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Abstract. Interest in air transportation in the last decade has seen aviation fleet growth and a rise in the energy consump-
tion of aircraft. In accordance with the latest data, the air transportation sector consumes 7.5% of total oil consumption 
worldwide. This high share by air transportation forces designers and researchers to develop more efficient propulsion 
systems by considering the constant rise in energy costs. In the current paper, an exergy based sustainability assessment of 
a turbojet engine under design point conditions is presented while two novel ecological performance indicators, namely 
the ecological objective function and ecological coefficient of performance, are introduced for the turbojet engine. These 
ecological performance indicators can be considered useful for improving the efficiency of any turbojet engine. As a result 
of an exemplifying analysis, the exergy efficiency, exergy sustainability index, ecological objective function and ecological 
coefficient of performance have been calculated to be 50.13%, 0.503, 68.294 kW and 1.005, respectively. In the light of the 
results, the author concludes that the exergy destruction rate of the turbojet engine should be minimized to improve the 
sustainability index and ecological coefficient of performance, while increasing or maintaining a constant thrust of the 
examined turbojet engine.
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Introduction

With population growth increasing worldwide, energy 
demand is a challenge for engineers at the design stage 
to achieve more efficient and more sustainable devices. 
Energy consuming or generating devices, namely ther-
mal systems, need more attention for a more sustain-
able, clean, and environmentally friendly design in this 
manner (Dincer & Acar, 2017; Cash, 2017; Alva, Lin, & 
Fang, 2018). According to the latest report of the Interna-
tional Energy Agency (2017), the air transportation sec-
tor accounts for 7.5% of total oil consumption worldwide, 
whereas industrial plants consume 8.0%. From this point 
of view, the oil consumption of air transportation, particu-
larly by aircraft fleets, is as high as that of industrial facili-
ties. Therefore, improvement in aircraft design and achiev-
ing more sustainable air transportation are as crucial as 
energy savings and green projects in industrial plants.

The main part of an aircraft utilizing energy is the 
propulsion system, where the energy of oil changes from 
chemical to thermal, followed by mechanical power, and, 
finally, thrust force and electricity. Therefore, it is impor-
tant to focus on the propulsion system design to improve 

efficiency and reduce energy consumption. In many pre-
vious studies (Bejan & Siems, 2001; Rosen & Etele, 2004; 
Riggins, Taylor, & Moorhouse, 2006; Riggins, Moorhouse 
& Camberos, 2010; Hepbasli, 2016) the significance of 
thermodynamics in aircraft engine design is strongly 
emphasized. The most prominent and commonly-recom-
mended tool is exergy analysis, combining the first and 
second laws of thermodynamics for the design and opti-
mization of an efficient aircraft engine. As a result, many 
studies on the exergy analysis of numerous aircraft en-
gines have been presented in literature (Grönstedt, Iran-
nezhad, Lei, Thulin, & Lundbladh, 2013; Tai, See, & Mares, 
2014; Balli & Hepbasli, 2014; Arntz, Atinault, & Merlen, 
2015; Colakoglu, Tanbay, Durmayaz, & Sogut, 2016; Yuc-
er, 2016; Şöhret, Ekici, Altuntaş, Hepbasli, & Karakoç, 
2016; Najjar & AbuEisheh, 2016; Ekici, Sohret, Coban, 
Altuntas, & Karakoc, 2016a; Yildirim, Altuntas, Mahir, 
& Karakoc, 2017; Hayes, Lone, Whidborne, Camberos, & 
Coetzee, 2017; Balli, 2017a; Coban, Colpan, & Karakoc, 
2017a; Yalcin, 2017; Balli, 2017b; Coban, Şöhret, Colpan, 
& Karakoç, 2017; Mishra & Sanjay, 2018). 
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Mankind has encountered other environmental issues 
besides the depletion of energy sources. Environmental 
complications stemming from impassive energy utiliza-
tion, such as global warming, climate change, ozone layer 
depletion, and so on, are also associated with the afore-
mentioned concerns: sustainability, clean energy, and en-
ergy efficient design (Zecca & Chiari, 2010; Winter, 2014; 
Chiari & Zecca, 2011; Moghaddam, Ahlgren, Hulteberg, 
& Nordberg, 2015). Along with alternative fuels, renew-
ables are introduced as possible solutions to combat 
these issues, and approaches and methods are also be-
ing developed for both environmental impact assessment 
and reduction of thermal systems utilizing conventional 
energy sources (Moghaddam et al., 2015; Bicer & Dincer, 
2016; Caiado, de Freitas Dias, Mattos, Quelhas, & Leal 
Filho, 2017). Therefore, it is necessary to consider the 
environmental and ecological aspects of the systems in 
addition to performance augmentation. Within this con-
text, the sustainability of energy consumption and the 
system gain importance. For this purpose, the first and 
second laws of thermodynamics, aided by sustainability 
assessment methodology, are commonly preferred in the 
literature available (Hepbasli, 2008; Romero & Linares, 
2014; Ekici, Altuntas, Açıkkalp, Sogut, & Karako, 2016b; 
Kaya, Turan, Karakoç, & Midilli, 2016; Ekici, Sohret, Co-
ban, Altuntas, & Karakoc, 2018).

