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Abstract. In contrast to methods that do not take into account multiconnectivity in a broad sense of this term, we develop 
mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-
stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The 
theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been 
developed and the estimations of errors in the terms of A. Ziqmound continuity modules have been received. 
For visualization of profiles the method of the least squares with automatic conjecture, device spline, smooth replenishment, and 
neural nets are used. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations 
and empirical relationships. The reliability of these methods is proved by calculation and experimental investigations heat and 
hydraulic characteristics of the gas turbine first stage nozzle blade. 
 
Keywords: multiconnected systems, method of the boundary integrated equations, splints, neural networks. 

 



A.M. Pashayev, D.D. Askerov, R.A. Sadigov, A.S. Samedov /AVIATION, Vol IX, No 3, 2005, 9-18 
 

 - 10 - 

Introduction 
 

The development of aviation gas turbine engines 
(AGTE) at the present stage is mainly reached by 
assimilation of high values of gas temperature in front of 
the turbine ( ГT ). The activities on gas temperature 
increase are conducted in several directions. Assimilation 
of high ( ГT ) in AGTE is however reached by refinement 
of cooling systems of turbine blades. It is especially 
necessary to note, that with ГT  increase the requirement 
to accuracy of results will increase. In other words, at 
allowed values of AGTE metal 
temperature )00K(1100...13Tlim = , the absolute error of 
temperature calculation should be in limits ( K3020 − ), 
that is no more than 2-3%. 

This is difficult to achieve (multiconnected fields 
with various cooling channels, variables in time and 
coordinates boundary conditions). Such problem solving 
requires application of modern and perfect mathematical 
device. 
 
1. Problem formulation 
 

In classical statement a heat conduction 
differential equation in common case for non-stationary 
process with distribution of heat in multi–dimensional 
area (Fourier-Kirchhoff equation) has a kind [8]:  

,T)  ()(
v

v qgraddiv
t

TC
+=

∂
∂

λ
ρ                              (1) 

where ρ , vc  and λ - accordingly material density, 
thermal capacity, and heat conduction; vq - internal source 
or drain of heat, and T - is required temperature.  

Research has established that the temperature 
condition of the blade profile part with radial cooling 
channels can be determined as two-dimensional [12]. 
Besides, if to suppose constancy of physical properties 
and absence of internal sources (drains) of heat, then the 
temperature field under fixed conditions will depend only 
on the skew shape and on the temperature distribution on 
the skew boundaries. In this case, equation (1) will look 
like: 
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When determining particular temperature fields 
in gas turbine elements are used boundary conditions of 
the third kind, describing heat exchange between the skew 
field and the   environment (on the basis of a hypothesis 
of a Newton-Riemann). In that case, these boundary 
conditions will be recorded as follows: 
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This following equation characterizes the 
quantity of heat transmitted by convection from gas to 
unit of a surface of a blade and assigned by heat 
conduction in a skew field of a blade. 
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Equation (4) characterizes the heat quantity 
assigned by convection of the cooler, which is transmitted 
by heat conduction of the blade material to the surface of 
cooling channels: where 0T is the temperature of 
environment at 0i = ; iT  is the temperature of the 
environment at M1,i =  (temperature of the cooler), 
where M  is the quantity of outlines; 

0γT  is the 

temperature on an outline iγ  at 0i =  (outside outline of 
blade); 

iγT  is the temperature on an iγ  at M1,i =  

(outline of cooling channels); 0α  is the heat transfer 
factor from gas to a surface of a blade (at 0i = ); iα  is 
the heat transfer factor from a blade to the cooling air at 

M1,i = ; λ  is the thermal conductivity of the material of 
a blade; and n  is the external normal on an outline of 
researched area. 
 
2. Problem solution 
 

At present for the solution of this boundary 
problem (2)-(4) four numerical methods are used: 
Methods of Finite Differences (MFD), Finite Element 
Method (FEM), probabilistic method (Monte-Carlo 
method), and Boundary Integral Equations Method 
(BIEM) (or its discrete analog ─ Boundary Element 
Method (BEM)). 

