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Abstract. Uncertainties in aero elastic analysis are investigated. In aero elastic analysis, we usually find divergence speed or 
flutter speed by using deterministic equations of motion for elastic wings of aircraft.  If any parameter in these equations is sensitive 
to the critical speed, we should treat it carefully since inaccuracy is inevitable in the production process. Tragic failure may occur if 
the margin is small. Therefore, it is important to know in the analysis the effects of uncertainties of the critical values when they play 
a critical role in the design. The sensitivity of parameters in aero elastic analysis is not simple even in linear analysis. It is not always 
possible to have an analytic form of the sensitivity of uncertainty. In order to evaluate the structural sensitivity of aero elastic 
phenomena, we have to resort to numerical calculations with uncertain parameters having some random deviations, i.e. the so-called 
Monte Carlo simulation. In the present study, the divergence speed and flutter speed of a typical wing section with structural 
uncertainties are discussed, and some results of calculations with scattering parameters in Gaussian distribution will be presented. 
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Introduction 

In the engineering analysis, uncertainty was firstly 
introduced in an aircraft landing response after the touch 
down by assuming the external forces from the runway as 
random load [4, 5]. The most typical analysis in the 
aeronautical field including randomness is the gust 
response of aircraft. They assumes random gust instead of 
the discrete one that has a fixed mode shape [10]. 
Recently, the author of this paper has studied an 
estimation method to find out the condition of in-flight 
breakups or in-flight collisions of aircraft from the 
location of structural fragments on the ground [11]. He 
introduced uncertainties for each fragment falling down 
through the sky. The uncertainty is included in the 
aerodynamic forces while falling. The conditions of 
speed, wind direction, wind speed, and the height of the 
occurrence were estimated approximately to confirm a 
scenario for the accidents. There is a good textbook for 
the stochastic analysis of structure [8]. Owing to the 
development of the finite element method, the capability 
of the structural analysis has been broadened to consider 

the uncertainty in the analytical models. The uncertainty 
is also practically included in the control theory. In the 
analysis, sensor noise and disturbance were assumed as 
white Gaussian distribution in many cases. The method is 
applied to the aeroservoelastic problem of flutter to be 
suppressed by the control [6, 2]. As for the uncertainty 
materials, fiber directions in a laminated composite were 
studied for the effects on panel flutter [7]. Numerical 
simulation technique is also utilized with uncertainties. It 
is applied to the non-linear problem of limit cycle 
oscillation [9]. For the typical type of bending-torsion 
flutter of aircraft wings, the effect of structural 
uncertainties has not been studied yet. It may be due to 
the difficulty of the analysis to obtain the flutter 
boundary. It can easily be thought that a small uncertainty 
in the structural damping can significantly affect the 
flutter critical speed when the flutter is in so-called hump 
mode. Therefore, it is important to see the effects of 
uncertainty with the structural parameter on the flutter 
boundary. 
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1. Effects of uncertainty on a divergence 
speed 

Let us consider a typical section of a wing depicted 
in Figure 1. 

 

Fig 1. Typical wing section 

The divergence speed of this wing section can be given 
by the formula [10] 
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where SCL     ,, αρ , and 
αK  are air density, lift curve 

slope, wing area, and torsional stiffness, respectively.  As 
depicted in Figure 1, the symbol e denotes the non-
dimensional distance between aerodynamic center and the 
elastic axis. Once the divergence speed is given in an 
analytical form, it is easy to find the sensitivity of each 
parameter involved in the equation. These sensitivities are 
closely related to the effects of uncertainty, since it 
corresponds to the amount of the effects of derivation 
from a nominal state. The sensitivity of the torsional 
stiffness to the divergence speed can be obtained by 
differentiating equation (1) with respect to

αK as 
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and with respect to e  as 
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Similar to the equations above, the effect of 
uncertainty of each parameter can be evaluated as 
follows. 
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It can be said from equation (4) that the rate of the 
effects are the same as each parameter with different 
direction depending on the sign of the derivatives.  It 
should be noted, however, that the second term may cause 
large deviation when the numerator is small, which means 
the aeroelastic axis approaches the aerodynamic center. 

It can be said from equation (4) that the rate of the 
effects are the same as each parameter with different 

direction depending on the sign of the derivatives.  It 
should be noted, however, that the second term may cause 
large deviation when the numerator is small, which means 
the aeroelastic axis approaches the aerodynamic center. 

2. Effects of uncertainty on flutter speeds 
Generally, it is difficult to obtain analytical 

expression of the flutter boundary even for the simple 
typical section discussed in the previous section.  One 
empirical formula is available for the small frequency 
ratio of 1/ <<αωωh

  [10]. 
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In the formula above, the parameters  m , 
αI , and 

αr  are the mass, moment of inertia, and the radius of 
gyration of the airfoil, and the variable X is the 
dimensional location of the center of gravity. 

The flutter dynamic pressure becomes 
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The sensitivity of parameters to this critical dynamic 
pressure can be obtained by differentiating with respect to 
each parameter as 
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Thus, the effects of uncertainty with these 
parameters on the flutter dynamic pressure can be written 
as 
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It can be said from the equation above that the 
location of the center of gravity becomes very sensitive 
against the flutter critical values when the quantity b+2X 
is small. 

  Let us consider more general flutter boundaries for 
this typical wing section. The equilibrium equations of 
this two-degree-of-freedom system become [11] 

hh QhmShm =++ 2ωαα &&&&  (11) 

ααααα αωα QIIhS =++ 2&&&&  (12) 

where the symbol 

αα mbxS =  (13) 
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denotes the static unbalance and the right hand sides of 
the equations are the external aerodynamic forces for 
heaving and pitching motion. 

