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Abstract. A model of fatigue damage accumulation in laminate with two reasons for fatigue failure (the distortion of rigid items and 
the excessive yielding of the plastic part of the composite (matrix)) is offered. The model is based on the use of the Markov chains 
theory. It is shown how the corresponding transition probability matrix can be filled and how to calculate the mean time to failure, 
the variance of this time, and the probability distribution function. This model can be used as a nonlinear regression model for 
fatigue curve approximation and for fatigue damage accumulation description in program fatigue test. Processing of experimental 
data (fatigue test of carbon-fiber reinforced laminate for fatigue curve building and for residual fatigue-life investigation in program 
test with two levels of stress) shows that the model can be used for satisfactory description of the results of these tests. The specific 
feature of the model considered in this paper is the use of binomial distribution of failure of rigid items and the number of acts of 
yielding in the plastic part of the laminate.  

Keywords: strength, yielding, fatigue life, composite, fatigue curve. 

 
Introduction 

The main goal of this paper is the development of 
ideas, which were discussed in [1, 2, and 3]. We’ll 
consider the same problem – fatigue curve approximation 
by the use of the Markov Chain theory. In the papers 1, 2 

and 3 we considered laminate as a  “bundle” of parallel 
rigid brittle fibers (or strands) stretched between two 
clamps. But in a new model we also take into account the 
possibility of permanent plastic deformation of the matrix 
of the composite. This model of composite specimen 
loaded by tension is illustrated in Fig 1. 
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Fig 1. Model of composite specimen 

There are two parts of the composite specimen:  
rigid and plastic. The vertical parallel items of this 
structure can be considered as a set of rigid brittle items 
(fibers or strands). Destruction of this part of the 
composite is the destruction of rigid items (decreasing the 
number of items which can carry the tension load). The 
inclined (also parallel) lines symbolically show the 
possibility of the yielding of the plastic part of the 
composite. As a result of this yielding, the permanent 
plastic deformation of the matrix appears. If we consider 
these two parts of laminate as isolated parts after some 
yielding, we will see the picture shown in Fig 2. In metal 
the yielding is connected with some shear strain in some 
plane. And really this picture is more appropriate to for 
metal than for composite. But we’ll use this model for 
composite only symbolically just because it is very clear 
and simple. We’ll make the assumption that there is some 
“set of weakest planes,” with a limited number of such 
“planes” in which shear can appear. And we assume that 
if in some plane shear took place, then another can take 
place only in some other plane (but in the finite “set of 
planes”). 

 

Fig 2. Model of yielding 

As a result of yielding, the length of a plastic part 
increases. The 1Yε -value is the value of permanent 
deformation after one act of yielding (one shear in some 
plane) takes place. We’ll make the assumption that this 
unit-size of permanent deformation is a constant, and it is 
some parameter of the model considered. During fatigue 
loading, the accumulation of permanent plastic 
deformation takes place. If the number of acts of yielding 
exceeds some critical limit (another parameter of the 
model), then a failure of the composite matrix takes place 
and the failure of the composite matrix is considered a 
failure of the composite as a whole. 

Another reason for failure of composite is the 
destruction of rigid items. If a rigid elastic part and a 
plastic part continue to be together, after elimination of an 
external load, internal stresses appear. Tension appears in 
the rigid part and compression in the plastic part. As a  

consequence of this phenomenon  the stress of the rigid 
part in the next cycle of the cycling load increases. 
Probability of failure of any rigid item also increases. The 
stresses in the plastic part decrease, but yielding can 
appear again, although with some smaller probability and 
in an other plane. 

So we consider two reasons of destruction: 
destruction of the rigid elastic part and excessive yielding 
of the plastic part. 

The general description of the model with elastic 
and plastic parts is not new (but some specific details of 
accepted assumptions are new). The main purpose of this 
paper is to give the most simple mathematical description 
of this model which should be enough  to get a 
satisfactory quantitative description of the connection of 
the static strength distribution parameter with the 
parameters of fatigue curve and the parameter of fatigue 
life distribution in program fatigue loading. By processing 
experimental data, it is shown that the  model that is 
presented gives a satisfactory description of fatigue curve 
and can be applied to the problem to forecast fatigue 
damage accumulation in program cycling loading. More 
precisely, it is shown that this model gives a reasonable 
description of experimental data for program loading with 
a one step change in mode of loading. The specific 
feature of this model is the use of binomial distribution of 
the number of failures of rigid items and the number of 
acts of yielding in one transition of the Markov Chain.  

