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Abstract. In this article history and development of calculation methods of wing characteristics are presented. The development 
process includes the beginning in 1918 by Prandtl’s classical lifting line theory and leads to resent research.  The most attention is 
paid to non-linear section data implementation methods in the calculation of finite span wing. The research of Philips and Snyder, 
Barnes, and Sivells and Neely is discussed. 
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First step – 1918 Prandtl’s classical lifting 
line theory 

Developed during the period from 1911-1918, 
Prandtl’s classical lifting line theory is the base of most 
methods used for calculations of change of lifting force of 
4flat, low sweep angle, and moderate and high aspect 
ratio wings [18]. Prandtl’s lifting line theory (LLT) uses a 
single unswept lifting line (or bound vortex) to model the 
circulation on the wing. The strength of this bound vortex, 
Γ, varies along the span. At any given span location, the 
change in Γ is shown as trailing vorticity, which in turn 
causes induced velocities along the lifting line. LLT 
enables the computation of the Γ distribution for which 
the accompanying induced velocities and the resulting 
effective angles of attack along the span support the Γ 
distribution. For this purpose, the l Prandtl’s LLT 
assumes a linear lift-curve slope for the airfoil sections 
that form the wing. This lift-curve slope is typically close 
to 2π per radian. 

As mentioned before, LLT is based on a linear 
relationship between section lift and section angle of 
attack. With this linear assumption, and with the 
assumption of a straight lifting line, the theory provides 
an analytical solution for the spanwise distribution of lift 
and induced drag acting on a finite lifting surface. The 
solution is in the form of an infinite sine series for the 
circulation distribution. Typically, the series is truncated 
to a finite series, and the coefficients in the finite series 
are evaluated by requiring the lifting-line equation to be 

satisfied at a number of spanwise locations equal to the 
number of terms in the series. Glauert first presented a 
very straightforward method [7]. The most popular 
method, based on Gaussian quadrate, was originally 
presented by Multhopp [14]. Most recently Rasmussen 
and Smith have presented a more rapidly converging 
method, based on a Fourier series expansion similar to 
that first used by Karamcheti [19, 9]. 

Implementation of non-linear effects 
Tani developed the first successful technique in 

1934 for handling nonlinear section lift-curve slopes in 
the LLT formulation [23]. In his technique, a spanwise 
bound vorticity (Γ) distribution is first assumed. This 
distribution is used to compute the distribution of induced 
velocities and hence induced angles and effective angles 
of attack along the lifting line. The distribution of 
effective angles of attack is then used to find the 
operating Cl of the local section using known nonlinear 
Cl-α data for the airfoil. A new Γ distribution is then 
computed from the spanwise Cl distribution. The iteration 
is carried out until Γ distribution converges. This method 
was made popular by the NACA report of Sivells and 
Neely in 1947 that provides a detailed description of the 
method for unswept wings with arbitrary plan form and 
airfoil lift-curve slopes [22]. They apply this method for 
analysis of wings up to stall, i.e., until a wing angle of 
attack at any section on the wing has Cl equal to Clmax.  

Sivells and Neely presented a method for calculating 
wing characteristics by lifting-line theory using nonlinear 
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section lift data [22]. Multhopp’s system of multipliers 
isemployed to obtain the induced angle of attack directly 
from the spanwise lift distribution: 

∑= θ
θπ

α nnAni sin
sin4

180
, 

Here the coefficients An are determined from the 
known lift distribution points. 

Also, the spanwise lift distribution is expressed as 
the trigonometric series: 
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⋅

θnA
b

cc
n

l sin , 

Here  cl is the section lift coefficient, 
  c is the section chord, 
  b is the wingspan, 
  An are the coefficients in the 

trigonometric series 
  cos θ=2y/b, where y is the section 

spanwise coordinate. 
C. Sivells and Neely are subject to the limitations of 

the lifting-line theory upon which the methods are based. 
According to Mukherjee, Gopalarathnam, and Kim, at 
higher angles of attack, this approximation approach 
appears to fail [13]. 