The equilibrium equations yield a non-dimensional 
characteristic equation if we use the static aerodynamic 
forces as 

0
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where the following dimensionless parameters are 
defined. 
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The determinant equation (14) reduces to the form, 

02 =++ CBA λλ  (16) 

Stability boundary can be derived from the 
discriminant of this quadratic form for λ. 

042 =− ACB  (17) 

This equation is also the quadratic equation for the 
non-dimensional dynamic pressure parameter of Q.  
Solving Equation (17) for Q, we obtain the following 
flutter boundary. 
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where the quantities in the right hand side are given 
by 
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When we use the critical speed instead of the 
dynamic pressure, the non-dimensional flutter speed can 
be related to the dynamic pressure parameter Q as 
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where µ  is the mass ratio defined by 
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m
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3. Numerical examples 
First, the results of the deterministic solution of 

Equation (18) is shown in Figure 2 with the parameters 
e , αx , and 2

αr  taken as 0.2, 0.2, and 0.25, respectively. 

 

Fig 2. Deterministic flutter boundary 

It shows the dependency of the flutter speed on the 
frequency ratio R.  The upper region above the boundary 
corresponds to the unstable area, i.e. flutter. The 
boundary becomes the lowest just before one as the 
frequency ratio increases. The result is reasonable if you 
think of the coupling between the two degrees of freedom 
to cause flutter. It may be interesting to compare these 
results with those of equation (5) for the low frequency 
ratio. The substitution of the condition, R=0 into 
equations from (19) to (21) yields  

)/(2
αα xerQF +=  (24) 

Using the equations (22) and (23), we can see the 
relationship between the empirical formula (5) and 
Equation (24).  The comparison leads to a conclusion that 
the empirical formula corresponds to Equation (5) if the 
following relationship holds. 

πα 2=lC  (25) 

The theoretical value of the lift curve slope of a 2-D 
airfoil is 2π , whereas it is π2  in equation (25).  It is 
reasonable to have this reduction in the lift curve slope 
for the empirical formula.  In other words, it may be 
recommended to use 1.4π for equation (18) when it is 
compared with the experiments. 

Second, the effect of structural uncertainty is 
examined by probabilistic simulation of numerical 
computation.  The uncertainty is assumed to be included 
in the structural parameters with the Gaussian 
distribution. 

We assume the uncertainty of 5% of standard 
deviation in the parameters of location of the center of 
gravity, αx . Then the result becomes as illustrated in 
Figure 3. The scattering dots are the results of calculation 
of ten times in each frequency ratio with the step of 0.01. 
As can be seen in the figure, the boundary has higher 
sensitivity for the lower frequency ratio. The deviation in 
the location of the center of gravity does not have much 
effect when the frequency ratio is above one. 

Next, the effects of uncertainty in the location of the 
elastic axis are shown in Figure 4 with 5% standard 
deviation of the distance, αx . 
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Fig 3. Boundary with uncertainty in the location of center of 
gravity 

 

Fig 4. Boundary with uncertainty in the location of the elastic 
axis 

The effects are not monotonous depending on the 
frequency ratio. It looks very sensitive around the 
frequency ratio one.  On the other hand, there is an 
insensitive region around the frequency ratio 0.7. The 
results imply that the distance between the elastic axis and 
aerodynamic center is a critical parameter if the 
frequencies of heaving and torsion modes are almost the 
same. Figures 5 and 6 shows the combined effects of the 
uncertainties in the location of elastic axis and in the 
center of gravity with 5% and 10% of the standard 
deviations. It can be said from these results that the 
design parameter should be avoided at about the 
frequency ratio one and should be carefully determined 
for the low frequency ratio. The results imply that any 
shift of the center of gravity or the position of the elastic 
axis in either direction always has a lowering effect on the 
flutter boundary at the very low frequency ratio. 

 

Fig 5. Boundary with uncertainty of 5% in both parameters 

 

 Fig 6. Boundary with uncertainty of 10% in both parameters 

Equation (14) to obtain the flutter boundary also has 
the parameter of the radius of gyration. To see its 
influence, the boundary is calculated for the radius of 
gyration with 60% of semi-chord length as shown in 
Figure 7. 

 

Fig 7. Boundary with a different radius of gyration 

The structural uncertainty was assumed to be 10% 
for e  and 

αx .  As can be seen in the figure, the 
dependency of flutter boundary on the frequency ratio 
increases in comparison with the previous case where the 
radius of gyration was 50% of semi-chord length, i.e. 

25.02 =αr . It should be noted that the uncertainty of the 
locations of the elastic axis and the center of gravity has 
lowering effects on flutter boundary although the 
deterministic boundary increases in the range of the low 
frequency ratio. 

Conclusions 

The effects of structural uncertainty on aero elastic 
analysis have been studied on the 2-D system of a typical 
wing section.  

For the divergence speed, the effect of uncertainty 
can be shown analytically. 

For the uncertainty of flutter speed, the effect is 
evaluated with simulations. The sensitivity of the 
uncertainty is examined numerically by assuming the 
uncertainty as Gaussian distribution.  The results have 
revealed that the effect is not simple even in the present 
linear analysis using static aerodynamic forces.  This 
Monte Carlo simulation clearly shows the variation of the 
sensitivity corresponding to the effects of uncertainty.    

In comparison with the empirical formula, it was 
found that the formula for low frequency ratios coincides 
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to the present analysis if the lift curve slope assumes π2  
instead of the theoretical value of 2π . 

Further study should be made on uncertainties in 
more practical applications. 
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