Finite-time thermodynamics is a branch of thermo-
dynamics which examines energy conversion systems 
with the constraints of finite time or finite size. A number 
of questions regarding energy conversion systems which 
cannot be explained through classical thermodynamics 
can be answered by finite-time thermodynamics. Stud-
ies by Nokivov (1954), Curzon and Ahlborn (1975) were 
concerned with the maximum power output limitation 
from a Carnot heat engine. Later, Bejan (1996) proposed 
a model to clarify the association between entropy gen-
eration within a power plant and the maximum power 
output (Chen, Wu, & Sun, 1999; Yasunaga & Ikegami, 
2017). Further studies on finite-time thermodynamics 
present an evaluation of numerous systems and reveal 
the dark spots not covered by classical thermodynamics 
(Chen et al., 1999; Yasunaga & Ikegami, 2017; Kaushik 
& Kumar, 2000; Ahmadi, Sayyaadi, & Hosseinzadeh, 

2014; Özel, Açıkkalp, & Yamık, 2015; Açıkkalp & Yamik, 
2015; Mousapour, Hajipour, Rashidi, & Freidoonimehr, 
2016; Zhou, Chen, Ding, &, Sun , 2016; Ge, Chen, & Sun, 
2016; Acikkalp, 2017; Gonca, 2016; Ahmadi et al., 2018). 
Some of these later studies (Açıkkalp, 2017; Ahmadi et 
al., 2018) discuss the ecologic performance of evaluated 
systems. Within this framework, two parameters, namely 
the ecological function and ecological coefficient of per-
formance, are defined and employed.

In the present study, the ecological performance and 
sustainability assessment of a turbojet engine under de-
sign conditions is introduced. In contrast to earlier stud-
ies, classical and finite-time thermodynamics approaches 
are used in an integrated way for the first time. For this 
purpose, the first and second laws of thermodynamics are 
employed to determine irreversibility within a turbojet en-
gine as well as carry out a sustainability assessment based 
on exergy analysis. Additionally, the ecologic performance 
of the turbojet engine is examined from a perspective of 
finite-time thermodynamics. 

1. Turbojet engine and assumptions

The genuine turbojet engine evaluated in the current study 
comprises an air inlet, air compressor, combustion cham-
ber, gas turbine, exhaust nozzle components, and other 
accessories. The major characteristics of the engine are 
summarized in Table 1. The following calculations and 
analyses are carried out according to the station number-
ing illustrated in Figure 1 and the conjectures listed below:

 – the engine operates under a steady state, steady con-
ditions;

 – heat leakage at the air compressor, the gas turbine 
and combustion chamber is neglected;

 – the engine consumes conventional aviation fuel 
(C11H23) with a heating value of 44.169 MJ/kg;

 – the kinetic energy and exergy are neglected as well as 
the potential energy and exergy;

 – the ambient temperature and pressure are considered 
to be 288.15 K and 101.325 kPa, respectively, accord-
ing to sea level conditions of the International Stand-
ard Atmosphere (Torenbeek, 2013);

 – the air is assumed to be composed of 78.12% nitrogen, 

Figure 1. Schematic illustration of the turbojet engine (El-Sayed, 2008)
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20.96% oxygen and 0.92% of other gases on a molar 
basis (Lemmon, Jacobsen, Penoncello, & Friend, 2000).

