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Abstract. As aircraft structures begin to age (that is, as flight hours accumulate), existing subcritical cracks or new cracks can 
grow in some high-stress points of the structural components. The usual approach is to inspect the structures periodically. Thus, a 
catastrophic accident during flight can be avoided. The problem then arises of choosing a sequence of inspection times which avoids 
both too many inspections, which may be costly, and too few inspections, that may also be costly due to a crack in an aircraft 
structure component not being detected for a long period. In this paper, a simple approach is proposed, where after each inspection 
(if a crack is not detected), we choose the next inspection point so that a crack may occur within an interval between successive 
inspection times with a given probability. It allows one to find the inspection policies for detection of initial cracks in critical 
structural components of aircraft under the assumption that the parameter values of the underlying distributions are unknown; this 
constraint is often met in practice. Furthermore, obtaining inspection schedules under crack propagation is considered. To illustrate 
the proposed technique based on ancillary statistics, numerical examples are given.  

Keywords: aircraft structures, fatigue cracks, inspection policies, detection. 

Introduction 

Fatigue life of structural components of aircraft is 
affected by the randomness of loads, structural geometry, 

material properties, and other factors, and this 
recommends the adoption of probabilistic approaches. 
The fatigue life of components is predominantly 
controlled by the growth of pre-existing defects that lead 
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to small cracks. There are two methods for the evaluation 
of fatigue life – the (S-N) approach, which is used at the 
design stage, and the fracture mechanics approach. The 
(S–N) approach predicts fatigue damage as a function of 
the number of cycles at various stress levels. It is a 
relatively simple method to apply, but it depends on the 
geometry under consideration. Fracture mechanics 
provides an approach of determining the fatigue life of 
cracked components. Once a crack is detected, the 
integrity of the structure can be evaluated and crack 
growth can be predicted by fracture mechanics. 

The total fatigue life of a structural component is the 
sum of the time to crack initiation and the time of crack 
propagation until critical crack size. The period of crack 
initiation is short relative to the crack propagation period. 
However, for a very small initial defect and low load 
levels, there may be a significant crack initiation period. 
In order to avoid a catastrophic accident during flight, the 
usual approach is to inspect the structures at certain 
intervals. This paper deals with the case when the fatigue 
crack can be detected only by actual inspection. 
Scheduling of inspection times appears in a variety of 
reliability applications, quality control, medicine, nuclear 
energy, defence, etc. Examples include maintaining 
continuous production processes (e.g., replacing worn-out 
tools in automated manufacturing systems), monitoring 
quality, stand-by systems, alarm systems, planning 
checkups for ageing aircraft, and so on. In many cases, 
there are estimable costs associated with the elapsed time 
between system failure and its detection. For example, if 
the system is a production system, the costs are associated 
with the amount of defective products (e.g., products 
manufactured outside tolerance limits), and the state of 
the system, good or failed, can only be determined by an 
inspection (e.g., by checking the quality of machine 
output). Thus, in such cases, it is important to inspect the 
unit from time to time in order to determine its condition. 
However, since these inspections are often costly, 
inspection times must be chosen so that undetected failure 
(or late detection) costs and inspection costs are balanced 
optimally. A commonly used inspection policy with 
constant intervals between inspections is not optimal 
relative to a certain cost model; optimum inspection 
policies have decreasing inspection intervals for aging 
systems. However, it may be quite difficult to find such 
an optimum policy. Different authors have produced 
many interesting and significant results for variations of 
inspection models The different models developed 
depend on the assumptions made regarding the time 
horizon, the amount of information available, the nature 
of cost functions, the objective of the models, the system's 
constraints, etc. The different models, for the most part, 
however, are very similar to a basic model presented by 
Barlow, Barlow and Proschan [1, 2]. This basic model is 
a pure inspection model, i.e. no preventive maintenance is 
assumed, and the system is not replaced on failure.  

