
 - 124 -

AVIATION

2008

12(4): 124–128

ABSTRACT STRUCTURE OF CONFIGURATION SYSTEM FOR

PRODUCT DATA MANAGEMENT SYSTEM

Linas Burneika

Vilnius Gediminas Technical University, Faculty of Mechanics. J. Basanavičiaus 28, Vilnius, Lithuania.

E-mail: linas@mail.lt

Received 30 April 2008; accepted 01 December 2008

Linas BURNEIKA
Research interests: efficient product data and configuration management, Satisfiability Modulo Theories (SMT)
solvers.
Present position: PhD student at the Faculty of Mechanics, Vilnius Gediminas Technical University, Lithuania.

Abstract. A product configurator is a system providing questions and sets of possible answers about products with
sets of possible answers. This paper proposes a new idea for a configurator in which information about products are
expressed as a structured net of interconnected classes of different types. Classes hold information about assemblies,
product structural links, and logical constraints. Some classes have references to technical data on a product data
management (PDM) system. Such a system allows flexible representation of knowledge about product configurations
for production of aviation equipment.

Keywords: product configuration management, product data management, knowledge representation.

1. Introduction

The problem of configuration emerged as a research

topic in the 1980s as the result of manufacturing
companies going from mass production to mass
customization. Configurators not only solve the mass-
customization paradigm, but also are among the most
successful applications of artificial intelligence
technology. In the product configuration process, a user
interactively makes adjustments to the product (an
industrial machine, an aircraft, modular aviation
equipment, etc.) according his specific needs, using
supporting software called a configurator. It calculates a
specific product variant that fulfils requirements and
meets technical and non-technical constraints. Choices
for each available component are usually modelled as
variables over finite domains, and information about
product specifications is encoded as propositional
constraints over these variables.

A trend can be observed that the economy of the 21st
century will be based on highly specialized solution
providers. The management of the configuration of
constantly evolving and changing products must therefore
be easily supported, preferably by ordinary engineers
without advanced IT skills. While configuration of
standardized, mostly well defined products can be quite
well achieved, the case for complex and short lifecycle
products or services is still an open research issue. This
work is intended to address this case.

2. Related works

There is a long history in the research and

development of configuration tools in knowledge-based
systems. The first attempts were made by introducing
rule-based systems. Later research progressed to the
development of higher level representation formalisms,
such as various forms of constraint satisfaction problems

ISSN1648-7788 print / ISSN 1822-4180 online DOI: 10.3846/1648-7788. 2008.12. 124-128
http://www.aviation.vgtu.lt

L. Burneika. Abstract structure of configuration system for product data management system

 - 125 -

(CSP) or description logics (Soininen et al. 1999,
McGuinness et al. 1998).

Configuration tasks are more dynamic in nature and
therefore a representation of a CSP, in which all variables
of a problem must be known from the beginning, is not
appropriate in many application In order to solve this, the
dynamic constraint satisfaction was developed (Soininen
et al. 1999). It is more suitable for representing and
solving configuration tasks because the set of variables of
a problem may vary according to some activity
constraints. By A. Felfernig and M. Yokoo a distributed
dynamic CSP is defined, and a modification of the
asynchronous backtracking algorithm from R. Dechter is
applied for problem solving (Felfernig et al. 2001, Yokoo
2001, Dechter 1990). The limitations of a dynamic CSP
representation become evident when configuring large
technical systems. To overcome this problem, a generic
CSP representation has been proposed (Fleischanderl et

al. 1998). There, new instances of problem variables can
be created from meta-variables during problem solving.

In CSP approaches, configuration can exploit
powerful constraint problem solvers to solve complex
problems (Freuder et al. 2003, Gottlob et al. 2000,
Beuche et al. 2004). The alternative symbolic approach
has to split computations to an offline and an online
phase (Hadzic et al 2004). They first compile valid user
assignments to efficient data structures, such as reduced
ordered binary decision diagrams (Subbarayan et al.
2004). If the compiled representation is small enough,
then the already available efficient algorithms deliver
basic configuration functionalities.