According to Sears, Von Kerman noticed that 
Prandtl’s lifting-line equation has no unique solutions for 
cases when the lift-curve slope becomes negative [21]. 
These non- unique solutions include both symmetrical 
and antisymmetric lift distributions even when the 
geometry and onset flow are both symmetric.  

The investigation suggested by Von Karman was 
carried out and was reported in a 1939 thesis by Schairer 
working under the supervision of Sears [20]. Sears 
presents some of Schairer’s results for a flat, untwisted 
elliptic wing of aspect ratio 10,19 operating beyond stall. 
The results show solutions consisting of asymmetric lift 
distributions (in addition to a classical symmetric 
solution) with large associated rolling moments for a 
narrow range of angles of attack just beyond stall. 

Numerical solutions of LLT in comparison 
with panel and CFD methods 

Numerical solutions of Prandtl’s lifting line theory 
were also developed and are still in use. The most well-
known works, that use these methods are the works of 
McCormick and Anderson [12, 1]. Phillips and Snyder 
present some information about their work [16]. 

McCormick has presented a numerical method that 
can be used for a single lifting surface having a straight 
lifting line [12]. This method is based on applying the 
two-dimensional Kutta-Joukowski law to the 3D flow and 
neglects the downwash generated by the bound vorticity. 
Results obtained from this method are essentially 
identical to those obtained from the series solution. A 
numerical lifting-line method that relaxes the assumption 
of linearity between section lift and section angle of 
attack has also been developed by Anderson [1]. For a 

single straight lifting surface, this method gives good 
agreement with experimental data at angles of attack both 
below and above stall. However, the method still assumes 
a straight lifting line and ignores the downwash produced 
by the bound vorticity. Thus, this method only applies to 
a single lifting surface without sweep and no dihedral. 

Unlike the classical lifting-line solution, the method 
presented by Phillips and Snyder is not based on a linear 
relationship between section lift and section angle of 
attack [16].  

Phillips and Snyder used the numerical lifting line 
method for a wing model [11]. For a comparison with 
results obtained from panel methods Phillips and Snyder 
used PMARC [10, 2]. This code was developed by NASA 
Ames Research Center and is one of the most efficient 
numerical panel codes available. PMARC uses a flat 
quadrilateral panel with uniform source and doublet 
distributions on each panel. This code also accounts for 
the effects of wake rollup, using an unsteady wake 
development approach. 

For an inviscid CFD comparison, the commercial 
code WIND was chosen [5]. This code uses a node-
centered finite volume approach to solve Euler equations 
on a structured grid. 

The lift coefficient predicted by all three methods 
was in agreement with experimental observations for 
tested wings. It should also be noticed that for a straight 
wing, the induced drag predicted by both the numerical 
lifting-line method and by PMARC was in agreement 
with experimental data, whereas WIND gave an induced 
drag that is somewhat higher.  

For a swept wing (45 degrees) none of the tested 
methods could predict the induced drag with the desired 
accuracy. The induced drag predicted by PMARC was 
about 40% less than that observed experimentally. Both 
the numerical lifting-line method and the CFD solution 
gave induced drag values that were about 25 percent 
above the experimental values. 

The over-prediction of induced drag by the CFD 
code for both a straight wing and a swept wing is likely 
due to numerical viscosity and is expected. 

The reason that the numerical lifting-line method 
over- predicts induced drag for the swept wing, but not 
for a straight wing, is in the aerodynamic center of the 
swept wing. The foundation of lifting-line theory requires 
the bound vorticity to follow the chord wise aerodynamic 
center of a wing. Usually the assumption is made that 
lifting-line follows the wing quarter chord, what presents 
a theoretical aerodynamic center according to a theory of 
thin airfoil. In reality, the experimental results of Weber 
and Brebner show that, near the spanwise midpoint of a 
highly swept wing, the aerodynamic center moves 
considerably after of the wing quarter chord (also the 
lifting line is curved forward near the wing tips) [26]. 
Barnes presents a correction technique for the 
aerodynamic center shift of swept and tapered wings [3]. 
Still there is no simple means to predict the true 
aerodynamic center of a highly swept wing in the region 
near the spanwise midpoint. 
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Taking into account that the lifting line method 
requires a known relationship between the section lift 
coefficient and angle of attack, the method of Phillips and 
Snyder predicts stall by using a semi-empirical correction 
to the potential flow solution [16]. For that reason, the 
authors conclude that their method should be used with 
extreme caution for angles of attack beyond stall. 

