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Abstract. One of the most important problems in fatigue analysis and design of aircraft structures is the prediction of fatigue 
crack growth in service. Available in-service inspection data for various types of aircraft indicate that the fatigue crack damage 
accumulation in service involves considerable statistical variability. In this paper, we consider the problem of estimating the 
minimum time to crack initiation (or warranty period) for a number of aircraft structural components, before which no cracks (that 
may be detected) in materials occur, based on the results of previous warranty period tests on the structural components in question. 
This problem is a special case of a general class of problems concerned with the analysis of fatigue crack damage accumulation in 
aircraft service. The technique proposed here for solving this problem emphasizes pivotal quantities relevant for obtaining ancillary 
statistics. Attention is restricted to invariant families of distributions. Numerical examples are given. 
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Introduction  
Aircraft structures have many components. 

Maintaining high reliability for these structures generally 
requires that the individual structural components have 

extremely high reliability, even after long periods of time. 
Prediction of fatigue crack growth in such components 
has not been an easy task. This is mainly because the 
manner in which the various parameters, such as loads, 
properties of materials and geometries of cracks, affect 



N.A. Nechval, K.N. Nechval, E.K. Vasermanis / AVIATION – 2004, Vol VIII, No 3, 3–9 

- 4 - 

the propagation of cracks is not clearly understood [2]. 
This, consequently, has led to a proliferation of 
hypotheses and laws for describing the propagation 
fatigue cracks [2, 9, 1]. Most of these models are based 
on concepts of the continuum theory with the assumption 
that cracks propagate in an ideal continuum media. Actual 
metallic materials, however, are composed of random 
microstructures described by various micro parameters, 
which can seriously affect the growth of a crack in these 
materials. As a result, the deterministic theories can only 
be accepted as an approximation of the actual random 
fatigue crack propagation process, which, broadly 
speaking, has five phases:  
1) Dormant. There are no cracks in the materials.  
2)  Nucleation. The crack is initially formed. 
3) Micro-crack growth. The crack grows rather 

haphazardly up to about 1 mm in length.  
4) Macro-crack growth. The crack continues to 

propagate before its growth rate finally increases 
dramatically.  

5)  Failure. The component fails; this occurs very 
quickly relative to the other phases and can be 
ignored as a factor in determining reliability. 
In the Fracture Mechanics approach to fatigue 

problems it is assumed that failure is caused by the 
unstable growth of a leading crack, which initiates, 
propagates, and reaches a critical size due to the 
fluctuations of the stress field around the crack tip. The 
transition from the initiation to the propagation stages 
corresponds to the distinction made between micro- and 
macro-cracks. Once a crack has attained a certain 
threshold size, failure occurs very rapidly. Thus, 
statistical fatigue life of structural components of aircraft 
may be divided, in general, into three stages, namely, 
crack nucleation, small crack growth, and large crack 
growth. Crack nucleation and small crack growth show a 
wide variation and hence a big spread on a cycles versus 
crack length graph. Relatively, large crack growth shows 
a lesser variation. Therefore, different models are fitted to 
the different stages of the fatigue evolution process, thus 
treating different stages as different phenomena. With 
these independent models, it is impossible to predict one 
phenomenon based on the information available about the 
other phenomenon. Experimentally, it is easier to carry 
out crack length measurements of large cracks compared 
to nucleating cracks and small cracks. Thus, it is easier to 
collect statistical data for large crack growth compared to 
the painstaking effort it would take to collect statistical 
data for crack nucleation and small crack growth.  

We consider in this paper the problem of estimating 
the minimum time to crack initiation (warranty period or 
time to a first inspection) for a number of aircraft 
structural components, before which no cracks (that may 
be detected) in materials occur, based on the results of 
previous warranty period tests on the structural 
components in question. If in a fleet of k aircraft there are 
km of the same individual structural components, 
operating independently, the length of time until the first 
crack initially forms in any of these components is of 
basic interest and provides a measure of assurance 