2. Exergy analysis

Exergy analysis is a combined application of the first and 
second thermodynamic laws. The first and second law 
analyses of a steady-state system are conducted according 
to these governing equations (Kotas, Mayhew, & Raichura, 
1995; Dincer & Cengel, 2001; Tsatsaronis, 2007):
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Exergy, denoted by Ex  in Eq. 3, consists of physical, 
chemical, potential, and kinetic, exergy components (Ko-
tas et al. 1995; Dincer & Cengel 2001; Tsatsaronis, 2007):

( )PH CH KN PTEx m ex ex ex ex= + + +
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Specific physical ( PHex ) and chemical ( CHex ) exer-
gies can be formulated as (Kotas et al., 1995; Dincer & 
Cengel, 2001; Tsatsaronis, 2007):
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Molar based chemical exergy of an ideal gas mixture 
and liquid fuel is found by (Kotas et al., 1995; Dincer & 
Cengel, 2001; Tsatsaronis, 2007):

( )0 ln
CH CH
mix ii i iex x ex RT x x= ∑ + ∑ ; (7)

( )( )1.0401 0.0728 /
CH
fuel fuelex LHV H C = +  

. (8)

The exergy balance given in Eq. (3) is written in com-
pliance with the In-Out approach explained in Kotas et al. 
(1995), Dincer and Cengel (2001), Tsatsaronis (2007). 
Equations derived for each component of the examined 
engine are summarized in Table 2.

3. Sustainability analysis

The paper (Rosen, Dincer, & Kanoglu, 2008) states that 
‘sustainable development requires not just that sustain-
able energy resources be used, but that the resources 
be used efficiently. Exergy methods are essential in im-
proving efficiency, which allows society to maximize the 
benefits it derives from its resources while minimizing 
the negative impacts’. From this viewpoint, exergy and 
sustainable energy utilization are strongly linked. For 
this purpose, the exergy efficiency, waste exergy ratio, 
recoverable exergy rate, exergy destruction factor, exer-
getic environmental factor, and sustainability index are 
used as major sustainability indicators to evaluate sus-
tainability with the aid of exergy (Balli, 2017b):
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Table 1. Major characteristics of the examined turbojet engine

Parameter Unit Value

Inlet pressure ratio – 0.99
Compressor isentropic efficiency % 85.00
Compressor inlet Mach number – 0.54
Compressor pressure ratio – 6.93
Combustion efficiency % 99.99
Combustion chamber pressure loss % 3.00
Air to fuel ratio – 56.49
Turbine isentropic efficiency % 89.00
Turbine inlet temperature K 1095
Shaft mechanical efficiency % 99.00
Nozzle outlet velocity m/s 568.80
Thrust kN 22.70

Table 2. Exergy balance statements for the turbojet engine and its components

Component


inEx 

outEx 

DEx
Air compressor ( )2 1 1E E Ex− + 2Ex ( )2 1 1 2E E Ex Ex− + −

Combustion chamber
2 3Ex Ex+ 4Ex 2 3 4Ex Ex Ex+ −

Gas turbine
4Ex ( )4 5 5E E Ex− +  ( )4 4 5 5Ex E E Ex− − −

Nozzle
5Ex 6Ex 5 6Ex Ex−

Turbojet Engine
2 3Ex Ex+ ThrustEx 2 3 thrustEx Ex Ex+ −
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4. Ecological performance analysis

In the literature available, two main ecological perfor-
mance indicators can be found. The first of these indica-
tors, the ecological objective function, is defined as the 
difference between the useful work output rate of a system 
and the loss rate of availability. As such, it can be written 
in the manner of power and the loss rate of the availability 
(Angulo-Brown, 1991; Yan, 1993):

0 genECO W T S= −  .
 