Vortex step method and other modified 
lifting-line methods 

The works of Mutteperl and Weisinger made a base 
for the so-called Finite-Step method or Vortex Step 
Method, which was also developed from Prandtl’s lifting 
line theory as a numerical solution [15, 27]. It differs 
from Prandtl’s theory by the location of control points at 
the three-quarter chord, instead of the one quarter. This 
condition allowed taking into account the sweep of a 
calculated wing. Later, Campbell and Blackwell 
simplified their method [6, 4].  

The simplification involves replacing the continuous 
lifting line of varying strength by a discrete system of 
horseshoe vortices, each of which is of constant strength. 
The resulting method allows one to couple sectional (two-
dimensional) viscous results with inviscid wing (three-
dimensional) theory in order to determine the total 
aerodynamic coefficients for configurations including 
wings with dihedrals, endplates/winglets, pylons, and for 
biplanes, joined wings, etc. [3]. The present method has 
advantages over traditional panel methods because this 
method is significantly faster than traditional panel 
methods, and it also incorporates the critical viscous 
nature of high-lift devices. 

Although the modified Weisinger method reduces 
the lifting surfaces to flat plates, various airfoil shapes, 
including high-lift configurations, can be successfully 
modeled. 

Van Dam, Vander Kam, and Paris, in order to 
compute the load distribution in the subsonic 
compressible flow of arbitrary wings and lifting surface 
arrangements, used a modified lifting-line method, 
mentioned above [25]. They conclude that their method 
provides the necessary accuracy to be useful at the 
conceptual and preliminary design stages, while being fast 
enough to be used during the early stages of design where 
thousands of iterations can be examined. 

Barnes presents the most resent research that reflects 
the Vortex Step Method [3]. In his research Barnes shows 
that the Vortex Step Method can be more accurate than its 
CFD alternative when predicting lift slope. He presents an 
EVSM (semi-Empirical Vortex Step Method), which 
includes empirical adjustments in lifting line position and 
shape.  

The most important semi-empirical adjustment 
implemented by EVSM represents a lifting line shift to 
obtain a more accurate aerodynamic center position. Four 
empirical adjustments are made in EVSM presented by 
Barnes: 
1. Adjustment of the aerodynamic center of an unswept 

wing as well as correction for the aerodynamic center 
of swept and tapered wings; 

2. Adjustment that relates to the shape of the lifting line 
at the wing root and tip. Although this adjustment has 
only a minor effect on the calculated lift slope, it 
offers some improvement in the accuracy of the 
calculated lift loading. 

3. Adjustment that addresses the optimistic lift 
prediction of the Vortex Step Method for swept, 
constant-chord wings. This adjustment reduces the 
lift slope by shifting the downwash line forward. 

4. Adjustment that take into account the loss in flap 
effectiveness due to sweep and finite span fraction. 
Piszkin and Levinsky developed a nonlinear lifting-

line method based in part on the iterative method 
originally conceived by Tani [17, 23]. Their model uses a 
single chord wise row of horseshoe vortices distributed 
along the span, with the bound vortex aligned with the 
local quarter-chord line. The boundary condition of zero 
normal flow is applied at the control point, which is the 
three-quarter-chord location for each horseshoe vortex. 
As a consequence of using a single chord wise horseshoe 
vortex, the method is restricted to wings of moderate to 
high aspect ratio. It must be mentioned that this method 
differs from Prandtl’s classical LLT in the 
implementation of the boundary condition.  

In order to account for the nonlinear lift-curve 
slopes, Piszkin and Levinsky use the iterative technique 
described earlier. At each step of the iteration, the 
downwash computed using Γ distribution from the 
previous time step is used to compute the change in the Γ 
distribution using the airfoil lift curve. This change, 
multiplied by a specified damping factor, C, is then added 
to the old Γ distribution to obtain the new Γ distribution 
for the next iteration. A damping factor of C<1 is required 
to stabilize the iterations, although it results in a larger 
number of iterations for convergence. Unlike in the 
traditional LLT, where the effective section angle of 
attack distribution is computed as part of the solution, 
here the effective section angle of attack distribution is 
not readily available. 