The mathematical model will be given in the second 
part of the paper. An application for fatigue damage 
accumulation for program loading is considered in the 
third part. The numerical example is considered in the last 
part. 

1. Mathematical model 
Really we should consider the Markov Chain in two-

dimension state space because there are two reasons for 
specimen failure: as a consequence of failures of rigid 
items and as a consequence of an excessive number of 
acts of yielding. The first dimension is the number of 
failed rigid items, and the second one is the number of 
acts of yielding.  But as we will see later, the number of 
states (in processing of real experimental data) is not too 
large in every dimension. So by a corresponding 
renumbering of the states, we will use a description of 
ordinary one- dimension state space. We will consider the 
transition probability matrix as a complex of blocks. The 
number of blocks is equal to one plus the critical number 
of acts of yielding corresponding to the yield-type 
destruction. The number of states inside every block is 
equal to one plus the critical number of failures of rigid 
items corresponding to the brittle-type failure of rigid 
items. 

For the simplest example, let the destruction of 
specimens take place if : 
(1) there is a failure of two rigid items (event A) 
or 
(2) there are two acts of yielding (event B) 
or 
(3) both events A and B take place. 
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The corresponding transition probability matrix is 
symbolically described in Table 1. In this table together 
with the usual indexes of matrix items, i and j,  the “local” 
indexes, iY, iR,  jY, jR,  are shown also. The number of acts 
of yielding equals (iY-1) or (jY –1). The number of failed 
rigid items is equal to (iR, -1) or (jR, -1), where i 
corresponds to the initial state and j to the final state of 
one transition. In general Rr  is the number of failures of 

rigid items, and Yr  is the number of acts of yielding 
corresponding to the failure of specimens.  

The interrelations between these indexes are defined 
by the formulae 

RYR iiri +−+= )1(*)1( ; 

RYR jjrj +−+= )1(*)1( . 

In Table 1 for Rr =2, 9,...,2,1, =ji  correspond to 
nine states of the Markov Chain (three possible values of 
failure of rigid items (0, 1, 2) to multiply by three 
possible values of acts of yielding (0, 1, 2)). Probabilities 
pR0, pR1, … denote probabilities of failure of 0, 1, … rigid 
items. Probabilities pY0, pY1, … denote probabilities of 0,1, 
… acts of yielding. In Table 1 these notations have only a 
a symbolical sense, but really these probabilities depend 
on the state of the Markov Chain. The corresponding 
formulae are given later. In the chain we have five 
absorbing states:  

S3 is the failure of two rigid items (FR) without 
yielding, 

S6 is FR after one act of yielding, 

S7, S8 are distortion after two acts of yielding when 
the number of failed rigid items can be equal to 0, 1. 

State S9 is reached when the number of failed rigid 
items is equal to Rr  and the number of acts of yielding is 

equal to Yr  simultaneously. 
In this paper, it is supposed that the number of 

failures of rigid items in one transition of the Markov 
Chain has binomial distribution. If there are Rn  still 
efficient rigid items then the probability of the event  
“number of failures of rigid items is equal to Rk ” is 
defined by the formula 
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where RRR irn −= , 

RRR ijk −= . 

for RR nk ≤≤0 ,   )1(1 −≤≤ RR rn . 

(.)RF  is the distribution function of the strength of 
still efficient rigid items.  

( )YRR iiS ,  is the stress in the rigid part in ith state 
(see formulae (1)). 

Similarly the probability that the number of acts of 
yielding is equal to Yk is defined by a similar formula 

Table 1. Transition probabilities matrix 

jY 1 2 3  
jR 1 2 3 1 2 3 1 2 3 

iY iR i \ j 1 2 3 4 5 6 7 8 9 

1 1 p
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3 3 0 0 1 0 0 0 0 0 0 

1 4 0 0 0 p
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2 5 0 0 0 0 p
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 0 p
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p
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 p
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 2 

3 6 0 0 0 0 0 1 0 0 0 

1 7 0 0 0 0 0 0 1 0 0 

2 8 0 0 0 0 0 0 0 1 0 3 

3 9 0 0 0 0 0 0 0 0 1 
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where YYY irn −= , 

YYY ijk −= , 

for YY nk ≤≤0 ,   )1(1 −≤≤ YY rn  ,  
 

(.)YF is the distribution function of the stress of 
yielding, 

Yj  is the number of acts of yielding that have 
already taken place,    

( )YRY iiS ,  is the stress in a plastic part when the 
number of acts of yielding is equal to (iY-1)  but the 
number of failed rigid items is equal to (iR, -1) . 