concerning the operation of the components in question. 
This leads to the consideration of the following problem. 
Suppose we have observations X1, ... Xn as the result of 
tests conducted on the components; suppose also that 
there are km components of the same kind to be put into 
future use, with times to crack initiation Y1, .., Ykm. Then 
we want to be able to estimate, on the basis of X1, ... Xn, 
the shortest time to crack initiation Y(1,km) among the times 
to crack initiation Y1, ... Ykm.  In other words, it is 
desirable to construct lower simultaneous prediction limit, 
Lγ, that is exceeded with probability γ by observations or 
functions of observations of all k future samples, each 
consisting of m units.   In this paper, the problem of 
estimating Y(1,km), the smallest of all k future samples of m 
observations from the underlying distribution, based on 
an observed sample of n observations from the same 
distribution, is considered. A solution is proposed for 
constructing a lower simultaneous prediction limit, Lγ, for 
Y(1,km). Various properties of these solutions are derived, 
and illustrations are given for some important special 
cases. 

The results have a direct application in reliability 
theory, where the time until the first failure in a group of 
m items in service provides a measure of assurance 
regarding the operation of the items.  

In this paper, attention is restricted to invariant 
families of distributions. The technique used here 
emphasizes pivotal quantities relevant for obtaining 
ancillary statistics. It is a special case of the method of 
invariant embedding of sample statistics into a 
performance index applicable whenever the statistical 
problem is invariant under a group of transformations that 
acts transitively on the parameter space (i.e. in problems 
where there is a unique best invariant procedure) [4-7]. 
The analysis of the problem considered here is easily seen 
to be invariant under changes of location and scale. 

1. Equation for constructing lower 
simultaneous one-sided prediction limits  

An equation, which shows how to construct lower 
simultaneous one-sided prediction limits for the order 
statistics in all of future samples when a one-sided 
prediction limit for a single future sample is available, is 
given by the following theorem. 

Theorem 1. Let (X1, ..., Xn) be a random sample 
from the cdf F(.), and let )Y, ... ,(Y

jj m1  be the jth random 
sample of mj “future” observations from the same cdf, 
j∈{1, ... ,k}. Assume that (k+1) samples are independent. 
Let H=H(X1, ... ,Xn) be any statistic based on the 
preliminary sample and let Y (rj , )mj

 denote the rjth order 
statistic in the jth sample of size mj. Then 
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The joint probability can be written as 
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This ends the proof.     ˛ 
Corollary 1. If rj= 1, ∀j=1(1) k, then 
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2. Invariant embedding technique for 
obtaining prediction limits  

This paper is concerned with the implications of 
group theoretic structure for invariant performance 
indexes. We present an invariant embedding technique 
based on the constructive use of the invariance principle 
of mathematical statistics. This technique allows one to 
solve many problems of the theory of statistical inferences 
in a simple way. The aim of the present paper is to show 
how the invariance principle may be employed in the 
particular case of finding prediction limits. The technique 
used here is a special case of more general considerations 
applicable whenever the statistical problem is invariant 
under a group of transformations, which acts transitively 
on the parameter space. 

2.1. Preliminaries 
Our underlying structure consists of a class of 

probability models (X, A, P), a one-one mapping ψ taking 
P onto an index set Θ, a measurable space of actions (U, 
B), and a real-valued function r defined on Θ × U. We 
assume that a group G of one-one A - measurable 
transformations acts on X and that it leaves the class of 
models (X, A, P) invariant. We further assume that 
homomorphic images G  and G~  of G act on Θ and U 
respectively. ( G may be induced on Θ through ψ; G~  may 
be induced on U through r). We shall say that r is 
invariant if for every (θ, u) ∈ Θ × U 

 ),u,(r)ug~,g(r θ=θ    g∈G. (7) 

Given the structure described above there are 
aesthetic and sometimes admissibility grounds for 
restricting attention to decision rules ϕ: X → U, which 
are (G, G~ ) equivariant in the sense that 

G.g   ,   x(x),g~(gx) ∈∈ϕ=ϕ X   (8) 

If G  is trivial and (7), (8) hold, we say ϕ is G-
invariant, or simply invariant [5]. 

2.2. Invariant Functions 
We begin by noting that r is invariant in the sense of 

(9) if and only if r is a G•-invariant function, where G• is 
defined on Θ × U as follows: to each g∈G, with 
homomorphic images g~ ,g  in G

~
 ,G  respectively, let g•(θ, 

u)= u)g~ ,g( θ , (θ, u)∈(Θ × U ). It is assumed that G~  is a 
homomorphic image of G .  