In this paper, we investigate this inspection-
scheduling problem and derive optimal schedules over the 
time span extended only until detection of failure under 
the main assumption that there is no knowledge 

concerning the parameters of the distribution function 
F(x) of the lifetime of the system. This constraint is often 
met in practice. A simple approach is proposed for 
situations in which it is difficult to quantify the costs 
associated with inspections and undetected failure or 
when these costs vary in time. This allows one to find the 
inspection policies for detection of initial cracks in 
critical structural components of aircraft under the 
assumptions that the parameter values of the underlying 
distributions are unknown. Furthermore, obtaining 
inspection schedules under crack propagation is 
considered. 

1. Models for detection of system failures  
Interest in optimal inspection schedules for the 

maintenance of stochastically failing or deteriorating 
systems originated with the work of many authors. A 
fundamental initial contribution is that of Barlow, Barlow 
and Proschan [1, 2]. They developed a simple two-state 
inspection model capturing very effectively the 
fundamental trade-off involved in the choice of an 
optimum inspection schedule; frequent checks increase 
the cost of inspections, but decrease the costs of late 
detection of failure. 

Barlow formulated a pure inspection model for a 
system [1]. They considered the simplest possible case of 
an inspection policy, which is characterized by the 
following assumptions:  
1) The system's conditions are classified into states 0 

and 1. State 0 denotes a functioning state, and state 1 
denotes a failed state. 

2) The system's condition is known by inspection only. In 
particular, system failure is known only through 
inspection. 

3) Inspections are perfect in the sense that failure will be 
identified at inspection. 

4) Inspection does not degrade or rejuvenate the 
system. 

5) The system cannot fail or age during inspection. 
6) An inspection takes negligible time. 
7) Each inspection entails a fixed cost ci, and the fixed 

cost rate of leaving an undetected failure is kf (this 
may be the scrap cost, reworking cost, or lost 
production cost). 

8)  Inspection ceases upon detection of failure; 
specifically, no replacement or repair takes place. 

9) The system starts at time 0 in the functioning state; 
the time to failure is a random variable X, with 
known distribution Fθ(x), survivor ),x(F1)x(F θθ −=  
density fθ(x), and parameter θ (in general, vector). 
In this context, a policy consists of a schedule of 

inspection times. Schedules are denoted by u={uj}j=0, 1, 2, 

… ≡ (u0, u1, u2, …), where uj is the time of the jth 
inspection, uj>uj-1, and u0≡0. For each schedule u, only a 
subset of the inspections will actually be carried out. 
Then, the expected total cost is obtained as follows: 

{ } ).x(dF)]xu(c)1j(c[)(CE 1j

j

u

u 1j21
1j

θ+

∞

=
∫∑ + −++=u  (1) 
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Barlow showed that if the hazard function 
)x(F/)x(f)x(h θθθ =  is increasing, then the optimal 

inspection intervals are non-increasing. The optimum 
inspection schedule u∗ is the one that minimizes E{C(u)}. 
A necessary condition for the existence of a minimum-
cost inspection schedule is that ∂E{C(u)}/∂uj=0 for all j. 
Therefore, differentiating Eq. (1) with respect to uj and 
setting the associated derivative to zero, we obtain the 
recurrence relation among the uj's given by 

 
2

1

j

1jj
j1j c

c
)u(f

)u(F)u(F
uu −

−
=−

θ

−θθ
+    for j=1, 2, … . (2) 

Barlow et al. proposed an algorithm to seek the 
optimal inspection schedule, which minimises Eq. (1) by 
using the recurrence relation (2) [1]. However, using this 
algorithm makes it difficult to obtain the optimum 
inspection schedule numerically because the 
computations are repeated until the schedule is 
determined to the required degree by changing the first 
inspection time t1, and the assumption on hθ(x) is 
restrictive. A second, more fundamental problem is the 
difficulty, in many situations, of assigning quantitative 
values to any costs due to undetected failure or to 
inspections. Thirdly, even in situations where quantitative 
costs can be assigned, these costs will often not be fixed. 
The cost of an inspection may vary with time and with 
various other factors, such as the availability of 
technicians, and the cost due to undetected failures may 
also depend on a variety of factors, which may be 
changing with time. To overcome these problems, some 
improved algorithms have been proposed.  