Let us consider BIEM application for the 
solution of problem (2)-(4). 
 
2.1. The function ( )yxTT ,= , continuous with the 
derivatives up to the second order, satisfying the Laplace 
equation in considered area, including and its 
outline ∪

M

0i
iγГ

=
= , is harmonic. Consequence of the Grin 

integral formula for the researched harmonic function 
( )yxTT ,=  is the ratio:   

]ds
n
ТnR

n
nR)([Т

2π
1y)Т(x, Г

Г
Г ∂

∂−∫ ∂
∂= ll ,  (5) 

where R  is the variable at an integration of the distance 
between point ( )yxK , and “running” on the outline k  is 
the point; ГT  is the temperature on the outline Г . The 
temperature value in some point k  lying on the boundary 
is determined (as limiting at approach of point ( )yxK , to 
the boundary) 
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With allowance of the boundary conditions (2)-
(3), after collecting terms of terms and input of new 
factors, the ratio (6) can be presented as a linear algebraic 
equation, computed for the point R : 
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where n is the quantity of sites of a partition of an outside 
outline of a blade )( 0ion

i0
=γγ ll  on small sections 

)( 0iatSS i0 =∆∆ , m is the quantity of sites of a partition of 
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outside outlines of all cooling channels ),( M1i
i

=γl  on 
small sections iS∆ . 

Let us note, that unknowns in the equation (7) 
except the unknown of true value kT  in the k  point are 
also mean on sections of the outlines partition 0S∆  and 

iS∆  temperatures 
m00201

TTT γγγ ,...,, and 
im2i1i

TTT γγγ ,...,,  
(total number mn + ). 

From a ratio (7), we shall receive the required 
temperature for any point, using the formula (5): 
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In activities the discretization of aniline ∪
M

0i
iγГ

=
=  by a 

many discrete point and integrals that are included in the 
equations as logarithmic potentials, was calculated 
approximately with the following ratios [12]: 
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2.2. In contrast to L.V. Arseniev et al., we offer to decide 
the given boundary value problem (2)-(4) as follows [13]. 
We locate the distribution of temperature ( )yxTT ,= as 
follows: 
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where ∪
M

0i
iγГ

=
= -smooth closed Jordan curve; M -quantity 

of cooled channels; ∪
M

0i
i

=
= ρρ - density of a logarithmic 

potential uniformly distributed on iγ  ∪
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0i
isS

=
= . 

Thus curve ∪
M
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iγГ

=
=  are positively oriented and 

are given in a parametric kind: ( )sxx = ; ( )syy = ; 
[ ]L0s ,∈ ; ∫=

Г
dsL . 

Using BIEM and expression (11) we shall put 
problem (2)-(4) to the following system of boundary 
integral equations: 
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where 
2/122 )))()(())()(((),( ξξξ ysyxsxsR −+−= . 

For the singular integral operator’s evaluation, which are 
included in (12) the discrete operators of the logarithmic 
potential with simple and double layer are investigated. 
Their connection and the evaluations in modules term of 
the continuity (evaluation such as assessments by A. 
Zigmound are obtained) are shown: 
Theorem (main) 
Let 

+∞<∫
0 x

x)(ξω . 

And let the equation (12) have the solution f*∈CГ (the set 
of continuous functions on Г). Then ∃Ν0∈Ν= {1, 2…} 
such that the discrete system ∀N>N0, obtained from (12) 
by using the discrete double layer potential operator (its 
properties has been studied), has unique solution 
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where )(ГC  is constant, depending only on 
∞
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where  
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is the two-parameter quadrate formula 

(depending onτ and δ  parameters) for logarithmic 
double layer potential; )(~ zf  is the double layer 
logarithmic potential operator; )(ГC  is the constant, 
dependent only from a curve Г ; )(xfω  is a module of a 
continuity of functions f; 
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(depending on τ and δ  parameters) for logarithmic 
potential simple layer; )(zf&&& is a simple layer logarithmic 
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Thus are developed effective from the point of 
view of realization on computers the numerical methods 
basing on constructed two-parametric quadrate processes 
for the discrete operators logarithmic potential of the 
double and simple layer. Their systematic errors are 
estimated; the methods quadratures mathematically are 
proved for the approximate solution Fredholm I and II 
boundary integral equations using Tikhonov 
regularization and are proved appropriate theorems [9].  
 
