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Abstract. A product configurator is a system providing questions and sets of possible answers about products with 
sets of possible answers. This paper proposes a new idea for a configurator in which information about products are 
expressed as a structured net of interconnected classes of different types. Classes hold information about assemblies, 
product structural links, and logical constraints. Some classes have references to technical data on a product data 
management (PDM) system. Such a system allows flexible representation of knowledge about product configurations 
for production of aviation equipment.  
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1. Introduction 

 
The problem of configuration emerged as a research 

topic in the 1980s as the result of manufacturing 
companies going from mass production to mass 
customization. Configurators not only solve the mass-
customization paradigm, but also are among the most 
successful applications of artificial intelligence 
technology. In the product configuration process, a user 
interactively makes adjustments to the product (an 
industrial machine, an aircraft, modular aviation 
equipment, etc.) according his specific needs, using 
supporting software called a configurator. It calculates a 
specific product variant that fulfils requirements and 
meets technical and non-technical constraints. Choices 
for each available component are usually modelled as 
variables over finite domains, and information about 
product specifications is encoded as propositional 
constraints over these variables.  

 
 

A trend can be observed that the economy of the 21st 
century will be based on highly specialized solution 
providers. The management of the configuration of 
constantly evolving and changing products must therefore 
be easily supported, preferably by ordinary engineers 
without advanced IT skills. While configuration of 
standardized, mostly well defined products can be quite 
well achieved, the case for complex and short lifecycle 
products or services is still an open research issue. This 
work is intended to address this case. 

 
2. Related works 

 
There is a long history in the research and 

development of configuration tools in knowledge-based 
systems. The first attempts were made by introducing 
rule-based systems. Later research progressed to the 
development of higher level representation formalisms, 
such as various forms of constraint satisfaction  problems  
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(CSP) or description logics (Soininen et al. 1999, 
McGuinness et al. 1998).   

Configuration tasks are more dynamic in nature and 
therefore a representation of a CSP, in which all variables 
of a problem must be known from the beginning, is not 
appropriate in many application In order to solve this, the 
dynamic constraint satisfaction was developed (Soininen 
et al. 1999). It is more suitable for representing and 
solving configuration tasks because the set of variables of 
a problem may vary according to some activity 
constraints. By A. Felfernig and M. Yokoo a distributed 
dynamic CSP is defined, and a modification of the 
asynchronous backtracking algorithm from R. Dechter is 
applied for problem solving (Felfernig et al. 2001, Yokoo 
2001, Dechter 1990). The limitations of a dynamic CSP 
representation become evident when configuring large 
technical systems. To overcome this problem, a generic 
CSP representation has been proposed (Fleischanderl et 

al. 1998). There, new instances of problem variables can 
be created from meta-variables during problem solving.  

In CSP approaches, configuration can exploit 
powerful constraint problem solvers to solve complex 
problems (Freuder et al. 2003, Gottlob et al. 2000, 
Beuche et al. 2004). The alternative symbolic approach 
has to split computations to an offline and an online 
phase (Hadzic et al 2004). They first compile valid user 
assignments to efficient data structures, such as reduced 
ordered binary decision diagrams (Subbarayan et al. 
2004). If the compiled representation is small enough, 
then the already available efficient algorithms deliver 
basic configuration functionalities.  

In general, CSP and symbolic approaches provide 
good performance parameters, but considering the user-
friendliness requirement for a configurator, one can see 
that both approaches have representation formalism that 
is difficult to comprehend (Subbarayan et al. 2004). 
Although commercial configurators have a user interface 
layer, they still do not solve numerous problems arising 
during frequent production updates. Another problem is 
that the process of constructing a configurable product 
requires additional skills and is very different from 
product design tasks. 

The ideas for a product configurator proposed in this 
paper relate to previous research projects such as (Zhang 
et al. 2006, Magro et al. 2001). They are looking for 
possible ways to configure problem decomposition to 
improve the efficiency of solving the problem and apply 
methods of parallel computing. The approach proposed in 
this work evolves from similar concepts; the 
representation of configurational knowledge is decom-
posed according to product structure. Representation 
formalism is not symbolic, but object driven, however. 
The task of this paper is to express information about 
product configurations as a net of interconnected objects, 
further called the configuration model. The objects of the 
model are interlinked with respect to product structure 
and have references to engineering data on the PDM 
system. This scheme makes the configuration model easy 
for engineers to understand and provides flexibility for 
making changes in configurations.  