Munford and Shahani suggested an algorithm based 
on a single parameter to determine a near optimum 
inspection schedule [7]. They also showed that their 
algorithm has the property of generating decreasing, 
increasing, or constant intervals between successive 
inspection times if the system has an increasing, a 
decreasing, or a constant hazard function hθ(x) 
respectively. Additionally, Munford and Shahani applied 
the algorithm for the Weibull lifetime distribution case, 
while Tadikamalla did the same for the gamma case [8, 
15]. Both cases show that the results obtained from the 
algorithm compare well with those proposed by Barlow et 
al., but the latter is computationally more difficult.  

Nakagawa and Yasui suggested an approximate 
calculation of the optimum inspection schedule [9]. They 
computed successive inspection times backwards, 
assuming that an appropriate inspection time is given 
after a large number of inspections. They gave a 
numerical example to show that the approximation can be 
fairly good for a Weibull distribution, claimed that the 
algorithm could be applied to other distribution cases, and 
concluded that the computation is much easier than those 
of Barlow et al. and Munford et al.  

Keller [6] utilized optimal control theory for an 
approximate method of selecting the inspection schedule 
that, for a system subject to failure, will minimize cost 
until the detection of the first failure. Each inspection has 
cost c1, and cost c2 is incurred when detection of the 

failure by an inspection occurs at time x after failure. This 
problem is placed in the control theory framework by 
assuming that the tests are so frequent that they can be 
described by a smooth density j(x) which denotes the 
number of checks per unit time. In other words, at time x, 
the tests are scheduled 1/j(x) units of time apart. Keller 
then derived an integral equation for j(x) and used this 
solution to minimize the expected cost up to detection of 
the first failure. 

Kaio and Osaki suggested an algorithm by 
developing that of Keller, i.e. based on a continuous 
inspection density to determine a near optimum 
inspection schedule [5, 6]. The continuous inspection 
density j(x) denotes the approximate number of 
inspections per unit time at time x, under the assumption 
that inspections are frequently made. Then the expected 
total cost up to detection of system failure is 
approximately 

{ } ∫∫
∞

θ

∞

θ +=
0

2
0

1 ).x(dF
)x(j2

1cdx)x(F)x(jc]),x(j[CE u   (3) 

 
The density j(x) which minimises  { }]),x(j[CE u in Eq. 

(3) is 

.
c2

)x(hc)x(j
1

2 θ=  (4) 

The inspection times uj (j=1, 2, …) satisfy 

  ∫=
ju

0

dx)x(jj    for j=1, 2, … . (5) 

Substituting for j(x) in Eq. (4) into Eq. (5) yields the 
near optimum inspection schedule. 

Kaio and Osaki compared Barlow et al.'s algorithm 
(to seek the optimum inspection schedule) with Munford 
and Shahani's, Nakagawa and Yasui's, and Kaio and 
Osaki's algorithms (to seek near optimal inspection 
schedules) [4]. They applied these algorithms to the 
Weibull and the gamma distributions respectively. They 
concluded that there are no significant differences 
between the optimal schedule and the three near optimal 
inspection schedules in both cases, but recommended 
Kaio and Osaki's algorithm for the following three 
reasons: (1) it is the simplest algorithm to compute, (2) 
there is no restriction on a system lifetime distribution, 
and (3) it can incorporate more complicated inspection 
policies; see Kaio and Osaki [3].  

In this paper, we derive optimum inspection policies 
using an approach similar to that of Munford and Shahani 
under the assumption that the parameter values of the 
underlying distributions are unknown; this is often found 
to be realistic in practice [7].  

2. Inspection policy for detection of initial 
cracks  

Suppose an inspection is carried out at time t, and 
this shows that an initial crack (which may be detected) 
has not yet occurred. We now have to schedule the next 
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inspection. Let X be the random time to crack initiation. 
Then we schedule the next inspection at time u>t, where u 
satisfies 

 { } .1tX;uXPr α−=>>  (6) 

Equation (6) says that the next inspection is 
scheduled so that, with probability 1-α, the aircraft 
structure component is still working and free of initial 
crack prior to inspection. 