2.3. The given calculating technique of the blade 
temperature field can be applied also to blades with the 
plug–in deflector. On consideration blades with deflectors 
in addition to boundary condition of the III kind adjoin 
also interfaces conditions between segments of the outline 
partition as equalities of temperatures and heat flows       

   ),(),( 1 yxTyxT vv += ,                                          (13) 
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n
yxT vv

∂
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=
∂
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where ν  is the number of segments of the outline 
partition of the blade cross-section; and x, y is a 
coordinates of segments. At finding of cooler T best 
values, is necessary to solve the inverse problem of heat 
conduction. For it is necessary at first to find solution of 
the heat conduction direct problem with boundary 
condition of the III kind from a gas leg and boundary 
conditions I kinds from a cooling air leg 

  Ty)(x,T
00 iγv = ,               (15) 

where 
0iT is the unknown optimum temperature of a wall 

of a blade from a leg of a cooling air. 
 
2.4. The developed technique for the numerical solution 
of stationary task of the heat conduction in cooled blades 
can be distributed also to quasistationary case. 
        Let us consider a third boundary-value problem for 
the heat conduction quasilines equation: 
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For linearization of tasks (16) - (17) we shall use the 
Kirchoff permutation: 

∫=
T

0
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Then equation (16) is transformed into the following 
Laplace equation: 
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For preserving convection additives in boundary-value 
condition (17), we shall accept in initial approximation 

cT λλ =)( . Then from (18) we have 
cAT λ/=                (20) 

And the regional condition (17) will be transformed as 
follows: 

0
n

A
AT i

cicii =
∂

∂
−− γ

γ λα )/(              (21) 

So, the stationary problem (19) with (21) is solved by 
boundary integrated equations method. If the solution 

),( yxL  in the ),( yx  point of the linear third boundary-
value problem (19), (21) for the Laplace equation 
substitute in (18) and after integration to solve the 
appropriate algebraic equation, which degree is higher 
than the degree of function ( )Tλ with digit, we shall 
receive meaning of temperature ),( yxT  in the same 
point. Thus in radicals is solved the algebraic equation 
with non-above fourth degree   

AaTaTaTaTa =++++ 43223140 .             (22) 
This corresponds to the ( )Tλ  as the multinomial with 
degree non-above third. In the result, the temperature field 
will be determined on the first approximation, as the 
boundary condition (17) took into account constant 
meaning heat conduction cλ  in convective thermal flows. 

According to it we shall designate this solution ( )1T  
(accordingly ( )1A ). For determining consequents 
approximations ( )2A  (accordingly ( )2T ), the function 

( )TA is decomposing in Taylor series in the neighborhood 

of ( )1T  and the linear members are left in it only. In result 
is received a third boundary-value problem for the 
Laplace equation relatively function ( )2A . The 

( ) )(, zfL ετ
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temperature ( )2T  is determined by the solution of the 
equation (20).  
 
2.5. The multiples computing experiments with the using 
BIEM for calculation the temperature fields of nozzle and 
working blades with various amount and disposition of 
cooling channels, having a complex configuration, is 
showed, that for practical calculations in this approach, 
offered by us, the discretization of the integrations areas 
can be conducted with smaller quantity of discrete points. 
Thus the reactivity of the algorithms developed and 
accuracy of evaluations is increased. The accuracy of 
temperatures calculation, required consumption of the 
cooling air, heat flows, losses from cooling margins 
essentially depends on reliability of boundary conditions, 
included in calculation of heat exchange. 
 
2.6. Piece-polynomial smoothing of cooled gas-turbine 
blade structures with automatic conjecture is considered: 
the method of the least squares, device spline, smooth 
replenishment, and neural nets are used. 
 
