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Abstract. The analysis performed in the paper shows that the effectiveness of discretization methods depends on the accuracy of the 
evaluation of the parameters of local surface errors and on the characteristics of the regression polynomial describing them. It is 
evident from the expressions derived that the wavelength of the distribution errors depends on the number of members of the 
regression polynomial. By increasing the number of members of the regression polynomial, the wavelength of errors of the surface 
form will be not evaluated. On the other hand, reducing the number of polynomial members, the accuracy of the description of local 
surface errors will be lost. This is why a priori information is needed about the surface to be measured before choosing the order of 
the polynomial equation. 
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Introduction 
Two main tasks must be fulfilled during coordinate 

measurements: to select the information about the errors 
of the object and to reduce to a minimum the number of 
points to be measured. This is more important when using 
coordinate measuring machines (CMM) or during the 
calibration of the CMM itself for their error determination 
in the multidimensional (n - dimensional) volume. 
Various measurement models and methods are used for 
sampling strategy during the selection of the optimal 
number of points in the measuring volume. It is widely 
analyzed in several works of research [4, 5, 9, 10], etc. 
Successions models as Hamersley, Halton - Zaremba are 
used in which the coordinates of measurement points are 
calculated according to the particular formulas for the 
flatness measurement [10, 5]. Kim and Rumant use the 
systematic straight and systematic random models for set 
of measurement points that are predicated on various 
successions [4]. Yau and Meng [11] propose a hierarchy-

planned system for the determination errors using CMM. 
This allows selecting the measurement process and the 
coordinates for the measurement of errors to be selected 
[11]. Some authors use the “gray” theory to prognosticate 
measurement points, B - splines and other models of 
parameter modeling [6, 1]. Analyzing three-dimensional 
space and the law of the distribution of flatness error, 
various mathematical models then are used, which allow 
the value of errors in the measuring space or plane to be 
evaluated [9, 11, 1]. The most analyzed methods are 
associated with the set of mathematical models, generated 
series or splines. The coordinates of the measurement 
errors often depend on the type of spline, and if it is be 
changed, then another set of coordinates will be 
generated. Besides, the coordinates for error measurement 
particularly depend on the model chosen for splitting the 
space or the plain into pitches (steps) for measurements to 
be performed. The area, where errors vary evenly, the 
pitch of discretization can be chosen larger and that, 
where variation is quite sharp – significantly less. The 
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methods discussed above are connected with 
mathematical models based on sequences or the 
generation of splines. The coordinates determined in such 
way a depend on the type of spine, and they will be 
different if the spline is changed. The measurement 
strategy is strongly dependant on the method of splitting 
the area or volume that is to be measured.  

The papers [8, 7 and 3] present a modified volume 
discretization method where the pitch of the discretization 
is calculated in inverse ratio to the values of the gradient 
module or its constituents. Nevertheless, there is no 
analysis made of the possibilities of their antecedent 
application. There is only mentioned that their 
effectiveness is less when the wavelength of the error’s 
pitch is small. The purpose of this work is to investigate 
the methods proposed in papers [8, 7] and to determine 
the wavelength of constituents of the errors to which the 
methods proposed are not quite effective.  

The purpose of this work is the analysis of the 
possibilities of discretization of two- and three-
dimensional space, evaluating the trend of the function of 
the systematic error gradient in the x, y, and z axe; 
selection the trends for the new measurement plan, to 
determine relation of the dimensions to the mean 
differential parameters of the gradient. By splitting the 
measurement volume in such manner, measurement 
coordinates will only depend on the characteristics of 
systematic errors. An implementation of this method in 
the measurement strategy is also discussed.  

1. Object and methods 
A modified volume discretization method is 

proposed in papers 8, 7 and 3 where the pitch of the 
discretization is calculated in inverse ratio to the values: 
• of the gradient module: 

int
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∆
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• of the constituents of the gradient module: 
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Here Φ is an analytic expression of the local errors 
on the surface; 0x, 0y, 0z are coordinate axes; L is the 
value of the pitch of discretization of the surface by 
standard methods; and q is coefficient of proportion.  

