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Abstract. Considered in this paper is the problem of optimizing spar mass to minimize lift force loss for a set of spar cross-section 

shapes in cases of constant and elliptical lift force distributions. The main idea is that the deformation of the spar under aerodynamic 

and gravitational forces causes a decrease in lift force and that there must be some optimal spar strength that gives a minimum for the 

sum of the loss of lift force and spar weight. The influence of fuselage location on the loss of lift force in the case of multi-fuselage 

design is also investigated. The behaviour of lift loss as a function of the location of fuselages is discussed. 
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Introduction 

 
The wing of a real aircraft is deformed during flight 

due to non-uniform aerodynamic load and mass 

distribution. This effect results in loss of lift force.  

Figure 1 shows the mechanism of this effect. One 

can see that the lift force of an arbitrary part of the wing 

is directed not vertically, but at some angle β to the 

vertical direction. 

 
 

 

Fig 1. The direction of lift force with respect to the       

deformed wing 
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The spar is the most important wing box structural 

component that defines the value of wing deformation 

and, as a consequence, loss in lift force. Making the spar 

stronger (for example, by increasing the cross-section 

shape size) can decrease wing deformation and associated 

loss in lift force. On the other hand, the mass of the spar 

increases with the increase in its strength. So there must 

be some an optimal strength that provides the minimum 

of “spar weight + lift force loss”. 

In most cases, the value of the loss in lift force is not 

high enough to take into consideration. But, for example, 

the design of HALE aircraft requires a wing with a very 

large wingspan and high aspect ratio to achieve desired 

aerodynamic performance. Wing deformation grows to a 

considerable amount with the increase in the wingspan 

and aspect ratio, and therefore deformations and related 

loss in lift force cannot be neglected (Fig 2). In such a 

special case, aerodynamic and structural weight 

optimization plays an important role in the aircraft design 

procedure. 

The problem of maximizing the value of “lift force 

minus weight of aircraft” through the variation of spar 

mass is investigated. 

The wing spar can be of various types. For example, 

the spar of “Helios” has constant cross-section shape and 

dimensions. This type of spar is preferable from a 

“manufacturing” point of view. But a spar with constant 

maximal mechanical tension can have less mass than a 

spar with a constant cross-section with the same 

deformation. 

 

 
 

Fig 2. Wing deformation of HALE “Helios” [1] 

 

There can also be various types of lift force 

distribution along the wing span. Elliptical distribution 

provides a minimum of induced drag. But it is rather 

difficult to realize this distribution. The other model case 

is constant lift distribution.  

Figure 3 shows the distribution of lift force for 

“Helios”. One can see that this distribution is more 

complex than the types mentioned above but can be 

approximated by these types of distribution in the first 

steps of the procedure of spar design.  

Cases of constant cross-section spar and a spar with 

constant tension for constant and elliptical lift force 

distribution will be considered. 

 

 
 

Fig 3. “Helios” lift force distribution [1] 

 

Spar mass optimization 

 
Consider the procedure of this investigation in the 

case of constant spar cross-section, constant wing chord 

b, and constant lift distribution. 

The lift force L* of a deformed wing with span b and 

chord c can be obtained by the formula 
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LC  – lift force coefficient, 

ρ  – air density, 

V – velocity of aircraft, 

z – wing chord vertical coordinate. 

As we know from the theory of elasticity *), 
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where xM  – mechanical torque, 

E – Young module, 

J – inertia moment of the cross-section, 

y – coordinate of the cross-section along the wing span. 

From this, the lift force is defined by the formula  
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S – wing area, 

l – wing span, 

lρ  – spar density, 

c  – relative chord thickness. 

During cruise flight with constant velocity and altitude, 

lift force must be equal to the airplane weight: 

 

mgL
* = ,   (1) 

 

where m is airplane mass. 

The optimization problem is searching for the 

maximum of function F: 
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at condition (1). 

So, the Lagrange function Q for this problem is 
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From this, optimal spar mass is defined as 
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and the minimum value of lift force relative losses B is 

                                           
*) ПИСАРЕНКО, ГС., ЯКОВЛЕВ, АП., МАТВЕЕВ, ВВ. Справочник 

по сопротивлению материалов. Киев: Наукова думка, 1975. 
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It must be noted that this spar mass can correspond 

to the case in which the mechanical tension in some spar 

points exceed the limits, so the spar may be damaged. It 

is rather evident that the highest tension value maxσ  is in 

the wing root. Its value can be obtained from the theory 

of elasticity as 
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For the case considered  
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The investigation shows that for all cases mentioned 

above the expressions for lm , maxσ  and B are the same 

and differs from each other only by the numerical 

constants 0A  and 0D : 
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So, the relationships between the values of these 

functions for all the cases considered are presented in 

table. From this table, one can see that for the constant 

values of wing span, wing chord, and characteristics of 

spar material, it is possible to reduce the relative lift force 

losses and maximal tension through rational lift and spar 

cross-section distribution along the wing span. 

 

Optimization of fuselage location  

 
Another way to decrease losses in lift force is multi-

fuselage design and proper location of the fuselages. 

Consider the problem of lift force maximization 

through the location of fuselage optimization for the 

cases of two, three, four and five fuselages. Assume that 

fuselages are located symmetrically with respect to the 

centre line of the airplane.  

Let ε be the relative mass of all fuselages with 

respect to total aircraft mass.  

Consider the case of two fuselages. The fuselages 

are the point masses located at the distance y0 from the 

centre line. So, from the theory of elasticity [2], 
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Table. Results obtained for the cases of spar cross-section and lift distribution investigated 

 

 A0 ml B σmax 

Constant lift force distribution, constant spar 

cross-section 

A00 m0 B0 σ0 

Constant lift force distribution, constant spar 

tension 

A00/1.93 m0/1.245 B0/1.245 σ0/2.41 

Elliptical lift force distribution, constant spar 

cross-section 

A00/1.9 m0/1.238 B0/1.238 1.05σ0 

Elliptical lift force distribution, constant spar 

tension 

A00/4.57 m0/1.66 B0/1.66 σ0/2.41 
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By varying the variable y0, one can obtain the 

maximal value of L*. For this case, optimum corresponds 

to 

 

2
5600

b
,y

* = . 

 

The behavior of L
* as a function of y0 is shown in 

figure 4. 

 

 
Fig 4. Lift force as function of fuselage location for the case of 

two fuselages 

 

The same procedure for three fuselages gives 
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In the case of four fuselages, L
* is the function of 

two variables: 0z  and 1z  (locations of two fuselages 

along the semi-span). Calculation gives the optimum at 

 

2
2400

b
,y

* =  , 
2

7801

b
,y

* = . 

 

For the case of five fuselages (as for “Helios”) the 

reults of optimization are 
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It is also rather interesting to investigate the 

behaviour of function L
* near the maximum. Figure 5 

shows the isolines of this function. One can see that this 

function changes rather slowly in the vicinity of the 

maximum, so small displacement of fuselages cannot 

strongly affect the lift force. The same results can be 

obtained for the cases of two, three and four fuselages. 

 

 
 

Fig 5. Isolines of lift force as function of fuselage location for 

the case of five fuselages 
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Conclusions 

 
1. The use of a spar with a rational value of strength can 

improve the characteristics of an airplane. 

2. A spar with constant maximal tension and elliptical 

lift distribution can increase lift force and decrease spar 

mass and maximal value of tension. 

3. Multi-fuselage design with properly located fuselages 

can increase lift force. 
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