2.1. Complete Information about Fθ(x) 
Let Fθ(x) be the cumulative distribution function of 

the time to crack initiation, where θ is a known parameter 
(in general, vector). Then the inspection times (u1, u2 …) 
can be calculated recursively as follows. It follows from 
(6) that 

,1
)u(F
)u(F

j

1j α−=
θ

+θ   j≥0, (7) 

where ).u(F1)u(F θθ −=  It can be shown that (7) is 
equivalent to the equation 

)u(F1
)]u(F1[)u(F1

)u(F
)u(F)u(F

)u(F
)u(F

1
j
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j
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j
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+θθ

θ

+θθ

θ

+θ

−

−−−
=

−
=−

  ,
)u(F1

)u(F)u(F

j

j1j α=
−

−
=

θ

θ+θ  j≥0, (8) 

that is, in other words, the probability that the micro-
crack occurs in the time interval (uj,uj+1) without crack at 
time uj is always assumed α. 

It follows from (7) that 

),u(F)1()u(F j1j θ+θ α−=    j≥0. (9) 

With u0=0,  u1, u2, … can be calculated recursively 
from (9). So that: 

, ... 3, 2, 1,j   ,)1()u(F j
j =α−=θ  (10) 

the time uj (j=1, 2, 3, ... ) is given by 

. ... 3, 2, 1,j   ],)1[(Fu j1
j =α−= −

θ  (11) 

Let N be the random number of inspections until the 
initial crack occurs. Then 

)u(F}uXPr{}jNPr{ jj θ=≤=≤   (12) 

and  

}]jNPr{}1jN{[Pr j}jNPr{j}N{E
1j0j

>−−>=== ∑∑
∞

=

∞

=
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For example, if α=0.05 then, from (13), on average 
20 inspections will be necessary. 

2.2. Incomplete Information about Fθ(x) 
Let us assume that the parameter θ is unknown, but 

there is a sample of observations Xn=(X1, X2, … Xn) from 
Fθ(x). Let W=(X, Xn) be an ancillary statistic the 
distribution of which does not depend on θ [10-12]. Then 
we schedule the next inspection at time u>t on the basis of 
relation 

,1
}wWPr{
}wWPr{}wW;wWPr{

t

u
tu α−=

>
>

=>>  (14) 

where wt=w(t, xn), wu=w(u,xn). 
 
Example 1. Let X(1) < X(2) < ... < X(r) be the first r 

ordered observations of  time to crack initiation for 
identical structural components of aircraft from a sample 
of size n from a two-parameter Weibull distribution with 
probability density function 








≥σ−








σσ
δ

=δσ
δ

−δ

otherwise,                                        0,

0, x          ],)/x(exp[x
),;x(f

1

 (15) 

(as the results of fatigue tests conducted on the 
components), where θ=(σ,δ), the parameters σ and δ 
(σ>0, δ>0) are unknown, i.e. we deal with Type II 
censoring. Let us assume that in a fleet of k aircraft there 
is km of the same individual structural components, 
operating independently. Suppose an inspection is carried 
out at time uj, and this shows that an initial crack (which 
may be detected) has not yet occurred. We now have to 
schedule the next inspection. Let Y(1) be the minimum 
time to crack initiation in the above components. In other 
words, let Y(1) be the smallest observation from an 
independent second sample of km observations also from 
the distribution (15). Then the inspection times can be 
calculated recursively as 

 ),/wexp(u 1j1j δσ= ++

))  j≥1, (16) 

where u1 is a time of the first inspection, wj+1 is 
determined from 
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can be found from solution of 
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For instance, consider the data of fatigue tests on a 
particular type of structural components of aircraft IL-86. 
The data are for a complete sample of size r = n = 5, with 
observations results being expressed here in number of 
104 flight-hours. 

Table 1. The data of fatigue tests on a particular type of 
structural components of IL-86aircraft  

Observations Time to fatigue crack initiation 
(in number of 104 flight-hours) 

)1(x  5  

)2(x  25.6  

)3(x  5.7  

)4(x  9.7  

)5(x  1.8  

On the basis of these data, the desire is to derive an 
optimum inspection policy for a group of m = 5 identical 
components (for a fleet of k=1 IL-86 aircraft) that are to 
be put into service. We assume that all m components are 
inspected at the same times. 