3. Novelty of the work 
 
The product configuration model defined in this 

paper falls into the engineer-to-order category. Contrary 
to similar works, the configuration model is designed to 
allow fast addition of new variants for a product and 
modifications of existing variants. The architecture of the 
model includes close relations with the PDM system – a 
source of engineering data for building new product 
configurations. The PDM system is also a place where 
implicit bills of materials are stored after product 
configuration is completed. Another original feature of 
the model is its object-driven approach. This gives 
several benefits: parsing or translating of symbolic syntax 
existing in conventional configurations is eliminated and 
classes express knowledge about products. It is easier to 
understand for end users because classes resemble 
conventional bills of materials. 
 

4. The configuration model 
 
The product configuration model is constructed 

using concepts of object-oriented modelling and 
classification of components. The aim of the configura-
tion model is to provide a method for compact description 
of multiple product variants. The structure of the model 
consists of an abstract layer and an implementation layer. 
This paper is dedicated to the abstract layer only, and the 
implementation details are not discussed. The abstract 
layer defines abstract assembly, property, and constraint 
classes. These classes are construction elements for 
building a definition of a configurable product. Each class 
has a specific functionality useful for expressing 
particular aspects of product variants.  

 
5. An abstract generic class 

 
For the manufacturing process, explicit BOMs (bill 

of material) of product assemblies are necessary. If 
multiple variants of a single assembly exist because of 
customatization, they are typically represented by 
separate BOMs for every variant. This is not convenient 
and efficient if the number of variants is large.  

To streamline product documentation, it is necessary 
to find a way to express BOM information differently. In 
this work, a definition of abstract generic class is 
introduced. It is a generalization of all assembly variants, 
and it is the core entity of the configuration model. For 
better clarity, abstract generic class further is called class 
in this article (Fig 1). 

Class can be used to represent both parts and 
assemblies, but the main purpose of the class is to 
represent the structure of a real assembly. A class may 
therefore have an array of references to other classes that 
are either subassemblies or parts of the product. Every 
reference contains quantity and other attributes (units of 
measurement, notes etc.) of the class.   
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Fig 1. Structure of the abstract generic class 
 
The class also has references to other specific 

classes (properties, constraints) Classes of properties and 
constrains are used to create conditions that determine 
whether the class is present in the structure of a product 
or not.  

If the class represents a component of a part, it will 
definitely have references to documents (usually a 3D 
model and drawing) in the PDM system. If however the 
class is an assembly, it may also refer to the PDM for 
auxiliary documents. When product configuration is 
complete, these references can be used to create the 
explicit BOM for the variant of the product. 

 
6. Inheritance of abstract generic classes  

 
Generalization of assembly is achieved by deriving 

classes. Initially one parent class that includes only a 
subset of assembly information common to all variants 
needs to be created. Then new classes are derived from 
the parent class. Each new class inherits everything from 
its parent class, but users of the configurator can refine 
these classes by adding more specific information. There 
can be as many inheritance levels as necessary. 

For example, in figure 2, class A defines a generic 
assembly that always contains at least two components 
another class B and component a2. Two new classes are 
derived from base class A. Each derived class includes 
additional information. Class A1 has extended the For 
example, in figure 2, class A defines a generic assembly 
that always contains at least two components: another 
class B and component a2. Two new classes are derived 
from base class A. Each derived class includes additional 
information. Class A1 has extended the assembly 
structure with a new component, a3, while class A2 
overrides inherited component a2 with a4. Classes A1.1 
and A1.2 are inherited from A1 for the addition of even 
more detail into the product structure, but for clarification 
this is not shown in the figure. Every class existing at a 

leave node of the inheritance tree represents a particular 
configuration of a root class. In this example, class A has 
three configurations. A class B has two classes derived, 
making two configurations, B1 and B2, of assembly B. It 
follows that the product defined by class A has a total of 
six configurations.  
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Fig 2. Inheritance example of generic classes 

 
Experience shows that in most cases new product 

variants are designed by finding an existing product that 
most closely fulfils the customer’s requirements and 
modifying it. New design efforts are therefore minimized 
by heavily reusing previous work. The principle of 
inheritance provides an easy way to add new variants to 
the configuration model while preserving existing vari-
ants.  