In general, CSP and symbolic approaches provide
good performance parameters, but considering the user-
friendliness requirement for a configurator, one can see
that both approaches have representation formalism that
is difficult to comprehend (Subbarayan et al. 2004).
Although commercial configurators have a user interface
layer, they still do not solve numerous problems arising
during frequent production updates. Another problem is
that the process of constructing a configurable product
requires additional skills and is very different from
product design tasks.

The ideas for a product configurator proposed in this
paper relate to previous research projects such as (Zhang
et al. 2006, Magro et al. 2001). They are looking for
possible ways to configure problem decomposition to
improve the efficiency of solving the problem and apply
methods of parallel computing. The approach proposed in
this work evolves from similar concepts; the
representation of configurational knowledge is decom-
posed according to product structure. Representation
formalism is not symbolic, but object driven, however.
The task of this paper is to express information about
product configurations as a net of interconnected objects,
further called the configuration model. The objects of the
model are interlinked with respect to product structure
and have references to engineering data on the PDM
system. This scheme makes the configuration model easy
for engineers to understand and provides flexibility for
making changes in configurations.

3. Novelty of the work

The product configuration model defined in this

paper falls into the engineer-to-order category. Contrary
to similar works, the configuration model is designed to
allow fast addition of new variants for a product and
modifications of existing variants. The architecture of the
model includes close relations with the PDM system – a
source of engineering data for building new product
configurations. The PDM system is also a place where
implicit bills of materials are stored after product
configuration is completed. Another original feature of
the model is its object-driven approach. This gives
several benefits: parsing or translating of symbolic syntax
existing in conventional configurations is eliminated and
classes express knowledge about products. It is easier to
understand for end users because classes resemble
conventional bills of materials.

4. The configuration model

The product configuration model is constructed

using concepts of object-oriented modelling and
classification of components. The aim of the configura-
tion model is to provide a method for compact description
of multiple product variants. The structure of the model
consists of an abstract layer and an implementation layer.
This paper is dedicated to the abstract layer only, and the
implementation details are not discussed. The abstract
layer defines abstract assembly, property, and constraint
classes. These classes are construction elements for
building a definition of a configurable product. Each class
has a specific functionality useful for expressing
particular aspects of product variants.

5. An abstract generic class

For the manufacturing process, explicit BOMs (bill

of material) of product assemblies are necessary. If
multiple variants of a single assembly exist because of
customatization, they are typically represented by
separate BOMs for every variant. This is not convenient
and efficient if the number of variants is large.

To streamline product documentation, it is necessary
to find a way to express BOM information differently. In
this work, a definition of abstract generic class is
introduced. It is a generalization of all assembly variants,
and it is the core entity of the configuration model. For
better clarity, abstract generic class further is called class
in this article (Fig 1).

Class can be used to represent both parts and
assemblies, but the main purpose of the class is to
represent the structure of a real assembly. A class may
therefore have an array of references to other classes that
are either subassemblies or parts of the product. Every
reference contains quantity and other attributes (units of
measurement, notes etc.) of the class.

Aviation, 2008 12(4): 124–128

 - 126 -

Fig 1. Structure of the abstract generic class

The class also has references to other specific

classes (properties, constraints) Classes of properties and
constrains are used to create conditions that determine
whether the class is present in the structure of a product
or not.

If the class represents a component of a part, it will
definitely have references to documents (usually a 3D
model and drawing) in the PDM system. If however the
class is an assembly, it may also refer to the PDM for
auxiliary documents. When product configuration is
complete, these references can be used to create the
explicit BOM for the variant of the product.

6. Inheritance of abstract generic classes

Generalization of assembly is achieved by deriving

classes. Initially one parent class that includes only a
subset of assembly information common to all variants
needs to be created. Then new classes are derived from
the parent class. Each new class inherits everything from
its parent class, but users of the configurator can refine
these classes by adding more specific information. There
can be as many inheritance levels as necessary.

