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Abstract. The basic purpose of this article is consideration of the problems connected with the application of a 
method of concentrated weights in the tasks of mechanical system dynamics with non-classic internal and external 
constraints. The method of concentrated weights is a convenient method to analyse the dynamic properties of elastic 
mechanical systems. It has relative simplicity of definition of the parameters of the equivalent discrete system and 
clearness of computing algorithms and provides comprehensible accuracy of definition of the lowest natural 
frequencies. A doubtless advantage of the method is its convenience of modelling non-classic constraints of fastening 
and internal constraints between elements of complex systems. Such problems arise when making decisions about the 
practice tasks of the analysis of the dynamics of real systems. The method is used for the analysis of vibrations of a 
beam with variable parameters at the presence of elastic supporting of the beam and attached additional concentrated 
weight. 
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1. Introduction 
 
This article is connected with the European 6FP 

project AISHA. The basic purpose of the project is the 
development of a continuous monitoring system of a 
technical  condition integrated into a structure. Progressi- 

 
 

ve methods and means of the control over use of ultra-
sonic technology are developed. In thin-walled structures, 
it uses properties of elastic Lamb waves. The final stage 
demonstrates the execution of full-scale fatigue tests on 
components of real aviation structures to demonstrate the 
working capacity and efficiency of methods and means of  
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non-destructive testing. The object of testing is the tail 
beam of an MI-8 helicopter (Fig 1). It is a typical aircraft 
component made of aluminium alloy. 

 

 
Fig 1. Stand of dynamic testing of an MI-8 helicopter tail beam   

(1–tail beam, 2–support, 3–mechanical vibrator, 4–motor,       
5–V-belt gear) 

 
At the planning stage of an experiment, there are 

problems with choosing an optimum mode for the tests 
that would combine the demanded distribution of 
stresses, duration of tests, and relative simplicity of 
excitation of the mechanical load. In connection with this, 
there was the necessity to analyse the dynamic 
characteristics of the tested object.  

There are plenty of methods for the dynamic 
analysis of a mechanical system (Timoshenko et al. 1974, 
Tse et al. 1983, Mei 2006, Romeo 2006). Exact analytical 
methods have limited application, and their role is mainly 
the reference solution for the estimation of the accuracy 
of approximated methods. Among the latter, a prominent 
place is occupied by Ritz’s methods, various versions of 
energetic methods, and methods of replacing a system 
having continuous parameters with a system having a 
limited number of concentrated weights (Zirkelback et al. 
2006, James et al. 1989, Newland 1989, Collar et al. 
1987). The universal numerical method of finite elements 
(FEM) is also one of the methods of this group (Huebner 
1975).  

There are many methods to analyse the dynamic 
behaviour of complex elastic structures, and special 
estimation of accuracy by comparison with a precise 
analytical solution usually shows the rational selection of 
model parameters and allows obtaining acceptable results 
of simulation. But modelling of boundary conditions is 
often not adequate. Real experimental data therefore 

exhibits an unacceptable difference from the results of 
simulation in such cases. 

In this research, there are two aims. The first is the 
method of the concentrated application of weights to 
define the dynamic characteristics of a real aircraft 
component with continuously distributed weight. The 
second (and this is the main aim) is the correct simulation 
of non-classic internal and external constraints at the 
application of a method of concentrated weights.  
 
2. Method of concentrated weights 
 

In connection with the relatively long length of a 
beam in comparison with the diameter of its cross-
section, the beam schematisation of such structure is 
admissible at the analysis of its dynamic characteristics. 
The equation of movement in this case looks like 
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where v(z,t) is deflection of a beam, m(z) is intensity of 
weight distribution, EJx is bending stiffness of the cross-
sections of a beam, and q(z,t) is intensity of the 
distributed external load. If q(z,t) ≅ 0, free movement 
without participation of external forces is realized. 

Generally, if the mass and stiffness of the cross-
sections is distributed non-uniformly, an analytical 
solution cannot be received. The approximated method of 
concentrated weights is therefore used for the purpose of 
this research. For definition of natural frequencies and 
forms, the actual beam with continuously distributed 
weight must be replaced by a weightless beam with the 
same bending stiffness, but with a finite number of 
concentrated weights in a finite number of nodes (k+1). 
For this purpose, the beam has been sheared into finite 
number of parts k. For each of them weight Mi and its 
centre coordinate zic was defined, and then it was 
distributed between nodes (i-1) and i, which are finite 
nods of the part. From a condition of static equivalence, 
there are the next expressions  
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where ∆Mi-1 and ∆Mi  are  two components of weight of 
the part attached to units (i-1) and i accordingly.  

