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Abstract. The article is devoted to the theoretical analysis the problem of acoustic emission signals application for the detection of
self-accelerated crack development. The acoustic emission signal model has been proposed which takes into account the change of
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acoustic emission signal amplitude and compression the signal in time.
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Introduction

During the loading of the material, as is well
known, gradual development of plastic deformation proc-
esses appearance and growth of cracks occur [18, 13].
The results of experimental research [3, 4, 5] show that
these processes are the source of acoustic emission signal
radiation (AE) [15, 6, 4]. One of the directions in investi-
gating the AE phenomenon is studying the form of the

AE signals registered. A considerable number of works
have been dedicated to their study [7, 2, 1]. At the same
time, published material do not always contain research
related to the theoretical description of AE signals and
explaining the difference between the signals registered
during plastic deformation and growth of cracks in the
material. The models available, for example [16] and 17],
show that a primary AE signal represents a video pulse.
They however do not take into account the real conditions
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of the behavior developing in the material and do not ex-
plain the existence of their complex form. Therefore the
real AE signal is shown as follows

U()=Y AF(t~1)- 1

where 4. is a random amplitude of the pulse appearing in
a random moment of time t; F, — characteristics of a

single-pulse form. Summing up is produced along the to-
tal of the pulses n, registered by an AE sensor.

In other words, an AE signal is presented as a
sum of primary signals having random amplitude and
time of appearance. It is thus considered that the signal
form is initially considered common for all signals [17, 5,
3]

At the same time, experimental research shows
that AE signals for the processes of plastic deformation
and crack growth differ from each other in form. In works
[11] and [12], with certain assumptions taken into ac-
count, the models of forming AE signals when a fragile
crack is developing in the material and plastic deforma-
tion is progressing have been developed. The results of
AE signal modeling carried out, in accordance with the
models developed, allowed their complex form to be ex-
plained It was thus shown that the transformation of AE
signal form is considerably influenced by the speed of
processes developing in the material at their loading.

In considering the AE signal model from a frag-
ile crack developing in some heterogencous area and in
modeling the forming signal, some works state that the
destruction of elementary volumes takes place with con-
stant speed or speed of destruction at some instants of
time changes, i.e. it can increase or decrease [11, 9]. It is
in accord with the existing ideas about the development
of the destruction process and is related to random distri-
bution of elementary volume characteristics in their
strength [22]. At the same time, when a crack is develop-
ing, the destruction of every elementary volume results in
redistribution of tensions in the heterogeneous area and
increase of local tension applied to non-destructed vol-
umes remaining in the heterogeneous area. Such an in-
crease by all means must influence the acceleration of the
destruction process, i.e. the destruction process (crack
growth) can have a self-accelerated nature of develop-
ment.

Mathematical description of AE signal from a
fragile crack, appearing in a local heterogeneous area,
with self-congruent character of its development taken
into account, will be performed. Besides, its influence on
the parameters and form of an AE signal will be shown.

Model of acoustic emission signal

Let us assume that in the ideal homogeneous
specimen of material there is some local heterogeneous
area, which is located in a plane. Its size is much smaller
than the model size, i.e. the heterogeneous area (S7) is
considerably smaller than the specimen cross-section (S),
S7<<S (Fig.1). We will presume that when the increasing
stretch forming tension to the specimen of the material
that is applied perpendicularly to the plane of existing

heterogeneity, in the area it occupies, a crack appears. As
in previous research [16], we will consider that the area
of heterogeneity consists of separate minor volumes
(Fig.1), their degree (/) being considerably smaller than
the degree of the smallest internal heterogeneity (A) in

the area S, , i.e. / << A. Crack in plane S_ appears by

means of mechanical destruction of its small volumes
which possesses different levels of strength (we mean lo-
cal strength of separate volumes). Their destruction takes
place when the value of the tension applied achieves the
value of the local tension of separate elementary volume

destruction.
e

5(L)
—O_ A ¢

T Few ¢

l 6y (1)
Fig 1. Crack growth in the material model with structural het-
erogeneity: S — cross-section area of the specimen; S;— area
of heterogeneity; O — elementary volume in the area of hetero-

geneity; o, () — change of external tension (external lade);

o (t)— change of local tension in the area of heterogeneity

In this case, at some tension o applied, the
number of local volumes destructed will be determined
by the integral

NPth)C}p(Gp)dG’ (2)
0

where N,, Np, — total number of volumes in the area of
heterogeneity and the number of volumes destructed;
p(o,) — function of distributing volumes in the area of
heterogeneity relative to strength.