For example, in figure 2, class A defines a generic
assembly that always contains at least two components
another class B and component a2. Two new classes are
derived from base class A. Each derived class includes
additional information. Class A1 has extended the For
example, in figure 2, class A defines a generic assembly
that always contains at least two components: another
class B and component a2. Two new classes are derived
from base class A. Each derived class includes additional
information. Class A1 has extended the assembly
structure with a new component, a3, while class A2
overrides inherited component a2 with a4. Classes A1.1
and A1.2 are inherited from A1 for the addition of even
more detail into the product structure, but for clarification
this is not shown in the figure. Every class existing at a

leave node of the inheritance tree represents a particular
configuration of a root class. In this example, class A has
three configurations. A class B has two classes derived,
making two configurations, B1 and B2, of assembly B. It
follows that the product defined by class A has a total of
six configurations.

a2

A
B

B1

B2

Class for

generic product

Two alternatives A1 and A2 got by deriving

parent class A. Each has more information added

Class for generic
assembly

Assembly

alternatives

B

a2
A1

A2

B

a4

a2

B

a3

A1.2

A1.1

Fig 2. Inheritance example of generic classes

Experience shows that in most cases new product

variants are designed by finding an existing product that
most closely fulfils the customer’s requirements and
modifying it. New design efforts are therefore minimized
by heavily reusing previous work. The principle of
inheritance provides an easy way to add new variants to
the configuration model while preserving existing vari-
ants.

Choices for product configuration can be easily
determined from the model. In the example, the
inheritance tree of class A is a question itself with three
possible choices for the user: class A2, A1.1, and A1.2.
The tree of class B provides two choices. During the
configuration process of this example product, the user
has to answer two questions in order to get a fully defined
assembly of class A.

7. Property class

Property classes are an important part of the

configuration model and are intended to define non-
geometrical information of parts and assemblies. A
property class has a finite list of possible values.
Examples of properties, if they are attached to the class
representing the part, are paint colour, surface texture,
typographical elements, and sometimes – even material.
Properties are also useful for assembly structure control.
For example the property “design type”, containing three
values – “standard”, “prestige” and “deluxe” – may
influence which components must be present in the BOM
after configuration. To achieve this control however,
particular components have to be connected to property
values through constraint classes.

Abstract generic class

References to
property classes

References to other
abstract generic

classes

References to
constraint classes

References
documents/items
on PDM system

L. Burneika. Abstract structure of configuration system for product data management system

 - 127 -

8. Constraint class

A lot of information about product variants is

represented by inheritance of abstract generic classes, but
in some cases this generalization is not complete. In
reality complex interdependencies between components
may exist. For representation of such dependencies, cons-
traint class are introduced to the configuration model.

The constraint class is a logical implication that can
be explained as if…then statements. If some classes or
properties are evaluated positively at product
configuration and they are connected to incoming Link,
then all classes connected as outgoing Links must be set
as logically implied. The Constraint Link may have a
negative behaviour, and then classes connected to
outgoing Links are rejected from the product variant.

The example provided in figure 3 displays class A,
which has the structure of two part classes, P1 and P2.

Fig 3. Usage of constraint classes

These classes are not linked directly to the assembly

class A, but by the reference objects R1 and R2.
Reference objects are necessary to store the quantity of
referred part classes. Class A is linked to property classes
PR1 and PR2, and each of them has several values. It
follows that there are two questions for a user to answer
in order to get a fully defined class A. A particular value
has to be chosen for every property.

In this example, properties are used to control the
structure of the main class. Constraint class C1 is created
to eliminate P1 by disabling reference object R1 if the
user selects values V4 or V2. Analogically, constraint C2
excludes P2 from the structure, if value V1 is selected.

Constraints can link various elements of the same
class and classes that are not directly related. Usage of
constraints allows one to define various exceptions that
would be difficult to express by inheritance.

9. Conclusions

This paper provides an overview of currently

existing solutions for the product configuration problem
and emphasizes open issues. To address them, a formal

representation of a configuration model, which is a net of
interconnected classes related to product structure, is
defined. The proposed configuration model allows easy
modifications and addition of new variants.

References

Beuche, D.; Papajewski, H.; Schröder-Preikschaft,
W. 2004. Variability management with feature
models. In Proceedings of Software Variability

Management Workshop. University of Groningen.

Dechter, R. 1990. Enhancement schemes for
constraint processing: backjumping, learning, and
cutset decomposition. Artificial Intelligence, 41:
273–312.