(15)

The second ecological performance indicator, pre-
viously defined by Ust, Sahin, and Sogut (2005), is the 
ecological coefficient of performance, which is the ratio 
of the power output rate of the system to the loss rate of 
the availability for any thermal system:
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If the Gouy-Stodola relationship (Hepbasli, 2008) is 
borne in mind, and the power equivalence of the gener-
ated thrust of the turbojet engine is written as the power 
output, the ecological objective function and the ecologi-
cal coefficient of performance can be written for a turbojet 
engine as follows:
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5. Results and discussion

In the current paper, a turbojet engine is evaluated from 
the perspectives of ecological performance and sustain-
ability. For this purpose, the first and second laws of ther-
modynamics are employed. For the first stage of the study, 
energy conversion and exergy balance statements are ap-
plied on the engine to reveal the exergy destruction rate of 
the turbojet and each component. Later, sustainability and 
ecological performance indicators are calculated accord-
ing to the results obtained from the exergy analysis. The 
cycle data and thermodynamic quantities of the turbojet 
engine used in the calculations are provided in Table 3.

Figure 2 is plotted to demonstrate the energy and ex-
ergy flow rates of each engine station. If the energy and 
exergy rates of the fuel are excluded, the energy rate of 
the working fluid increases until it reaches that of the gas 
turbine inlet. Then the energy rate of the fluid drops as a 
result of the expansion process within the turbine compo-
nent. The trend of the exergy rate of the working fluid is 
exactly the same as the variation of the energy rate. This 
indicates the consistency of the calculations as well as the 
validity of energy conversion and exergy balance regard-
ing the data given in Table 3.

If exergy rates are examined on a component basis, the 
graph shown in Figure 3 is obtained. According to Figure 3, 
the exergy input rate of the air compressor, combustion 
chamber and gas turbine is 8458.338 kW, 33184.457 kW, 
and 21659.023 kW, respectively. The exergy destruction 
rate of the components for the air compressor, combustion 
chamber and gas turbine is calculated to be 1110.759 kW, 
11525.435 kW, and 247.766 kW, respectively. To reflect the 
exergy destruction rates of the engine components, the ex-
ergy efficiency variation of the components is illustrated in 
Figure 4. As evident from the plot, the exergy efficiency of 
the air compressor, combustion chamber and gas turbine 
is 86.86%, 65.26%, and 97.19%, respectively.

The results indicate that the combustion chamber is 
the most irreversible component associated with the high-
est exergy destruction. The combustion chamber is the 
component in which the chemical reaction occurs and 
yields irreversibility. Irreversibility linked to the chemical 
process is currently unavoidable with regards to the state 
of the art.

Table 3. Thermodynamic quantities of the turbojet engine stations

Station # Fluid Type Pressure (kPa) Temperature (K) Mass Flow Rate 
(kg/s)

Energy Rate* 
(kW)

Exergy Rate* 
(kW)

1 Air 101.325 288.150 31.680 9162.801 0.000

2 Air 702.182 536.649 31.680 17621.139 7347.578

3 Fuel 101.325 288.150 0.560 24768.550 25836.878
4 Combustion Gas 681.116 1095.000 32.240 42389.680 21659.022

5 Combustion Gas 208.521 902.000 32.240 33803.458 12825.035
Note: *Calculated value.
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Figure 2. Energy and exergy rates of engine stations

