also on the form and the relative sizes 

of a cross-section (multiplier 
2i

B
). 
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Fig 2. The limit value of bending force as a function of axial 
force and coordinate of cross-section with crack 

In Figure 2, the result of calculation of 0P  for a rod 
with rectangular cross-section is shown. Obviously that if 
acted axial force is less than Euler’s critical force, then 
the rod is in a state of equilibrium and the crack is closed. 
It means the crack doesn’t influence to the critical force 
value at small disturbing actions. This influence will be at 
the finite actions that not less than some limited value P0. 
At that deflected form of the rod equilibrium may be 
stable, but at the same time the crack opens. The stable 
state of equilibrium remains at the disturbing force acting, 
if it is smaller than some limited value.   

4. Algorithm of the solution of a task 
The algorithm of the solution of the cross-ply 

bending problem and definition of critical force is 
following: 

1. To check the condition P≤P0 using the formula 
(16) or (15) in common case.  

2. Using the formula (10) to define a deflection v0 of 
a rod at absence of a crack and at the given loading. 

3. Under the formula (13) to define bending moment 
and to check up a condition (15). 

4. If this condition (15) is executed, the received 
solution is final and it is the solution of a classical 
problem of a cross-ply bending. 

5. If a condition (15) is not met, the size l* has be 
determined. 

6. The compliance of the equivalent hinge is 
calculated as the first approximation. If it is equal or 
exceeds limiting value under the formula (14), this means 
that at the given load, rod equilibrium is unstable. In this 
situation, a calculation repeats from point 1 at reduced 
load P. Otherwise the following point of the algorithm is 
executed. 

7. In the second approximation, the deflection is 
determined by formula (10) and compared to the first 
approximation. If the difference is insignificant, 
calculation comes to an end, but otherwise it repeats from 
point 2. 

The calculation process will converge, if the 
configuration is steady. In this case, the solutions give the 
relationship between the deflection and the total stress 

intensity factor KI. If the rod material is brittle, then the 
limiting condition of equilibrium on the front of the crack 
is  

KI = KIc , (16) 

where KIc is the characteristics of the material (the 
critical stress intensity factor). 

5. The inferior boundary of the critical force 
of a compressed rod  

From formula (10) it is obvious that even at an 
infinitesimal bending force, the condition of unlimited 
increase of a deflection v0 comes at some limiting relative 
compliance *δ of an elastic hinge 
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Thus, force F* in the formula (18) represents the 
critical value of axial force for a rod with a crack.  

Earlier it the inferior boundary of the critical force 
was found using the buckling equation [1]. Here we can 
define it using (17) and (14), if v0→∞. As a result the 
inferior boundary of the critical force is 

2
*

2c
EIF kF k

L
π

= = ,  (19) 

where k is the coefficient considering the crack 
influence. 

In Figure 3 the result of this coefficient calculation 
for rod with rectangle cross-section (the calculation 
scheme is on Figure 1) is shown. 
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Fig 3. The coefficient crack influence to the critical force of 
compressed rod with rectangle cross-section 

Conclusions 
Use of the power concept of the equivalent elastic 

hinge for research of mechanical properties of rod 
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systems at presence of cracks is an effective means of the 
analysis of different aspects of airframe strength at 
presence of the damages. In the present paper this concept 
has allowed to receive the equation and the common 
decision of the problem of cross-ply bending and stability 
of the compressed rod containing a crack in some cross-
sections of a rod.  

It is shown even for the calculated scheme of a rod 
with hinges on its ends this problem is rather composite. 
The relation between the rod deflection and the disturbing 
cross-force is obtained.  

It is shown there is some minimal value of the 
disturbing force before reaching which the crack remains 
closed. It means in classical introducing the crack does 
not influence to the value of critical force. Infinitesimal 
perturbations do not call the deployment of a crack and 
the change of the rod compatibility. However, if the 
disturbing force is finite value and more than the 
mentioned minimum, this effect cannot be neglected. 
Opening of the crack calls the decrease of stiffness of a 
rod and downgrade its resistance to the lateral bending. 
Because of gradual increase of the square of the 
uncovered part of a crack surface at increase of a 
disturbing force the compliance of the equivalent elastic 
hinge increase. Other factor promoting this increase is the 
gradual increase of the bending effect. The composite 
relation between the disturbing force, the deflection and 
the equivalent lowering of the local rigidity of the rod in a 
zone of crack demands implementation of special 
composite algorithm of successive approximations for its 
analysis. However for deriving limiting inferior boundary 

of critical force some rather simple transcendental 
equation is obtained. In particular, using this equation in 
the assumption of final perturbations, it is possible to 
protect the compressed rods with cracks from the failure 
and loss of stability. 
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