The type of function p(o,) is determined ex-
perimentally when testing the material specimens of
identical size on destruction. The distribution p(c,)

looks like [21, 22]
p(op)zcapexp(—bop), 3)

where ¢, b — empiric distribution coefficients.
The increment of the number of destructed vol-
umes for the time df will be equal to

dN, =N, ple®)ld[o ()], 4)
where d[o(¢f)] — increment of tension in the area of

heterogeneity, which complies with the specified period
of time dt. From expression (4) we find that the destruc-
tion speed, i.e. the number of destructed volumes in the
unit of time, is determined by the expression

dN, do(t),, 5
O(0)==1e =N ploO][~ -] )

As in the work [11], we will consider that de-
struction of every elementary volume is accompanied by
forming a perturbation single-pulse, bell-like form. Per-
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turbation duration single-pulse & being short and much
less than the time of all the destruction process (crack de-
velopment). We are not going to consider relaxation
processes in perturbation pulse extension, i.e. we will
consider that the perturbation pulse is not distorted and
spreads without fading. There is no doubt that the pertur-
bation pulse amplitude is determined by the value of local
tension O applied, which is equal to critical tension that
causes destruction. The more critical tension, the greater
the amplitude of perturbation pulse is. We will therefore
consider that proportion A, () ~ o (1) is implemented, or

4y (1) =Co (1), Q)
where 4, — amplitude of perturbation pulse indignation;
¢ — proportion coefficient; o(r)— dependence of local

tension change in time.

Then the perturbation pulse formed at destruc-
tion of one elementary volume will be written as a of
product of its amplitude and the function of form

A(t,t) = A(t)a(t) (7
where a(r)— function that determines the form of per-

turbation pulse; 7 — time of perturbation pulse develop-
ment, which is considerably less than the time of crack
development.

It is thus assumed that the function a(r) is identical for

all destructed elementary volumes and has a single ampli-
tude [11].

The resulting shift that is formed in the arbitrary
moment of time is equal to the sum of perturbations from
elementary volumes destroyed at a given moment of time.
If perturbation duration single-pulse 6 is much shorter
than the time of crack formation, the expression for gen-
eral formed shift at a given moment of time ¢, in accor-
dance with, will be written down

U, (1) = 4y(1)D(1)5, (8)

where Uy (1) — resulting shift; 6, — integral parameter

of the form of perturbation pulse, its numeral value being
%
equal to 8= [a(t)dr [11].
-5
2
Putting expressions (5), and (6) into (8) we will
obtain the resulting displacement in the moment of time ¢,
which is described by the correlation

Us (=G0 03N, plo (0] ©. ©)

Let us assume that the external load applied to
the model (Fig 1) changes under the linear law

o,=0ot, (10)

where a — speed of loading, which is constant.

Because of random distribution of elementary vol-
umes concerning strength, their destruction will have un-
even character. Local tensions in area of heterogeneity
(o(t)) will therefore not be equal (10) but will change
depending on the progress of elementary volume de-

struction process. With an increase in the amount of de-
structed elementary volumes, local tension in the area of

heterogeneity, where destruction takes place, will in-
crease. The speed of the growth of tension in the area of
the heterogeneity depends not only on speed of inputting
external tension, but also on the amount of the elementary
volumes destructed. In other words, the more destructed
volumes, the greater local tension (o (¢), Fig 1) is applied

to other volumes. For speed of local tension growth that
results in destruction of elementary volumes in the area of
heterogeneity it is therefore possible to write down the
expression
a(t)
a, =a(l+x [ p(o)do): (11)
0

where x — proportion coefficient.