If the sheared beam has enough many of parts, 
within one part the distribution of weight can be accepted 
as linear and then the last two equations can be written 
down as 
 

1
1 2

i i

i i i i

m m
M M M z−

−

+
= ∆ + ∆ ≅ ⋅ ∆  

1 1
1 1 2

i i i i

i ic i i i i i

m z m z
M z M z M z z− −

− −

+
= ∆ + ∆ ≅ ⋅ ∆  

or in the dimensionless form 

4 

1 

5 

3 

2 



Aviation, 2008 12(4): 113–117  
 

 - 115 -

 

1
1

1 1
1 1

,
2

2

i i

i i i i

i i i i

i ic i i i i i

m m
M M M z

m z m z
M z M z M z z

−
−

− −
− −

+
= ∆ + ∆ ≅ ⋅ ∆

⋅ + ⋅
⋅ = ∆ ⋅ + ∆ ⋅ ≅ ⋅ ∆

 

where 0/( ), /i i i iM M m l z z l∆ = ∆ ∆ = ∆ .    

As a result, relative weights can be expressed in the 
dimensionless form as  

1
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It is obvious, that the total relative weight in node i is 

1i i im M M += + .  

On the basis of the principle of superposition, 
displacement ∆i in node i (i=0, 1, … k) as result of the 
action of the system of vertical forces Pj concentrated in 
all nodes, is defined by the following sum: 

1 1

n n

i ij j ij j j

j j

P mδ δ
= =

′′∆ = ⋅ = − ⋅ ⋅ ∆∑ ∑  ,                     (3) 

where δij is the factor of elastic compliance.  
In the second part of equation (3), the force Pj is replaced 
by the inertial force that appears in case of natural 
vibrations. These vibrations are harmonious with 
frequency ω. Therefore  
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where Аi is the amplitude of vibration of node i.         
As a result the next system of k the linear homogeneous 
algebraic equations should be solved  
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For greater generality, this system of equations is 
convenient for writing down in a dimensionless view  
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It is known that a non-trivial decision of system (5) exists 
if the determinant of the coefficients of the equations is 
equal to zero. 
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Det m x Iδ − = ,                         (6) 

Roots  xk of equation (6) define natural frequencies of 
vibrations. 
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After their definition, the natural forms can be received 
too.   

To verify the definition of dynamic characteristics 
by a method of concentrated weights, calculation for a 
console beam of constant cross-section and uniformly 
distributed weight was carried out. It was established that 
if there is k=8…10, then at least the first two natural 
frequencies practically coincide with their exact values. 
 
3. Analysis of dynamic characteristics of a 

beam under ideal boundary conditions 
 

The method described above was used for the 
numerical analysis of natural frequencies and forms of a 
beam of the helicopter at perfect boundary conditions: 
jamming at one tip. In figure 2, the scheme of the test 
system is presented. The thin-walled tail beam of the 
helicopter has elastic attachment 1 to the motionless tip, 
and in the middle part of the beam, additional weight 2 
(about 94 kg) is attached. On the free tip of the beam, 
mechanical vibrator 3 weighing about 50 kg is installed.  

 

 
Fig 2. The beam has elastic support 1 and mass 2 also has the 

same kind of connection with the beam;  
3 is the vibrator 

 
In figure 3, relative distribution of bending stiffness 

is shown. If it is accepted that the beam and additional 
weight have absolutely rigid constraints, then the relative 
distribution of weight among the nodes is in table. The 
weight of the beam itself, the attached weight in the 
middle zone of the beam, and the weight of the vibrator is 
common weight of dynamic system. 
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Fig 3. Distribution of the relative stiffness of the 

tail beam cross-sections 
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In figure 4, the results of calculating the first two 
natural frequencies and forms are shown. In connection 
with the significant bending stiffness of the beam and its 
light weight, it has high frequencies. The second form of 
vibrations is obeyed by the requirements of planned tests: 
the maximal curvature of deformed axes of a beam and 
maximal stress takes place in the middle part of the beam. 
 

1st and 2d natural forms, f1=13.1Hz, f2=61.6Hz, Ideal 

constrains
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Fig 4. First and second natural forms of vibration 
 
Mass distribution among the nodes of the system  
  

Weight 
number 

0 1 2 3 4 5 

m/m0 1 0.043 0.063 0.061 0.243 0.241 

 
Weight 
number 

6 7 8 9 Total 

m/m0 0.049 0.041 0.039 0.220 1.00 
 
4. Account of influence of non-classic 

internal and external constraints 
 

Two types of deviations from ideal boundary 
conditions are examined: 
– Elastic fastening; 
– An elastic attachment of additional concentrated weight. 