Having in mind that the value of partial derivatives 
is tgα, then it is valid to write: 
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 will be equal to some special calculated value of 
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Fig 1. Graphical interpretation of measurement results 

According to Fig 1, the value of xtgα ′ can be 
approximately determined by taking the adjacent values 
of Δx: 

1

1

i i
x

i i

x
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x x
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Φ − Φ
′ =

−
. (4) 

Although calculating the values of xtgα ′′  according 
to the adjacent values 2ix +∆  and 1ix +∆ , it would be  
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−
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and it will result in xtgα ′′ < xtgα ′ . It is apparent 
from Fig 1 that by calculating the values of xtgα , 
random errors will have a big influence on the result.  

They can appear in a different way during the 
repeated measurements of the surface. The methods must 
be applied that permit to define the features of the 
gradient on the surface when more accurate evaluation of 
variation of the systematic errors is needed. Using the 
method of mathematical regression, the law of variation 
of the systematic error in local intervals xi, xi+1, …, xi+n, 
yi, yi+1, …, yi+n , and zi, zi+1, …, zi+n can be determined by 
polynomials 
• for the volume: 

Φ=a1+a2 x+a3 y+a4 z+a5 x2+a6 y2+a7 z2+a8 x3+a9 y3+a10 z3; (6) 

• for the plane:  

Φ=a1+a2 x+a3 y+a4 x2+a5 y2+a6 x3+a7 y3; (7) 

• for coordinate measurements: 

Φ=a1+a2 x+a3 x2+a4 x3. (8) 

Here a1, a2, … a10   are the values of coefficients.  
A least square method must be used for 

determination of the variable coefficients a1, a2, ..., an : 
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Here A is a column of vector of the coefficients of 
variables a1, a2, …, an; Y is a rectangular matrix created 
according to method described in paper 7; and Φ is a 
column of vector of the values of errors determined by 
experimental trials.  

Analysis of the expressions (6), (7), and (8) show 
that each coordinate under the different powers has three 
additives and one free member a1. In this case, there will 
be 10; 7 and 4 unknown members in the polynomials in  
(6), (7) and (8). So, for determination of their values there 
is a need to construct the same number of equations. The 
more of equations that are created the more accurate the 
values of the coefficients a1, a2, ..., an will be determined. 
Every equation will be created for a separate value of Φi 
(i=1,2…). The number of equations necessary for this 
purpose can be calculated in such a way:  

u=n+b (10) 

Here n is the number of unknown coefficients of the 
polynomial; b ≥ 1 is freely chosen number showing the 
number of equations that will be created (more than 
unknown coefficients). Then the points rx, ry, and rz for 
each coordinate will be calculated using this expression: 

rx=ry=rz =r=u/p (11) 

Here p is the different number of coordinates 
consisting in the calcukation.  

In such a way, in the polynomial expressing a local 
surface, the number of coefficients is n = 10 and p = 3. It 
is better to select the value of the unknown coefficient b 
in such a way that rx, ry, rz are integers. When choosing b 
= 2, it will be noted that rx=ry=rz≈ 4. The same 
calculations could be performed in the cases  (7) and (8). 

By choosing a value for b, we need to know the 
number of points for each coordinate (x, y, and z). The 
bigger the values are for rx, ry, and rz, the more Φi points 
will be used for the assessment of changes of errors at 
these points. This is rx=ry=rz≈4 for the surface analyzed 
just before. For coordinate measurements expressed by 
(8), when b=1,  n would be u=n+b=4+1=5, then 
rx=u/p=5/1=5. 

For the case discussed (Fig 1) five points must be 
used for assessment of the systematic errors.  By drawing 
the diagram of the third order Φ (Fig 1), the closest 
approach to the law of variation of the systematic error 
would be the least square method.  The values of partial 
derivatives calculated according to this diagram will serve 
to better determine the values of the local surface gradient 
and its constituents. This means that the method of 
analysis based on mathematical regression for 
determination of gradient or its constituents (proposed in 
papers [8, 7, and 3]) is more accurate than the method of 
calculation using the adjacent values of Φi and Φi+1. It 
must be noted that when using the latter method filtering 
separates a random part of the errors. This helps to 
explain the consistency and adequate accuracy of the 
modified surface discretization methods. This is the first 
main feature of its efficiency. 