With (10) and (11) taken into consideration the
expression for temporal dependence of tension change in
area of heterogeneity acquires rather complex appearance
and is presented by the equation

o(1)
oc()=at(l+k Ip(a)da) . 12)

Let us take the derivative from the equation (12)
and we will obtain

o(t)
dflt(t) = o +aK jP(o)dc +axp(o(t) —= G(I) (13)
0

Solving equation (13) in relation to the deriva-
tive, we will get the expression for the tension derivative
in the area of the heterogeneity

o(t)

l+k jp(cr)dcr
dO'(t) —a 0 ) (14)
dt 1-akp(o)

The expression (14) shows, that a denominator can not be
equal to zero, i.e. inequality 1-akp(c)>0 must be ob-
served (c)>0.

Putting into (12) the expression for distributing
elementary volumes according to strength (3), we will
see, that tension dependence on time is expressed by the
integral

o(t)
o(t)=a{l+ck Icexp(—bc)do}t~ (15)
0
After calculating the integral in (15), this expression will
be rewritten as follows

o(t) :at+a%t{%[l—exp(—ba(t))]— (16)

—o(t)exp(—bo (1))}

Thus, it is seen from expression (15), that local
tension change is found in solving the transcendent equa-
tion.

If correlations (9) - (13) are taken into account,
the expression for resulting displacement will look like

a(t)
U,(6)=Cat{l +x j p(c)do}s N, x
0 a7
o ()
1+ K -[ p(o)do

plo()]a —l_omp(c)
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Putting into (17) the distribution function (3), we
will see that the expression for resulting shift now ac-
quires the form

o (1)

U,(t) = ¢at[l + ck IG exp( —bo)do 16, N at(l+
0

o (1)
+ cK JG exp( —bo)do ) x (18)
0

o (1)
x exp( —bat(l+ cx IG exp( —bo)do))a x
0

o (1)
1+ cx JG exp( —-bo)do
0

* 1~ acko exp(—bo (1))
After calculating the integrals in (18) with reference to
(16), we will get the following expression
U 1) = 6@ 75 N 11+ ¢ (1 - exp( ~bor (1) -
—o(t)exp(—bo ()]}’ exp (—bat{l + (19)

+ C%[%(l —exp(—bo (1)) — o (t)exp(—bo ()]} )/

/Tl = acko (t) exp( —bo (1))]

It is quite obvious that investigation of (19) is
rather complicated problem. Therefore we will consider
some approximations.

The simplest is the case, when value x is small,
i.e. k<<l. Taking into account this approximation, the
expression (20) is simplified and assumes the type

U,(t)=¢a’t’s N, {1+ c%[%(l —exp(=bao (1)) -
—o(t)exp(=bo ()]} exp(—bat{l + (20)

¥ c%[% (1 - exp(~bo (1)) — o (1) exp(~ba (1)]} ) X

X[1+ acxo (t)exp(—bo (1))]
Moreover, when value k is small it is possible to find so-
lution of equation (16) by presenting dependence of ten-
sion on time as a row on K:

o(f)=at +Kuy +K%us +... 21)
where the first sum is zero approximation, o, () =o, a

ui(?), uy(t) — unknown functions. If we limit ourselves
only to the first infinitesimal order, we will find depend-
ence u(, which we will write down as

u (1) = o %t{%[l —exp( —bat)] - atexp( —bar)) - (22)

Now expression for tension in the area of heterogeneity
will look like

o(t)=at+ax %t{%[l —exp(—bat)]—atexp(—bat)} (23)

In Fig 2, dependencies of local tension change are pre-
sented in the area of the heterogeneity, in obedience to
expression (23), in relative units. Dependencies were
built for conditions when k is equal to zero (k=0), i.e.
self-acceleration of destruction process is absent (change
of local tension is equal to external tension change), and
when k= 0,4, i.e. there is self-acceleration of the destruc-
tion process. In drawing graphs, the values =40, b=15
were accepted. Value c in distribution (3) was determined
from the normalization condition, i.e. ¢= b

It is apparent from the results obtained that destruction
process self-acceleration results in non-linearity in the
dependence of changing local tension in time, local ten-
sion in relation to external tension being increased.