2.6.1. Let the equation of the cooled blade outline 
segments is the third degree polynomial:  
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2
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The equation of measurements of the output coordinate 
has a kind: 

y
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210y xaxaxaaZ δ+++=               (24) 
where Zy=║z1y, z2y, …, zny║T - vector of measurements of 
output coordinate, n-amount of the points in the 
consideration interval. For coefficients of polynomial (23) 
estimate the method of the least squares of the following 
kind is used 
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- structural matrix; 

θ
)D  - dispersion matrix of errors; θ

)
=║a0, a1, a2, a3║T - 

vector of estimated coefficients.  
Estimations of coefficients for the first segment is 
received with using formula (25). Beginning with second 
segment, the θ vectors components is calculated on 
experimental data from this segment, but with the account 
of parameters found on the previous segments. Thus, each 
subsequent segment of the blade cross-section outline we 
shall choose with overlapping. Thus, it is expedient to use 
the following linear connections between the estimated 
parameters of the previous segment 1Nθ

)
 and required 

Nθ
)

 for N-th segment: 
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e=(N-1)(n-L); L- number points of overlapping. 
The expressions (27)-(29) describe communications, 
which provide joining of segments of interpolation on 
function with first and second degrees. 

Taking into account the accuracy of 
measurements, the problem of defining unknown 
coefficients of the model in this case can be formulated as 
a problem conditional extremum: minimization of the 
quadratic form (Zy-Xθ)Tσ2I(Zy-θ) under the limiting 
condition (27). Here I is a individual matrix. 
 For the  solution of such problems, usually are 
using the method of Lagrange uncertain multipliers. In 
result, we shall write down the following expressions for 
estimation vector of coefficients at linear connections 
presence (27): 

θ
~ T=θ

)
T+(VT-θ

)
TAT)[A(XTX)-1AT]-1A(XTX)-1 ,       (30) 

 
−= θθ

)DD~ (XTX)-1AT[A(XTX)-1AT]-1A(XTX)-1σ2,    (31) 
Substituting matrixes A and Х and vectors Zy and V in 
expressions (25), (26), (30), and (31), we receive 
estimations of the vector of coefficients for segment of the 
cooled blade section with number N and also the 
dispersing matrix of errors. 

As a result of consecutive application of the 
described procedure and with using of experimental data, 
we shall receive peace-polynomial interpolation of the 
researched segments with automatic conjecture. 
Research showed that optimum overlapping in most cases 
is the 50%-overlapping. 
 
2.6.2. Besides peace-polynomial regression exist 
interpolation splines which represent polynomial (low odd 
degrees - third, fifth), subordinated to the condition of 
function and derivatives (first and second in case of cubic 
spline) continuity in common points of the next segments. 
If the equation of the cooled gas-turbine blades profile is 
described cubic spline submitted in obvious polynomial 
kind (23), the coefficients а0, а1, а2, а3 determining j-th 
spline, i.e. line connecting the points Zj=(xj, yj) and 
Zj+1=(xj+1, yj+1), are calculating as follows: 
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where hj+1=|zj+1-zj|, j= 1,1 −N . 
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2.6.3. Let us consider other way smooth replenishment of 
the cooled gas-turbine blade profile on the precisely 
measured meaning of coordinates in final system of 
discrete points, distinguishing from spline-function 
method and also from the point of view of effective 
realization on computers. 

Let equation cooled blades profile segments are 
described by the multinomial of the third degree of the 
type (23). By taking advantage the smooth replenishment 
method (conditions of function smooth and first derivative 
are carried out) we shall define its coefficients: 
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                (33) 

j= SN −−1,1 , S=1. 
If it’s required carry out conditions of function smooth 
first and second derivatives, i.e. corresponding to cubic 
splines smooth, we shall deal with the multinomial of the 
fifth degree (degree of the multinomial is equal 2S + 1, 
i.e. S = 2). 

The advantage of such approach (smooth 
replenishment) is that it’s not necessary to solve system of 
the linear algebraic equations, as in case of the spline 
application, though the degree of the multinomial is 
higher 2. 
 