Goodness-of-fit testing. Many methods, such as 
Chi-square or the Kolmogorov-Smirnov, exist for 
determining the goodness of fit of a probability 
distribution to a set of data. The Anderson-Darling test 
was chosen for this study as it is more sensitive to the tail 
behavior and has been recommended for statistical 
analysis of the data of fatigue damage of materials. The 
sensitivity to the tail behavior is particularly useful in 
structural engineering applications, where the tail is 
important in computing the structural reliability. The 
Anderson–Darling statistic is obtained as: 

),x(dF
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in which )x(F~n  is a step function that jumps at the 
order statistics of x, and F0(x) is the hypothesized 
continuous cumulative distribution function. The 
Anderson–Darling statistic is a measure of the square of 
the error between the data and the hypothesized 
distribution weighted so that the tails of the data are more 
important than the central portion. For computation 
purposes, the Anderson–Darling statistic can be obtained 
as: 
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in which x(i) is the ith order statistic of the data set. 
For the Weibull distribution with the maximum likelihood 
estimates of unknown parameters, an observed 
significance level (OSL) is obtained as follows [14]: 

,
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•• ++−+

=  (24) 

where  

.A
n
2.01AD 2

n







+=•  (25) 

The OSL is the probability of obtaining a value of 
the test statistic at least as large as that obtained from the 
data if the hypothesis that the data are actually from the 
distribution being tested is true. Typically, a 5% 
significance level is used, so that the null hypothesis is 
only rejected if the OSL is less than 0.05. 

It follows from (20) and (21) that the maximum 
likelihood estimates of unknown parameters σ and δ are 

42603.7=σ
) and ,9081.7=δ

)
 respectively. Then, for this 

example,  
OSL=0.30175 >0.05. (26) 

Thus, there is not evidence to rule out the Weibull 
model. 

Thus, using (16) with u1=4.558595 (×104 flight-
hours) (the time of the first inspection), we have obtained 
the following inspection time sequence (Table 2). 
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Table 2. The inspection time sequence 

jw  Time 
ju (×104 flight-

hours) 

Interval 
(flight-hours) 

1ju + − ju  

1w = −3.85897 1u = 4.558595 − 

2w = −3.44800 2u = 4.801761 2431.66 

3w = −3.15474 3u = 4.983170 1814.09 

4w = −2.92590 4u = 5.129477 1463.07 

5w = −2.73805 5u = 5.252782 1233.05 

6w = −2.57851 6u = 5.359829 1070.47 
M  M  M  

 
Some authors prefer to describe the time to crack 

initiation by the lognormal distribution, although there is 
not much experimental evidence to choose one or the 
other. However, since the initiation time is quite small 
compared to the propagation time, the different choice 
may not have a large impact. 

3. Inspection policy under crack propagation 
Two main approaches are available for the 

evaluation of fatigue. The one perhaps more oriented to 
design formulations is the (S–N) approach that predicts 
the fatigue damage as a function of the number of cycles 
at various stress levels. It is a relatively simple method to 
apply but it depends on the geometry under consideration. 
The other approach is fracture mechanics. This method 
can predict crack size as a function of time and the Paris 
and Erdogan equation may be used: 

,)]x(a[Q
dx

)x(da B=  (27) 

where a(x) is the crack size of a fastener hole at x 
flight-hours, and Q and B are material parameters [13]. 
This model has been used successfully to describe the 
observed propagation of a dominant crack in many 
experiments and the values Q & B have been established 
for a wide range of materials. Integrating Eq. (27) from 
x=0 to x=τ, one obtains the relation between the crack 
size, a(τ), at any service time τ and the initial crack size, 
a(0), as follows 

[ ] .
Q)1B()]0(a[1

)0(a)(a )1B/(1 1B −− τ−−
=τ  (28) 

For the special case in which B=1, it can easily be 
shown that 

).Qexp()0(a)(a τ=τ  (29) 