In this paper we will remain in the framework of 
assumptions that have already been mentioned. The not 
too bad final result of processing of experimental data can 
be considered a reasonable excuse for these assumptions. 

Local stress itself is the function of applied initial 
stress, and it is a function of the number of  failures of 
rigid items and of number of acts of yielding that have 
already taken place. Let the initial cross-section of 
considered (weakest) critical volume be 

YR fff += , 

where YR ff ,  are the cross-section of rigid and 
yielding parts of critical volume correspondingly.  

If the failure of i rigid items takes place, the cross-
section of this part decreases: 

( )RRiR riff /1−⋅= . 

The cross-section of the yielding part does not 
change, but its length changes as a function of the number 
of acts of yielding. 

If both rigid and plastic parts are working within the 
limits of elasticity, we have two equations for 
corresponding stress calculation: 
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where S is  mean stress, E is Young’s modulus, and 
R and Y are subscripts of the rigid and yielding parts 
correspondingly. The first equation is equation of 
equilibrium; the second is equality of strains on both 
parts. If the lengths of both parts are equal, we have the 
following solution of this equation system: 

)//( RYYRR EEfffSS ⋅+⋅= , 

)//( YRRYY EEfffSS ⋅+⋅= . 

But if we have some yielding of the plastic part, and 
it new length becomes equal to )( YY ε+= 1l  instead 

of initial length (initially 1=Yl ), we should take into 
account the residual stress that  appears in both parts after 
outside load is eliminated. This residual stress can be 
found as a solution of the equation system: 
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Here again the first equation is the equation of 
equilibrium, and the second is the equation of length 
equality. The solution of this system (in limit of elasticity) 
is defined the formulae  

( )YYRRYYRR EfEfES )( εε ++⋅=∆ 11 , 

( )RRYYYYYY EfEfES ++⋅=∆ εε 1 . 

We make the additional assumption that in 
increasing the length of that rigid part the value of Yε is 

proportional to the number of acts of yielding )1( −Yi : 

)1(1 −⋅= YYY iεε , YY ri ,...,1= . 

The value of 1Yε is considered the parameter of the 
model. 

By renumbering the states of the matrix of transition 
probabilities can be transformed to the following 
structure, 









=

I
RQ

P 0 , 

where Q is the matrix corresponding to transition 
inside the set of transient states, matrix R controls the 
transitions from transient states to absorbing states, matrix 
I is an identity matrix, and 0 is a matrix of zeros. 

As is known, the vector of mean step numbers to 
absorption from different transient states is defined by the 
formula 

ξτ ⋅= N , and 

where  ( ) 1−−= QIN ,  
ξ  is a column vector of units. 
The vector of variances of the corresponding times 

is defined by the formula 

( ) sqIN τττ −−= 22 , 

where ( ) Tsq Iiii ∈= ,)()( 2ττ , 

TI is a set of indexes of transient states. The matrix 
of absorption probabilities is defined by the formulas 

{ } NRBB ij == , 
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where ijB  is the probability of absorption in Sj 
absorbing state if the initial transient state is Si 
(renumbering of the states should be taken into account!). 
Vector of probability functions of times to absorption 
from different initial transient states is defined the 
formula  

{ } bPtF t
T =)( , 

where b is a column vector of the type  (0, … 
0,…,1,…,1)’. Here the ordered number of units is equal 
to the ordered number of absorbing states of matrix P 
(renumbering of the states should be taken into account 
again!). 

The probability distribution function of time to 
failure from the initial state S1  is defined by the formula  

baPtF t
T =)( , 

where a is a row vector of type (1, 0, 0, …0). 