2.6.4. A new approach of mathematical models’ 
parameters identification is considered. This approach is 
based on Neural Networks (Soft Computing) [1, 12, 5]. 
Let us consider the regression equations: 
 

m,i;xaY j

n

j
iji 1

1
==∑

=
               (34) 

lsr;l,s;l,r;xxaY
s,r

sr
rsi ≤+===∑ 0021 ,             (35) 

where rsa are the required parameters (regression 
coefficients). 

The problem is put definition of values ija  and 

rsa  parameters of equations (34) and (35) based on the 
statistical experimental data, i.e. input jx  and 21, xx , 

output coordinates Y of the model. 
Neural Network (NN) consists from connected 

between their neurons sets. At using NN for the solving 
(34) and (35) input signals of the network are accordingly 
values of variables ),...,,( 21 nxxxX = , ),( 21 xxX =  and 
output Y . 

At the solving of the identification problem of 
parameters ija  and rsa for the equations (34) and (35) 
with using NN, the basic problem is training the last.  

We allow, there are statistical data from 
experiments. On the basis of these input and output data 
we making training pairs ),( TX  for network training. 
For construction of the model process on input of NN 
input signals X  move and outputs are compared with 
reference output signalsТ . 

After comparison, the deviation value is 
calculating by formula  

∑
=

−=
k

j
jj TYE

1

2)(
2
1

. 

If for all training pairs, deviation value Е  less given then 
training (correction) parameters of a network comes to 
end (Fig 1). In opposite case it continues until value Е  
will not reach minimum. 
 
Correction of network parameters for left and right part is 
carried out as follows: 

rs

c
rs

н
rs a

Eaa
∂
∂

+= γ , 

where н
rs

c
rs aa , are the old and new values of NN 

parameters and γ is training speed. 
The structure of NN for identifying the parameters of the 
equation (34) is given on Fig 2. 
 

Correction algorithm 

Input 
signals 

Target 

signals Deviations 

Training 

quality 

Random-number 
generator 

NN      Parameters Y 
 

X 
 

Fig 1. System for network-parameter (weights, threshold) training (with feedback) 
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2.7. For determining of the temperature fields of AGTE 
elements, the problem of gas flow distribution on blades’ 
profile of the turbine cascade is considered. The solution 
is based on the numerical realization of the Fredholm 
boundary integrated equation II kind. 
 
2.7.1. On the basis of the theory of the potential flow of 
cascades, distribution of speed along the profile contour 
can be found by solving of the following integrated 
equation [9]:  

( ) ( ) ( )∫±+=
+

∞∞∞
S

2
1

B2
1

kkkk dSГyxVyx θϕθααϕ ππ ∓sincos, ,(36) 

where ),( kk yxϕ  is the value of speeds potential; ∞V  is 
the gas speed vectors mean on the flowing; ∞α - is the 
angle between the vector ∞V  and the profile cascade 
axis; Г  is the circulation of speed; and Вθ  is the angle that 
corresponds to the outlet edge of the profile.  
              For the numerical solution of the integrated 
equation (36) the following approximating expression is 
received: 

( ) ( ) Bj2
1

jkjk
n

1i
1ij1ijij ГyxV ,,, sincos θααθθϕϕ π±+=∑ −± ∞∞∞

=
−+

, 

where 12 −= ni , nj 2= , n  is the numbers of parts.  
Distribution of speeds potential ϕ  along the profile 
contour received from the solution of linear algebraic 
equations system.  

The value of the gas flow speed is determined by 
the derivation of speeds potential along the contour s , i.e. 

( ) dsdsV ϕ= . 
 
2.7.2. Distribution of speed along the profile contour can 
be determined by solving the integral equation for the 
current function ψ  [9, 3]: 
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taking it to simple algebraic type: 
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2.8. The data of speed distribution along the profile 
contour are incoming for determining outer boundary heat 
exchange conditions.  

The “ЦКТИ” method is used for finding the local 
heat transfer coefficient гα  in this case [13].  