Definition 1 (Transitivity). A transformation group 
G  acting on a set Θ is called (uniquely) transitive if for 
every θ, ϑ∈Θ there exists (unique) Gg ∈  such that 
g θ=ϑ. 
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When G  is transitive on Θ we may index G  by Θ: 
fix an arbitrary point θ∈Θ and define 

1
gθ  to be the 

unique Gg ∈  satisfying g θ=θ1. The identity of G  
clearly corresponds to θ. An immediate consequence is 
Lemma 1. 

Lemma 1 (Transformation). Let G  be transitive on 
Θ. Fix θ∈Θ and define 

1
gθ as above. Then 

1qg θ = 
1

gq θ for 

θ∈Θ, Gq ∈ . 
Proof. The identity θ=θ=θ θθ 11

gqqg 1q  shows that 

1qg θ  and 
1

gq θ both take θ into 1qθ , and the lemma 
follows by unique transitivity.   

Theorem 2 (Maximal Invariant). Let G  be 
transitive on Θ. Fix a reference point θ0∈Θ and index G  
by Θ. A maximal invariant M with respect to G• acting on 
Θ × U is defined by 
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by Lemma 1 and the structure preserving properties 
of homomorphisms. Thus M is G•-invariant. To see that 
M is maximal, let M (θ1,u1)=M(θ2,u2). Then 2

1
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θθ ,  (θ1,u1)=g•(θ2,u2) for some g•∈G•, and the 

proof is complete.    
Corollary 2.1 (Invariant Embedding). An invariant 

function, r(θ,u), can be transformed as follows: 

),,v(r)ug~,g(r)u,(r 1
ˆ

1
ˆ η=θ=θ −

θ
−
θ
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where v=v(θ, θ
)

) is a function (a pivotal quantity) 
such that the distribution of v does not depend on θ; 
η=η(u, θ

)
) is an ancillary factor; θ

)
 is the maximum 

likelihood estimator of θ  (or the sufficient statistic for θ). 
Corollary 2.2 (Best Invariant Decision Rule). If 

r(θ,u) is an invariant loss function, the best invariant 
decision rule is given by 

),,(u)x( 1 θηη==ϕ ∗−∗∗ )
 (12) 

where 

{ }.),v(rE inf arg v η=η
η

∗ &&   (13) 

Corollary 2.3 (Risk). A risk function (performance 
index) 

{ } { }),v(rE))x(,(rE))x(,(R vx oo&&
o

η=ϕθ=ϕθ  (14) 

is constant on orbits when an invariant decision rule 
ϕ(x) is used, where )x,(vv θ= oo  is a function whose 

distribution does not depend on θ; )x,u(oo η=η  is an 
ancillary factor. 

For instance, consider the problem of estimating the 
location-scale parameter of a distribution belonging to a 
family generated by a continuous cdf F: P ={Pθ: F ((x-
µ)/σ), x∈R, θ∈Θ}, Θ={(µ,σ): µ,σ∈R, σ>0}=U. The 
group G of location and scale changes leaves the class of 
models invariant. Since G  induced on Θ by Pθ → θ is 
uniquely transitive, we may apply Theorem 2 and obtain 
invariant loss functions of the form 

]/)x( ,/))x([(r))x(,(r 21 σϕσµ−ϕ=ϕθ , (15) 

if θ=(µ,σ) and ϕ(x)=(ϕ1(x), ϕ2(x)). Let ),( 21 θθ=θ
)))

, 
u=(u1,u2), then 

),v ,vv(r),v(r)u,(r 22211 ηη+=η=θ &&&&  (16) 

where v=(v1,v2), v1= σµ−θ /)( 1
)

, v2= σθ /2
)

; 
η=(η1,η2), η1= 211 /)u( θθ−

))
, η2= 22 /u θ

)
. 

The invariant embedding technique, which is used 
for constructing lower simultaneous tolerance limits, is 
based on the result of Corollary 2.1. 