Figure 3. Decomposition of exergy input rate for each 
engine component

Figure 4. Exergy efficiencies of the engine components

Figure 5. Sustainability indicators of the engine

The indicators calculated for the sustainability assess-
ment are collectively depicted in Figure 5. The exergy ef-
ficiency of the evaluated turbojet engine is found to be 
50.13%, whereas the waste exergy ratio and exergy de-
struction factor are determined to be 0.995 and 0.498, re-
spectively. According to the calculated exergy efficiency, 
approximately half of the exergy provided to the engine is 
converted into a useful output, thrust, while the rest of the 
input exergy rate is destroyed. The waste exergy ratio in-
dicates the ratio of the wasted exergy rate, sum of exergy 
destruction rate and exergy rate of emitted exhaust gases, 
to the input exergy rate. A value of the waste exergy ratio 
close to 1.00 equals the equivalent wasted and input exer-
gy rates of the turbojet engine. Since neither the destroyed 
nor exhaust gas can be recovered, the recoverable exergy 
rate for the turbojet engine is 0.00. The value of the exergy 
destruction factor reveals the ratio of the destroyed exergy 
rate to the input exergy rate. On the other hand, it is clear 
that the ratio of the exergy rate of exhaust gas to the in-
put exergy rate is 0.497. In other words, the shares of the 
destroyed exergy rate and the exergy rate of the exhaust 
gases are approximately equal. The environmental effect 
factor clarifies the environmental impact of the engine 
in terms of wasted exergy. If decomposition of the waste 
exergy rate is borne in mind, the environmental effect is 

associated with both the released exhaust gases and loss of 
availability. An increase in the environmental impact fac-
tor leads to a decrease of the sustainability index, as easily 
understood from mathematical formulations. Therefore, 
a reduction of exergy destruction and exergy rate of ex-
haust gases can yield a decrement in the environmental 
effect factor, as well as a rise in the sustainability index. 
As a result, a reduction in the rate of waste exergy plays 
a crucial role in augmenting the engine and achieving a 
more sustainable design.

The results of the ecological performance analysis are 
provided in Table  4. The ecological objective function 
helps to understand the relationship between the useful 
output of the system and exergy destruction. According 
to the results, the ecological objective function is calcu-
lated at 68.924 kW. This value expresses the generated 
thrust, which is the useful output of a turbojet engine 

Table 4. Ecological performance indicators of  
the turbojet engine

Indicator Unit Value

Ecological objective function kW 68.924
Ecological coefficient of 
performance

– 1.005
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and is greater than the exergy destruction rate within the 
turbojet engine. However, the ecological objective func-
tion is expected to be higher than zero as often as pos-
sible. Maximization of the ecological objective function 
favors a more efficient system design. From this point 
of view, the examined turbojet engine is relatively effi-
cient. However, an ecological objective function which 
is close to zero indicates a need for improvements. The 
ecological coefficient of performance is another meas-
ure showing the relationship between thrust and exergy 
destruction rate, while the ecological objective function 
represents their ratio. The ecological coefficient of per-
formance of an efficient thermal system is expected to be 
greater than zero. Even if it is less than zero, a require-
ment for improvement is obvious. In the current study, 
the ecological coefficient of performance obtained for the 
evaluated turbojet engine was 1.00. It could be stated that 
the turbojet engine under examination is neither efficient 
nor inefficient, since the values of the generated thrust 
and exergy destruction rate are approximately equal in 
virtue of neglecting the difference relative to the amount 
of thrust. In this sense, the author asserts a need for the 
improvement of the evaluated turbojet with respect to 
both the ecological objective function and the ecological 
coefficient of performance.

Conclusions

The ecological performance and sustainability assessment 
of a turbojet engine under design conditions are exam-
ined in the current paper. It was found during the analy-
sis that the exergy efficiency, exergy sustainability index, 
ecological objective function and ecological coefficient of 
performance are 50.13%, 0.503, F68.294 kW, and 1.005, 
respectively. Based on the obtained results, the following 
remarks can be made:

 – A component based exergy analysis of the turbojet 
engine revealed that the combustion chamber is the 
main component inducing irreversibility and exergy 
destruction. To reduce exergy destruction in the 
combustion chamber design, improvement is not a 
perfect solution due to the nature of the chemical 
reaction. Therefore, novel and promising combus-
tion technologies should be adopted for turbojet 
engines.

 – Regarding high exergy destruction within the com-
bustion chamber, the irreversibility rate of the overall 
turbojet engine increases, leading to a convergence of 
the thrust and exergy destruction rate.

 – To improve the sustainability index and the ecologi-
cal coefficient of performance, the exergy destruction 
rate of the turbojet engine should be minimized by 
increasing the thrust of the turbojet or keeping it 
constant.

In light of the observed results, the optimization of the 
evaluated turbojet engine taking into account the ecologi-
cal performance indicators is planned for a future study.
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