At the thickened entrance edges characteristic of 
cooled gas vanes, the outer local heat exchange is 
described by empirical dependences offered by E.G. 
Roost [13]: 

TuxxNu ε⋅⋅= 5,0Re5,0 , 
where   

at ;/Tu:%,Tu%, ,
Tu 1015301 41+=ε<<  

at  104153 280 /Tu:Tu%, ,
Tu +=ε<  

 
2.9. The problem of determining inner boundary heat 
exchange conditions is necessary. 

For example, to calculate heat transfer in the 
cooling channel track of the vanes of deflector 
construction usually is applied criterial relationships. The 
mean coefficients on the inner surface of the carrier 
envelope at the entrance edge zone under the condition of 
its spray injection by the number of sprays from round 
holes in the nose deflector were obtained by the equation 
[7]: 

)//(PrRe ..
equ

430980 bLCNu = , 

where 0
2
0 2tdbequ π= - the width of hole which is 

equivalent by the trans area; 0d , 0t - diameter and pitch of 
the holes in nose deflector. The Re criterion in this 
formula is determined by the speed of the flow from the 
holes at the exit in the nose deflector and the length L of 
the carrier wall in the entrance edge zone. 

The empirical criterion equation earlier received 
[6]: 

( )
( ) ,Re

1.056.034.036.0018.0
8.0

2

⋅⋅

⋅−+−=
k

ckkc

x

fGfG

ShNu δδ         (37) 

was used for the calculation of the mean coefficient of 
heat transfer at the inner surface of the vane wall in the 
area of the perforated deflector. 

In this equation: dδδ =  is the relative width of 

the deflector; dhh = is the relative height of the slot 

channel between deflector and vane wall; dSS =  is the 
relative longitudinal step of perforations holes system; d is 
the diameter of perforation; δ45.075.0 −=L ; 

hk 5.025.0 += . The Reynolds criterion in the formula 
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Fig 2. Neural network structure for multiple linear regression equation 
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(37) is defined by hydraulic diameter of cross-section 
channel and speed of cooler flow in the channel after the 
zone of deflector perforation. 
 
2.10. At known geometry of the cooling scheme, for 
definition of the convective heat exchange local 
coefficients Вα  of the cooler by the standard empirical 
formulas, is necessary to have income values of airflow 
distribution in cooling channels.  

For example, for blades with deflector and with 
cross current, the value of the airflow ВG  for blade 
cooling is possible to define with the following 
dependence: 
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where Гψ , Вψ  is the gas and air temperature 
coefficients; фκ  is the coefficient of the form; Вd is the 

characteristic size in the formula BRe ; Вµ , Вλ  is the 
cooler dynamic viscosity and heat conductivity 
coefficients; Вi  is the Bio criterion for the blade wall; ВF  
is the total area of passage for air; C  and n  is the 
coefficient and exponent ratio in criteria formulas for 
convective heat exchange n

ВВ CNu Re=  for considered 
cooling parts. 
 
2.11. To determine the distribution of flow in the blade 
cooling system, an equivalent hydraulic scheme is built. 
The construction of the equivalent hydraulic tract circuit 
of the vane cooling is connected with the description of 
the cooled vane design. The whole passage of coolant 
flow is divided in some definite interconnected sections, 
the so-called typical elements, and every one has the 
possibility of identical definition of hydraulic resistance. 
The points of connection of typical elements are changed 
by node points, in which the streams, mergion or division 
of cooler flows is taking places proposal without pressure 
change. All the typical elements and node points are 
connected in the same sequence and order as the tract sites 
of the cooled vane.  