2. Application for program loading 
This model can very easily be used for fatigue life 

calculation for program fatigue test. For any arbitrary 
stress cycle sequence { ,...,, 321 SSS }, the probability 
distribution function of time to failure from an initial state 
is defined by the formula  

bPatF i

t

i
T )()(

1
∏

=

= , 

where matrix iP  is the matrix of transition probabilities 

corresponding to the stress iS  and ,...3,2,1=i ; ba,  
are the same as in previous formula. If stress changes in 
accordance with the block program which is shown in Fig 
3,  

 

Fig 3. Example of block program 

 

Fig 4. Program of two stress levels 

then the probability transition matrix corresponding 
to one block will be defined by the formula  

′′′
= 1234321

1234321
k

S
k

S
k

S
k

S
k

S
k

S
k

SB PPPPPPPP , 

where PSi is transition probability matrix, 
corresponding to stress Si, i=1,…,4. By the use of PB  
instead of matrix P we can easily  calculate the fatigue 
life distribution function baPtF t

T =)(  and its 

numerical characteristics τ  and 2τ  if we use  the block 
as a time unit.    

A special case of loading is shown in Fig 4.   
For this program the distribution function of time to 

failure is defined by the formula  
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The conditional distribution function of residual 
fatigue life, 2T (provided that there was not failure of the 

specimen in the first stage test after 1n cycles with 
ISS = ), as usually, is defined by formula 

)(1
)()()(

1

11
2 nF

nFtnFtF
T

TT
T −

−+
= . 

In this paper we will limit ourselves by checking the 
forecast of the expected value of  n2  if the fatigue curve 
is known and n1 is known also. The calculation of the 
expected value of n2 is similar to the calculation of E (T), 
and V(T) for the case without stress change, but we 
should take into account that the order number of initial 
state at the end of n1 cycles with stress S=SI is the random 
variable with distribution 

1001 nII
IS

P...),,(=π . 

Then the expected value of cycles to failure in the 
second stage with S=SII is defined by the formula 

IIIITE τπ ⋅=)( 2 . 

The variance of this time is defined by the formula 

2
2
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))(()()(
IIIIII

sq
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Fig 5.  Fatigue curves (experimental: “+”; calculation result: “o”) 

 

 Fig 6. Relative residual fatigue life as function of relative damage  
in first stage of program loading for the case SI<SII 

 

Fig 7. Relative residual fatigue life, 22 / Nn , as function of relative damage 11 / Nn  
in first stage of program loading for the case SI>SII 
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3. Processing of experimental data  
Experimental data was obtained by Kleinhofs, who 

tested carbon-fiber specimens to get the fatigue curve and 
to study the residual fatigue lives in step-up (see Fig 4) 
and step-down program [4]. The results of processing 
these data are shown in Figures 5, 6, and 7. In Fig 5 
experimental data for a fatigue curve are shown by “+”. 
The result of calculations of order statistics 
(corresponding to the size of the experimental sample 
size) for every stress level for which the test was made is 
shown by “o”. At the lowest stress level, a limitation of 
test time (censoring) took place. 

Dependence of the relative residual fatigue life n2/N2 
on the relative damage n1/N1 of the first step of program 
cyclic loading is shown in Fig 6 and Fig 7. 

Here the results of calculations are shown by curved 
lines, but experimental data are again shown by “+”. 

We see that at chosen parameters, just as in the test, 
at small n1/N1 the calculation gives 

.III
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N
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nand
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2

2

1

1

2
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In order to understand the behavior of these curves, 
we should take into account the failure of some specimens 
already in the first stage of program cyclic loading Only 
the strongest specimens can be used for loading by stress 
SII. It is worth mentioning, in particular, that usually in 
corresponding publications in this type of figures 

0/ 22 =Nn  when 1/ 11 =Nn .  
But this can be true only if we do not take into 

account the scatter of fatigue life. Actually, at 
1/ 11 =Nn  approximately one half of the specimens are 

not destroyed. So corresponding mean residual life is not 
equal to zero! And it is can be seen in the Figures 6 and 7.  

Conclusion 
The suggested model of fatigue damage 

accumulation in composite material allows a reasonably 
good approximation of  

(1) fatigue curve,  
(2) distribution function of fatigue life (for the case 

of loading with constant stress cycle parameter and in a 
case of program loading). 

The specific feature of this model is that it takes into 
account not only the failure of rigid items, but also the 
yielding of the matrix of the composite. For a one step 
stress change program of cyclic loading, it allows one to 
explain the deviation of the sum )//( 2211 NnNn +  
from the unit (from Miner’s Rule) in the same direction as 
in real test.. 
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