Gottlob, G.; Leone, N.; Scarcello, F. 2000. A
comparison of structural CSP decomposition
methods. Artificial Intelligence, 124: 243–282.

Fleischanderl, G.; Friedrich, G.; Haselbock, A. et al.

1998. Configuring large systems using generative
constraint satisfaction. IEEE Intelligent Systems,

Special Issue on Configuration, 13(4): 59–68.

Class Assembly
A

Property
PR1

Class Part
P2

Class Part
P1

Value V1

Value V2

ConstraintL class
C2

Behaviour = Negative

IncomingLinks

OutgoingLinks

Constraint class
C1

Behavior = Negative

IncomingLinks

OutgoingLinks

Property
PR2

Value V3

Value V4

Reference
R1

Reference
R2

Aviation, 2008 12(4): 124–128

 - 128 -

Felfernig, A.; Friedrich, G.; Jannach, D. et al. 2001.
Distributed configuration as distributed dynamic
constraint satisfaction. In Proceedings of the 14th

IEA/AIE. Budapest, Hungary, 434–444.

Freuder, E. C.; Carchrae, T.; Beck, J. C. 2003.
Satisfaction guaranteed. In IJCA Workshop on

Configuration, Eighteenth International Joint

Conference on Artificial Intelligence.

Hadzic, T.; Subbarayan, S.; Jensen, R. M. et al.
2004. Fast backtrack-free product configuration
using a precompiled solution space representation. In
Proceedings of the International Conference on
Economic, Technical and Organizational aspects of

Product Configuration Systems.

Magro, D.; Torasso, P. 2001. Supporting product
configuration in a virtual store. LNAI, 2175: 176–
188.

McGuinness, D. L.; Wright, J. R. 1998. An
industrial-strength description logic-based configu-
rator platform. IEEE Intelligent Systems. July/August
69–77.

McGuiness, D. L.; Wright, J. R. 1998. Conceptual
modelling for configuration: a description logic-

based approach. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing,

Special Issue: Configuration design, 12(4): 333–344.

Soininen, T.; Gelle, E.; Niemel, I. 1999. A fixpoint
definition of dynamic constraint satisfaction. In Proc.

of 5th International Conference on Principles and

Practice of Constraint Programming - CP99. Ale-
xandria, USA, 419–433.

Subbarayan, S.; Jensen, R. M.; Hadzic, T. et al.

2004. Comparing two implementations of a complete
and backtrack-free interactive configurator. In CP

2004 Workshop on CSP Techniques with Immediate

Application.

Yokoo, M. 2001. Distributed constraint satisfaction -

foundations of cooperation in multi-agent systems.
Berlin: Springer.

Zhang, Wen-lei; Fan, Yu-shun; Yin, Chao-win.
2006. Approach of product configuration based on
product family genealogy. In Proc. of Shenyang

Institute of Automation. Shenyang, 12(11): 1741–
1746.

GAMINIO KONFIGŪRAVIMO SISTEMOS, SKIRTOS GAMINIO DUOMENŲ VALDYMO SISTEMAI, ABSTRAKTI STRŪKTŪRA

L. Burneika

S a n t r a u k a

Gaminio konfigūratorius yra programinė sistema, pateikianti klausimus apie produktą su galimais pasirinkimų variantais. Šiame darbe pasiūlyta nauja
konfigūratoriaus idėja ir pateiktas konfigūracijų aprašo modelis. Šis modelis buvo kuriamas taip, kad juo būtų galima aprašyti realius, dažnai
tobulinamus ir sudėtingos sandaros gaminius. Modelyje informacija apie gaminį pateikiama kaip tarpusavyje sujungtų įvairių klasių tinklas. Modelio
klasėse saugoma informacija apie gaminio junginius, komponentų ryšius ir loginius apribojimus. Siūlomas konfigūracijų aprašo modelis leidžia
lanksčiai perteikti inžinerines žinias apie įvairių gaminių, tarp jų ir aviacijos reikmėms skirtų gaminių, variantus.

Reikšminiai žodžiai: gaminio konfigūravimo sistema, gaminio duomenų valdymo sistema, žinių vaizdavimo modeliai.