3. Examples  
Example 1. For instance, suppose that X1, ... Xn and 

Y1j, ... Ymj  (j=1, ... k) denote n+km independent and 
identically distributed random variables from a left-
truncated Weibull distribution with pdf 

( )[ ] 0, ,x   ,x expx = ),baf(x; 1 >δσµ≥σµ−−
σ
δδ δδ−δ  ,,  (17) 

 
which is characterized by being three-parameter 

(µ,σ,δ) where δ is termed the shape parameter, σ is the 
scale parameter, and µ is the truncation parameter 
interpreted as the minimum time to crack initiation 
(warranty period). It is assumed that the parameter δ is 
known. Let X(1) be the smallest observation in the initial 
sample of size n and 

).XX(T )1(

n

1i
in

δ

=

δ −= ∑  (18) 

It can be justified by using the factorization theorem 
that (X(1),Tn) is a sufficient statistic for (µ,σ). Let )m,1( j

Y be 
the smallest observation in the jth future sample of size 
mj=m, ∀j=1(1) k. We wish, on the basis of a sufficient 
statistic (X(1),Tn) for (µ,σ), to construct simultaneous one-
sided lower 100γ% prediction limits for ,Y )m,1( j

j=1, ...k. It 
follows from Corollary 1 that this problem reduces to the 
problem of constructing a lower 100γ% prediction limit, 
Lγ, for 

.Y min = Y )m(1,kj1km)(1, j≤≤
 (19) 

 
By using the above technique of invariant 

embedding of (X(1),Tn), if X(1)<Y(1,km),  or (Y(1,km),Tn), if 
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X(1)≥Y(1,km), into a pivotal quantity σµ− δδ /)Y( )km,1(  or 

σµ− δδ /)X( )1( , respectively, we obtain an ancillary statistic  

( ) n(1)km)(1, TXY =W δδ −   (20) 

whose distribution does not depend on any unknown 
parameter. The pdf of W is given by 
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Therefore, in this case Lγ can be found explicitly as 
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If, for instance, n=10, δ=8, k=3, m=5, γ=0.95, X(1)=5 (in 

number of 104 flight-hours), and Tn=10917240. Then we 
find from (22) that, with n/(n+km) = 10/(10+15) < γ, 
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and we have 95% assurance that no cracks will 
occur in aircraft structural components before Lγ=3.8 
(×104)  flight-hours. 

Example 2. Let X(1) < X(2) < ... < X(r) be the first r 
ordered observations of time to crack initiation for 
identical structural components of aircraft from a sample 
of size n from a two-parameter Weibull distribution with 
probability density function 
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),;x(f

1

 (24) 

where the parameters σ and δ (σ>0, δ>0) are 
unknown. Two types of censoring are generally 
recognized. In Type I censoring, the time, when censoring 
occurs, is fixed, and the number of survivors at this time 
are random variables. In Type II censoring, which is of 
primary interest here, the number of survivors is fixed and 
X(r) is a random variable. In Type II censoring, the 
likelihood may be written as follows: 
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This leads to the likelihood equations 
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Then the MLE’s σ
) and δ

)
are solutions of 
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The results given here apply to the Weibull 
distribution in the form (24). The results are presented 
more naturally, however, if we consider the variable lnX, 
which follows the extreme-value distribution, 
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where a = lnσ and b =δ-1. Now (31) is a distribution 
with location and scale parameters a and b, and it is well 
known that if ,a) b

)
 are maximum likelihood estimates for 

a, b from a complete sample of size n, then 
,b/)aa( −

) b/)aa(
))

−  and b/b
)

 are quantities whose 
distributions depend only on n.  

We are interested in estimating Y(1,km), the smallest 
order statistic in all k future samples, each consisting of m 
units from the distribution (24). It is easily shown that 

,
Y
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where Y(1)≡Y(1,km), is parameter-free, with distribution 
depending only on n and km. Hence, probability 
statements for V lead to confidence interval statements for 
Y(1). 

Let X(1), X(2), ... X(n) and Y(1), Y(2), ... Y(km) represent 
ordered observations. In particular, let X(1) < X(2) < … < 
X(r) be the first r ordered observations from a sample of 
size n from the distribution (24), i.e. we deal with Type II 
censoring. The joint density of lnX(1) … lnX(r) is 
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Let ,a) b
)

be the maximum likelihood estimators of a, 

b, based on X(1), … X(r), and let V1= ,b/)aa( −
)  V2= ,b/b

)
 and 

•Wi= b/)aX(ln )i(

))
− (i=1, …, r). It is easily shown that the 

distributions of V1, V2 are parameter-free, and that any r-
2 of the •Wi’s, say •W1, … •Wr-2, form a set of r-2 
functionally independent ancillary statistics. We then find 
in a straightforward manner that the joint density of V1, 
V2, conditional on fixed •W=(•W1, … •Wr-2), is 
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where )w•ϑ(  is a normalizing constant. For 
notational convenience we include all of •w1, … •wr in 
(34); •wr-1 and •wr can be expressed as function of •w1, … 
•wr-2 only. 