Let the characteristic of the elastic hinge look like 

0M Kθ= , where K is elastic hinge stiffness, θ is the 

angle of turn in the hinge, M0 is the bending moment in 
the hinge.  

If single force acts in a node, then the bending 
moment M0=1zj. It causes a rigid turn of the beam around 
the axis of the hinge 0 / / .

j j
M K z Kθ = =  As a result, in 

section j there will be an additional deflection caused by 
the elastic compliance of the hinge 
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or in the dimensionless form 
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To consider the influence of the elastic compliance 
hinge fastenings, it is necessary to calculate total 
compliance 0ij ij ij

δ δ δΣ = + . The subsequent calculation 

of frequencies and forms remains the same. 
The matrix of elastic compliance should be updated 

for the account of elasticity of constraint. Let additional 
weight ma be attached to node k by means of an elastic 
connection with stiffness C. It is obvious that the 
connection of additional weight increases the number of 
degrees of freedom and means that the number of 
equations of movement will be equal to n+1. Thus 
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Both kinds of elastic connections are available in the 

dynamic system examined in above. For the real object 
prepared for test, an approximated estimation of stiffness 
of connections has been executed. Their relative values 
are equal accordingly 
 

0

2.0
/

x

K
K

EJ l
= = ,                 1.0

1/
kk

C
C

δ
= =  

 
In figure 5, the results of calculating the first two 

natural frequencies and forms of the beam in this 
dynamic system are presented. The natural form value for 
additional concentrated weight is equal to 1.42. This 
means the displacement of additional concentrated weight 
is 1.42 times more than the displacement of the free tip of 
the beam and has the opposite phase of vibrations. It is 
apparent that the first natural form of beam oscillation is 
mainly defined by the angular compliance of trailer 
support. The axis of the beam is practically straight line, 
which testifies to the small effect of bending. The second 
natural frequency and the form in this case are more 
similar to the first frequency and the form of vibrations at 
rigid jamming. Nevertheless, this form is much more 
complex.  

 

f1=4.87Hz, f2=26.9Hz
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Fig 5. First and second natural frequencies and forms  

at non-classic constraints 
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The done analysis shows the exclusively strong 
influence of the elastic constraints between components 
of system to dynamic characteristics, in particular, to 
natural forms and frequencies of vibrations.  
 

5. Conclusion 
 

The method of concentrated weights is a convenient 
means to analyse the dynamic properties of elastic 
mechanical systems. It has relative simplicity of 
definition of the parameters of the equivalent discrete 
system and clearness of computing algorithms and 
provides comprehensible accuracy of definition of the 
lowest natural frequencies. A doubtless advantage of this 
method is its convenience of modelling non-classic 
constraints of fastening and internal constraints between 
elements of complex systems. Such problems arise in 
practical problems of the analysis of the dynamics of real 
systems. The calculations presented for the real testing 
system demonstrate the very important effect of real 
boundary conditions on the dynamic properties of elastic 
systems.  
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ORLAIVIO KOMPONENTŲ DINAMINĖS SAVYBĖS ESANT REALIEMS APRIBOJIMAMS 

 

I. Pavelko, V. Pavelko   

 
S a n t r a u k a 
 
Pagrindinis straipsnio tikslas – analizuoti atskiras problemas, susijusias su koncentruotų masių metodu mechaninių sistemų dinamikos uždaviniuose 
su neklasikiniais vidiniais ir išoriniais ryšiais. Koncentruotų masių metodu yra patogu analizuoti tamprių mechaninių sistemų dinamines savybes. Šio 
metodo savybės yra tokios: ekvivalentinės diskrečios sistemos parametrų paprastas nustatymas; aiškus skaičiavimo algoritmas; pakankamai tikslus 
laisvųjų virpesių žemo dažnio nustatymas. Modeliuojant neklasikinius vidinius ir išorinius elementų ryšius sudėtingoje mechaninėje sistemoje 
išryškėja neabejotini metodo privalumai. Tokios problemos iškyla analizuojant realias dinamines sistemas.  
Šių tyrimų metu metodas buvo panaudotas analizuoti sraigtasparnio sijos virpesius, kai kinta tampraus įtvirtinimo ir tampriai pritvirtintos 
koncentruotos masės parametrai. 
 
Reikšminiai žodžiai: orlaivio komponentai, dinamika, neklasikinis ryšys. 

 

 

 