To describe the coolant flow at every inner node 
the 1st low by Kirchhoff is used: 

( ) n321ipkpsignGf
m

1j

m

1j
ijijijij1 ...,,; =∑ ∑==

= =
∆∆     (38) 

where ijG  is the discharge of coolant on the element, 
ji − , m  are the e number of typical elements connected 

to i node of the circuit, n  is the number of inner nodes of 
hydraulic circuit, ijp∆ - losses of total pressure of the 
coolant on element ji − . In this formula the coefficient 
of hydraulic conductivity of the circuit element ( ji − ) is 
defined as: 

ijij
2

ijij pf2k ξ⋅= ,               (39) 

where ijijij pf ξ,,  are the mean area of the cross-section 
passage of elements ( ji − ), density of coolant flow in 
the element, and coefficient of hydraulic resistance of this 
element. The system of nonlinear algebraic equations (38) 
is solved by the Zeidel method with acceleration, taken 
from: 

( )kk
i

k
i

1k
i pffpp ∂∂−=+ , 

where k  is the iteration number, k
ip  is the coolant 

pressure in i node of the hydraulic circuit. The 
coefficients of hydraulic resistance ijξ  used in (39) are 
defined by analytical dependencies, which are in the 
literature available at present [7]. 

For example, to calculate a part of the cooling 
tract that includes the area of deflector perforation 
coefficients of hydraulic resistance in spray [2]: 

( )
( ) ( ) 230ff2

1m
10ff2

GG

kckc

m
kr

c .
,

. −
=

−
=Σξ  

and in general channel: 
( ) ( ) 30ff3810nGG11 kc

n
krc .ln.,. −==Σξ  

In these formulas, kr GG ,  are cooling air consumption in 
the spray stream through the perforation deflector holes 
and slot channel between the deflector and vanes wall, 
and kr ff , - the flow areas. 
 
3. Results  
 

The developed techniques of profiling, 
calculation of temperature fields and parameters of the 
cooler in cooling systems are approved at research of the 
gas turbine I st stage nozzle blades thermal condition. 
Thus the following geometrical and regime parameters of 
the stage are used: step of the cascade – ммt 5.41= , inlet 
gas speed to cascade – sм156V1 /= , outlet gas speed 
from cascade – sм512V2 /= , inlet gas speed vector 

angle – 0
1 7.0=α , gas flow temperature and pressure: on 

the entrance to the stage - KTг 1333* = , 

Pа1020951p 6
г ⋅= .* , on the exit from stage -

KTг 10051 = , Pа10750p 6
1г ⋅= . ; relative gas speed 

on the exit from the cascade – 8910аd1 .=λ . 
The geometrical model of the nozzle blades (Fig 

3), diagrams of speed distributions V and convective heat 
exchange local coefficients of gas гα  along profile 
contour (Fig 4) are received. 

The geometrical model (Fig 5) and the cooling 
tract equivalent hydraulic scheme (Fig 6) are developed. 
Cooler basics parameters in the cooling system and 
temperature field of blade cross section (Fig 7) are 
determined. 
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Fig 3. The cascade of profiles of the 
nozzle cooled blade  
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Fig 4. Distribution of the relative 
speeds λ  (1) and of gas convective heat 
exchange coefficients Гα   (2) along the 
periphery of the profile contour 
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Fig 5. Geometrical model with foliation of 
design points of contour (1-78) and 
equivalent hydraulic schemes reference 
sections (1-50) of the experimental nozzle 
blade 
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Fig 6. The equivalent hydraulic scheme of 
experimental nozzle blade cooling system 
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Fig 7. Distribution of temperature along outside (   ) and internal (    ) contours of 
the cooled nozzle blade 
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Conclusions 
 
The reliability of the methods was proved by 

experimental investigations heat and hydraulic 
characteristics of blades in "Turbine Construction" 
(Laboratory in St. Petersburg, Russia). Geometric model, 
equivalent hydraulic schemes of cooling tracks have been 
obtained, cooler parameters and temperature field of 
“Turbo machinery Plant” enterprise (Yekaterinburg, 
Russia) gas turbine nozzle blade of the 1st stage have 
been determined. Methods have demonstrated high 
efficiency at repeated and polivariant calculations, on the 
basis of which has been offered the way of blade cooling 
system modernization.  

The application of perfect methods of calculation 
of temperature fields of elements of gas turbines is one of 
the actual problems of gas turbine engines design. The 
efficiency of these methods in the total influences to 
operational manufacturability, reliability of engine 
elements design, and on acceleration characteristics of the 
engine. 
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