Let Y(1) be the smallest observation from an 
independent second sample of km observations also from 
the distribution (24). Writing V=(lnY(1)-a)/b and noting 
that exp(V) is the smallest observation in a sample of size 
km from the standard exponential distribution, we have 
the density of V as 

).vexp(kmexp()vexp(km)v(f −=  (35) 

Since V is distributed independently of V1, V2 we 
find the joint density of V, V1, V2, conditional on •W=•w, 
as the product of (34) and (35). Note that 

b/)aY(lnW )1(

))
−= =(V-V1)/V2; making the transformation 

W=(V-V1)/V2, V1=V1, V2=V2, we find the joint density of 
W, V1, V2, conditional on •W=•w, as 
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Now v1 can be integrated out of (36) in a 
straightforward way to give 
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Consider, for fixed w (−∞<w<∞), 
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A straightforward integration then gives us 
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 (39) 

 
The above expression holds for 3≤r≤n, with r=n 

corresponding to complete (uncensored) sampling. In the 
case r=2, ,a) b

)
are jointly sufficient for a, b, so that it can 

be considered the unconditional probability Pr(W>w). It 
will be noted that in this case, the correct expression is 
also given by (39), with r=2. Now the probability 
statement 
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leads to the warranty period (0, ))/wexp( δσ
)) with 

confidence level γ, i.e. a lower 100γ% prediction limit, Lγ, 
for Y(1) is equal to ))./wexp( δσ

))  
For instance, consider the data of fatigue tests on a 

particular type of structural component of the aircraft IL-
86. The data are for a complete sample of size r = n = 5, 
with observations  

Table. The Data of Fatigue Tests on a Particular Type of 
Structural Component of IL-861 Aircraft  

Observations 
Time to crack initiation 

(in number of 104 flight-hours) 
)1(x  5  

)2(x  25.6  

)3(x  5.7  

)4(x  9.7  

)5(x  1.8  
 

The results are being expressed here in number of 
104 flight-hours. On the basis of these data, the wish is to 
estimate a lower 0.95 prediction limit on Y(1) in a group of 
m = 5 identical components (for a fleet of k=1 IL-86 
aircraft) that are to be put into service. 

Goodness-of-fit testing. We assess the statistical 
significance of departures from the Weibull model by 
performing the empirical distribution function goodness-
of-fit test. We use the S statistic [3]. For censoring (or 
complete) data sets, the S statistic is given by 
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where [r/2] is a largest integer ≤ r/2, the values of Mi 

are given in Table 13 [3]. The reject region for the α level 
of significance is {S>Sn;1-α}. The percentage points for Sn;1-

α were given by Kapur and Lamberson [3]. For this 
example,  

S=0.184 < Sn=5; 1-α=0.95=0.86. (42) 

Thus, there is no evidence to rule out the Weibull 
model. 

The maximum likelihood estimates are 
42603.7=σ

) and .9081.7=δ
)

 It follows from (39) that 

95.0
0000170442.0
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and a lower 0.95 prediction limit for Y(1) is 4.1730 
(×104)  flight-hours, i.e. we have obtained the warranty 
period equal to 41730 flight-hours with confidence level 
γ=0.95. 

Conclusions 
In this paper we consider the important situation in 

which it can be assumed that the structural components of 
the aircraft in question have the time to crack initiation 
following the Weibull distribution. It will be noted that 
the general problem considered here, that of predicting on 
the basis of an ordered sample the smallest observation 
Y(1,km) from k future samples, each consisting of m units, 
has application in reliability theory other than described 
above. For example, if one has a series system consisting 
of m identical components, with lifetimes Y1, … Ym, then 
Y(1)≡Y(1,m) represents the life of the system; it is often 
wished to estimate Y(1) for a given system, on the basis of 
previous life test data on the components. 
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