Using their method, Piszkin and Levinsky found that 
multiple converged solutions are possible, including some 
that have saw-tooth type oscillations in the spanwise lift 
distributions (also observed in 13). To avoid these 
oscillations, they used a switching logic that restarts the 
iteration procedure with an initial distribution having a 
zero induced α for any wing section found to be stalled. 

An entirely different approach to the use of 
nonlinear section data was developed by Tseng and Lan 
[24]. While their main focus was on vortex-dominated 
flows on low aspect ratio fighter-type wings at high α, 
they incorporated the effect of boundary-layer separation 
by iteratively reducing the angle of attack at each section 
of the wing. The reduction at any given wing section is 
determined by the difference between the potential flow 
solution and the viscous Cl from the nonlinear section Cl-
α curve.  

In all methods that use nonlinear section data, the 
main objective is that, for the final solution of the three-
dimensional flow, the Γ distribution across the span is 
consistent with the distribution of the effective α for each 
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section and that the Cl and Cm for each section is 
consistent with the effective α for that section and the 
section Cl-α and Cm-α data. Mukherjee, Gopalarathnam, 
and Kim achieve that condition by finding the effective 
reduction in the camber distribution for each section 
along the span [13]. For the iteration process, a 
multidimensional Newton iteration is used that 
automatically takes into account the effect of the 
decambering at one section on the lift at all of the other 
sections. The authors conclude that experimental data is 
needed to validate the accuracy of their method and to 
determine its application range. 

Another possibility to take into account non-linear 
section data in calculation of wing characteristics is 
presented in the research of Jacob [8]. His method 
combines an inviscid 3d-lifting surface theory with a 2d-
airfoil theory that includes boundary layer calculations 
and a displacement model for rear separation. The total 
iterative procedure allows the complete wing 
characteristics including maximum lift and post stall to be 
predicted but is restricted to wings with moderate to high 
aspect ratio and low sweep. For taking account of the 
finite span of the wing, Jacob uses the linear lifting 
surface theory in combination with section data of viscous 
flow.  

The following steps present the procedure for non-
linear section data evaluation used by Jacobs: 
1. Induced flow angles for each wing section are 

computed with 3-d lifting surface theory. Effective 
angle of attack is determined in that way: 

ααα ∆−= ge  

Here: 
∗∗∗ ∆−+∆⋅=∆ ααα )1( FF ; F=0,33 

d−
∗∗∗ −=∆ 2)(ααα  

d−
∗∗∗∗∗∗ −=∆ 2)(ααα  

Where induced angles of attack of the 3-d flow ∗α  
and ∗∗α are calculated from the system of linear 
equations based on the 3-d lifting surface theory. 2-d 
angles of attack are calculated in the following manner: 

πα 2/)()( 2 mld CC −=−
∗ ; 

πα 2/)8()( 2 mld CC +=−
∗∗  

2. Section Cl is computed from the 2-d airfoil theory for 

eα . 
3. From Cl and the section chord new lift distribution is 

obtained. 
4. Procedure is repeated. 

A condition of the iteration procedure used by Jacob 
is that the iteration procedure is stopped, if 

εγγγ ≤− + Maxjj /)1()( , 

where: scCl 2/⋅=γ , 

here c is the chord of a wing section, and  
s is the wing span. 
The Maximum number of iterations is limited to 50 

and accuracy is set to 0003,0=ε , which usually takes 
from 20 to 40 iterations. 

Conclusions 

Prandtl’s lifting line theory has developed into 
various methods of calculation for a finite wing during the 
last century. The references presented here prove, that the 
model presented by Prandtl, with some alterations and the 
use of a modern computer, can be used to predict inviscid 
forces acting on a finite wing of high aspect ratio with an 
accuracy compatible to a modern panel methods and 
CFD. Great interest in the theory shows that it is still in 
use at present time. 
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