Choices for product configuration can be easily 
determined from the model. In the example, the 
inheritance tree of class A is a question itself with three 
possible choices for the user: class A2, A1.1, and A1.2. 
The tree of class B provides two choices. During the 
configuration process of this example product, the user 
has to answer two questions in order to get a fully defined 
assembly of class A. 

 
7. Property class 

 
Property classes are an important part of the 

configuration model and are intended to define non-
geometrical information of parts and assemblies. A 
property class has a finite list of possible values. 
Examples of properties, if they are attached to the class 
representing the part, are paint colour, surface texture, 
typographical elements, and sometimes – even material. 
Properties are also useful for assembly structure control. 
For example the property “design type”, containing three 
values – “standard”, “prestige” and “deluxe” – may 
influence which components must be present in the BOM 
after configuration. To achieve this control however, 
particular components have to be connected to property 
values through constraint classes. 
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8. Constraint class 
 
A lot of information about product variants is 

represented by inheritance of abstract generic classes, but 
in some cases this generalization is not complete. In 
reality complex interdependencies between components 
may exist. For representation of such dependencies, cons-
traint class are introduced to the configuration model.  

The constraint class is a logical implication that can 
be explained as if…then statements. If some classes or 
properties are evaluated positively at product 
configuration and they are connected to incoming Link, 
then all classes connected as outgoing Links must be set 
as logically implied. The Constraint Link may have a 
negative behaviour, and then classes connected to 
outgoing Links are rejected from the product variant. 

The example provided in figure 3 displays class A, 
which has the structure of two part classes, P1 and P2.

 
Fig 3. Usage of constraint classes 

 
These classes are not linked directly to the assembly 

class A, but by the reference objects R1 and R2. 
Reference objects are necessary to store the quantity of 
referred part classes. Class A is linked to property classes 
PR1 and PR2, and each of them has several values. It 
follows that there are two questions for a user to answer 
in order to get a fully defined class A. A particular value 
has to be chosen for every property. 

In this example, properties are used to control the 
structure of the main class. Constraint class C1 is created 
to eliminate P1 by disabling reference object R1 if the 
user selects values V4 or V2. Analogically, constraint C2 
excludes P2 from the structure, if value V1 is selected. 

Constraints can link various elements of the same 
class and classes that are not directly related. Usage of 
constraints allows one to define various exceptions that 
would be difficult to express by inheritance.  

 
9. Conclusions 

 
This paper provides an overview of currently 

existing solutions for the product configuration problem 
and emphasizes open issues. To address them, a formal 

representation of a configuration model, which is a net of 
interconnected classes related to product structure, is 
defined. The proposed configuration model allows easy 
modifications and addition of new variants.  
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GAMINIO KONFIGŪRAVIMO SISTEMOS, SKIRTOS GAMINIO DUOMENŲ VALDYMO SISTEMAI, ABSTRAKTI STRŪKTŪRA 

L. Burneika 

S a n t r a u k a 
 

Gaminio konfigūratorius yra programinė sistema, pateikianti klausimus apie produktą su galimais pasirinkimų variantais. Šiame darbe pasiūlyta nauja 
konfigūratoriaus idėja ir pateiktas konfigūracijų aprašo modelis. Šis modelis buvo kuriamas taip, kad juo būtų galima aprašyti realius, dažnai 
tobulinamus ir  sudėtingos sandaros gaminius. Modelyje informacija apie gaminį pateikiama kaip tarpusavyje sujungtų įvairių klasių tinklas. Modelio 
klasėse saugoma informacija apie gaminio junginius, komponentų ryšius ir loginius apribojimus. Siūlomas konfigūracijų aprašo modelis leidžia 
lanksčiai perteikti inžinerines žinias apie įvairių gaminių, tarp jų  ir aviacijos reikmėms skirtų gaminių, variantus. 
 
Reikšminiai žodžiai: gaminio konfigūravimo sistema, gaminio duomenų valdymo sistema, žinių vaizdavimo modeliai. 

 

 

 

 