The second feature of efficiency of the modified 
surface discretization method shows the shortest 
wavelength of constituents of errors made in industry that 
can be evaluated by volume discretization. 
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Fig 2. A simplified diagram of error distribution 

In the simplified diagram of error distribution (Fig 
2) the pitch of discretization of coordinate measurement is 
indicated by L and by λ – a wavelength of its constituent. 
The number of the pitches of discretization in the 
wavelength can be calculated by: 

s=λ/L. (12) 

In case of (n+b)p<λ/(2L), for example, points 1 to 7 
(Fig 2), is impossible to express the curve of error 
constituents by the polynomial of the third order. A 
significant part of the information is filtered off. In this 
case, the regression polynomials (6), (7), and (8) will 
adequately describe the law of distribution of the error 
constituents. Therefore, the expressions (n+b)p<λ/(2L) or 
(n+b)pL< λ /2 will determine the second feature of the 
efficiency of the methods in use.  

Now the ratio can be analyzed: 

( )
//
/

= = = = =
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which shows a ratio between the wavelength, 
expressed by the number of pitches of discretization and 
the number of points falling to each coordinate.  

By using less than half of wavelength r′  for 
determination of unknown coefficients of the regression 
polynomial, according to (13) such expressions can be 
written: 

( / 2)r s m′ = − , 
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p 2
L( n b ) 2mLλ

≤
+ −
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Here m is the integer showing at which number of 
discretization pitches the half of wavelength is shortened. 
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2. Analysis of the results 
The expression for determination of the shortest 

wavelength of constituents of the systematic errors and 
which will be efficient for use according to the method 
discussed is derived from (14): 

n b2 m L
p

λ
 +

≥ + 
 

,  (15) 

For example, by performing the measurements in the 
plane when L=3 mm, n=7 (expression (8)), b=1, and p=2 
and m=2 for the plane measurement, then from (15) the 
value λ≥36 mm will be received. In such a case, for all the 
constituents of systematic errors in the local surface that 
have wavelengths less than 36 mm, the methods of 
modified discretization of measuring volume will act 
inefficiently. To improve its efficiency, when the length λ 
doesn’t comply with the requirements of length calculated 
by expression (15), the pitch of discretization must be 
decreased. It is evident from (15) that the dependence of   
λ is linear to L. So, by decreasing the pitch of 
discretization v times, the wavelength of the pitch of 
measurement will remain in lessening at the same 
proportion. 

The analysis performed showed that the 
effectiveness of the discretization methods (1) and (3) 
depends on the accuracy of evaluation of the parameters 
of the local surface errors and on the characteristics of the 
regression polynomial describing them. From expression 
(15), it is evident that the wavelength of λ depends on the 
number of members of the regression polynomial. From 
one side, it seems that the more the number of members 
of the regression polynomial, the more accurately the 
errors of the local surface can be determined. This is not 
so however, since by expansion the number of members 
of the regression polynomial, the wavelength λ of errors 
will be enlarged at the same time, and the errors inside the 
wavelength will be not evaluated. Decreasing of number 
of polynomial members will loose the accuracy of the 
description of the distribution of local surface errors. This 
is why the a priori information is needed about the surface 
to be measured before choosing the order of the 
polynomial.  

Conclusions 
After performing an analysis of the effectiveness of 

determining the pitch of discretization of the 
measurement surface by modified means, some 
conclusions can be made: 
• The errors of the local surface and the characteristics 

of its gradient are more accurately determined by 
applying the methods of regression analysis. For this 
reason, the modified discretization methods that are 
discussed are valid and efficient; 

• It is shown that the error constituents of short waves 
cannot be evaluated by using this modified surface 
discretization method. The dependence of the shortest 
waves of constituents of errors on the pitch of 
discretization of the surface and on the regression 

polynomial describing it is determined. The means to 
improve effectiveness of measurement are pointed 
out. 
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