Available in-service inspection data for various 
types of aircraft indicate that the Weibull or lognormal 
distribution provides a reasonable fit for B and Q in both 
cases. In this paper, for the sake of simplicity but without 
loss of generality, only the special case in which B=1 is 
considered. This suggests, by taking logarithm, the 
following model 

ln[a(τ)] = ln[a(0)] + Qτ, (30) 

where Q follows a Weibull distribution, the 
cumulative distribution function of which is given by 





 ≥σ−−

=
δ

θ otherwise,                        0,
0,q      ],)/q(exp[1)q(F  (31) 

with θ=(σ,δ). Let h• be the operational limit crack 
size for the degradation path, which is permitted for the 
initial crack to grow and reach h• at time x=T•. We can 
then write  

ln(h•)=ln[a(0)]+QT•,  (32) 

where  

T• = [ln(h•)−ln(a(0))]/Q (33) 

represents a time permitted for the initial crack to 
grow and reach the operational limit crack size h•. The 
distribution function of T•  is given by 

}tTPr{)t(G ••• ≤=  













≥=












≤= •

•
•

•

t
))0(a/hln(QPrt

Q
))0(a/hln(Pr  

0.   t,
t

))0(a/hln(exp
t

))0(a/hln(F1 >























σ
−=








−= •

δ

•

•

•

•

θ  

 (34) 

Thus, Z≡Q=[ln(h•/a(0))]/T• follows a Weibull 
distribution with the cumulative distribution function 





 ≥σ−−

=
δ

θ otherwise,                        0,
0,z       ],)/z(exp[1)z(F  (35) 

Let Zn=(Z1, Z2, …, Zn) be a sample of observations 
of size n from (35) (as the results of fatigue tests 
conducted on the identical components), where the 
parameters σ and δ (σ>0, δ>0) are unknown. When there 
is only one structural component with crack that is still 
operational at the inspection time uj, then the next 
inspection time is uj+1, which is the solution of  

 ,
)/wexp(

))0(a/hln(u
1j

1j δσ
=

+

•

+ ))    j≥1,  (36) 

where  wj+1 is determined from 

}wW,wW;wWPr{ nn
j1j

••
+ =>>  









>







σ
δ









>







σ
δ

=
>

>
=

•

•
+

•

•
+

n
j

n
1j

n
j

n
1j

w;wZlnPr

w;wZlnPr

}w;wWPr{
}w;wWPr{

)
)

)
)

 

( ) ( )

( ) ( )
,1

dseees

dseees

nn

1i

/zlnssw

0

/zlns
2n

nn

1i

/zlnssw

0

/zlns
2n

ij

n

1i
i

i1j

n

1i
i

α−=









+









+

=
−

=

σδ
∞ ∑ σδ

−

−

=

σδ
∞ ∑ σδ

−

∑∫

∑∫

=
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))))

))))

 (37) 
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







>







σ
δ=> •• nn w;wZlnPr}w;wWPr{ )
)

 

 

( ) ( )

( ) ( )
,

dsees

dseees

0

nr

1i

/zlns
/zlns

2n

nn

1i

/zlnssw

0

/zlns
2n

i

r

1i
i

i

n

1i
i

∫ ∑

∑∫
∞ −

=

σδ
∑ σδ

−

−

=

σδ
∞ ∑ σδ

−


















+

=

=

=

))))

))))

  (38) 

•Wn=(•W1, …, •Wn), ,ZlnW i
i 








σ
δ=• )
)

i=1(1)n,  (39) 

σ
) and δ

)
are the MLE’s of σ and δ respectively and 

can be found from the solution of 

,z
n
1

/1n

1i
i

δ

=

δ








=σ ∑

)
))  (40) 

.zln
n
1zzlnz

1
n

1i
i

1n

1i
i

n

1i
ii

−

=

−

=

δ

=

δ














−
















=δ ∑∑∑

)))
 (41) 

Conclusions  
In this paper, we present innovative statistical 

models for decision-making in aircraft service. The 
results of computer simulations confirm the validity of the 
theoretical predictions of performance of the suggested 
models. The authors hope that this work will stimulate 
further investigation using the approach on specific 
applications to see whether results obtained with it are 
feasible for realistic applications. 
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