We will find the derivative from expression (23)

do(t) _
dt

oc(l+t<%{%[l—exp(—boct)]— (24)
—atexp(=bat)})+a’kct* exp(-bat).

We will put (23) into (20) and obviously obtain
the dependence of resulting shift on time, which acquires
the form

U,(@t)= a3t26SU0 {1+ c%[% (1—-exp(—bat)—

—atexp(—bat)]} exp(—bat{l+c % [% (1- 25)
—exp(—bat) —atexp(-bat)]})x
x[1+a’cxt exp(—bat)],

where designation U, = ¢N,, which is the peak value of

the shift resulting pulse, is entered (AE signal). We are
talking about AE signal, because in case of a broad-band
transducer the output electric signal repeat the pulse of
mechanical shift {7 . (t).

We will write down expression (25) in a differ-
ent way

U, (1) =a’t®s,U {1+ c%[%(l —exp(—bat) -

, 1

—atexp(—bat)]} exp(—bat{lJrc%[z(l - 26)
—exp(—bat) —at exp(—bat)]}) x

x{l+c % [é (1—exp(—bat) —atexp(—bat)] +

+a’cxt’ exp(=bat)}

0.25 1

0.2 \
0.15 \

2

0.001 0.002 0.003 0.004 0.005 0.006 ZL,/,,,,,,,,

Fig 2. Dependencies of tension change (in relative units) in lo-
cal area of heterogeneity with constant speed of specimen load-
ing: 1 — x=0,4; 2 — k=0. For both graphs a=40, b=15

In case of independent destruction of elementary
volumes in the area of heterogeneity, i.e. if self-
acceleration of destruction process is absent, parameter
value k£ will equal zero, k=0. If this parameter value k is
put into (25), we will receive the expression

U,@t)= U()(3Sc)531,‘2 exp(—bat) - (27)
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Expression (27) corresponds to the model of the AE sig-
nal when a fragile crack is formed in the material [16], on
the condition that dependence of tension change in the

0.002 0.004 0.006 0.008 0.01 0.012 0.014 Z‘Nm,unm

Fig 3. Dependencies of change of resulting shift in relative
units: 1 — calculations according to expression (26), if k=0,4; 2
— calculations according to expression (27), if k=0. For both

graphs =40, b=15 is accepted. U — rationed value on

U

relat.un.

max * Lrelarun, — Yationed valueon ¢ = const

area of the heterogeneity (local tension) corresponds to
the dependence of change in the external tension applied.

The calculation results in change dependencies
U(t)=U,(t)/U,in relative units, according to expres-

sions (26) and (27), are shown in Fig 3. When drawing
graphs (Fig 3) time rationed for time of loading which
has constant value (¢, ). Parameters o and b are reduced

to dimensionless values. For curve 1, Fig 3 the value of k&
was accepted equal £=0,4.

It can be seen in Fig 3 that self-acceleration of the-
destruction process of elementary volumes in the area of
the heterogeneity results in growth of local tensions, and
leads to compression of AE signal and increase of its am-
plitude. It is well coordinated with the results of AE sig-
nal modeling from crack , when the conditions of uneven
growth of speed in the final stages of its development
have been modeled [9].

Conclusions

The results of the research carried out show, that
self-acceleration of the process of destruction develop-
ment leads to compression of AE signal. It should be
noted that this compression in the growth of self-
acceleration degree is accompanied by symmetrization of
the shape of the signal formed and the degree of self-
acceleration of the destruction process gradually in-
creases. As calculations show, the transformation of the
AE signal into a of triangular form signal which is also
observed in the results of experimental research], takes
place [12, 9]. According to the results obtained, it is in-
fluenced by the acceleration of the process of destruction
at the final stage of its development, when, as is seen in
Fig 2, deviation of temporal dependence of tension
change in the local area of heterogeneity from linear mo-
tion takes place.
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