
 - 101 -

AVIATION 

2008 

12(4): 101–112 

 

 

IDENTIFICATION SYSTEM FOR THE TECHNICAL CONDITION 

OF GAS TURBINE ENGINES OF AIRCRAFT 
 

Arif Pashayev, Djakhangir Askerov, Ramiz Sadiqov
1
, Parviz Abdullayev

2
 

 

Azerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25
th

 km 

E-mail: 
1
sadixov@mail.ru,

 2
a_parviz@azeronline.com 

 

Received 07 February 2006, accepted 01 December 2008 
 

 
 

 

 

 

 
 

Arif PASHAYEV, Prof Eng Academician 

Research interests: physical fields in solids, physics of the matter structure, and modern technique of physical research. 

Present position: rector of the National Academy of Aviation. 

 

 

 

 

 

Djakhangir ASKEROV 
Research interests: modeling the aviation transporting systems on the basis of modern mathematical methods and 

techniques. 

Present position: senior lecturer, head of “Manufacture of aviation transport” Department of the National Academy of 

Aviation. 

 

 

Ramiz Ali Cabar oqlu SADIQOV, Prof Dr Habil 

Date and place of birth: March 1949, Baku Azerbaijan Republic. 

Education: 1971 – Azerbaijan State Pedagogy Institute, mathematician; 1985 – Institute of Cybernetics of Azerbaijan, 

PhD, mathematics; 1996 – Academy of Sciences, Doctor of science,Higher Attestation Committee of Russian 

Federation, Moscow.  

Work experience: 1998 – present Chairman and Full Professor of Department of Computer Science and Mathematical 

Simulation, National Aviation Academy of Azerbaijan, Baku; 1989–1998 Head and Associate Professor of computer 

center of Azerbaijan Technical University, Baku; 1977–1989 Head of computer center of Scientific Research Institute 

“Neft – Gaz – Avtomat,” Baku; 1972–1977 Mathematician – programmer at Applied Mathematics Institute named after 

M.V. Keldish, Moscow; RAS. 

Affiliations and functions: taught courses: Mathematical modeling and control multiconnected systems; System theory 

and identification; Numerical methods; Introduction to computer science; Soft computing: fuzzy logic, neural networks, 

genetic algorithm, chaos and fractals.  

Professional memberships: a member – academician of International Academy of Sciences, Russian section; A member 

– American Science Mechanical Engineering; A member – International Union of Machine Builders.  

Research interests: development of mathematical models for various physical phenomena and technological processes 

and development numerical methods for their solving. Mathematical simulation and identification application modern 

technologies including Soft Computing. 

Publications: the number of total published scientific works is above 250; papers on 30 scientific conferences. 

Present position: Chairman and Full Professor of Department of Computer Science and Mathematical Simulation, 

National Aviation Academy of Azerbaijan. 

 

 

 

 

 

 
Parviz Shahmurad ABDULLAYEV, Assoc Prof DPh Eng 

Date of birth: 1967. 

Research interests: aircraft gas turbine engines condition monitoring methods on the basis of modern mathematical 

methods and techniques (neural networks, fuzzy logic). 

Present position: head of Design and Exploitation of Aircrafts and Aviation Engines Department of the Azerbaijan 

National Academy of Aviation.  

 

 

 

ISSN1648-7788 print / ISSN 1822-4180 online      DOI: 10.3846/1648-7788. 2008.12. 101-112 
http://www.aviation.vgtu.lt 



A. Pashayev, D. Askerov, R. Sadiqov, P. Abdullayev. Identification system for the technical condition of gas turbine 

engines of aircraft 

 

 - 102 -

Abstract. In this paper, it is shown that the use of probability-statistic methods, especially at the early stage of 

diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and 

limitation and uncertainty properties, is unfounded. Hence the efficiency of the use of Soft Computing methods-fuzzy 

logic and neural networks at these diagnostic stages is considered. Training with high accuracy of fuzzy multiple 

linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. 

Thus, for to make a more adequate model of the technical condition of GTE, the dynamics changes of skewness and 

kurtosis coefficients are analysed. Research of skewness and kurtosis coefficients shows, that the statistical 

distributions of the work parameters of GTE have a fuzzy character. Hence, consideration of fuzzy skewness and 

kurtosis coefficients is expedient. 

Investigation of the basic characteristics of the changes in the dynamics of the work parameters of GTE allows to 

draw the conclusion that it is necessary to use fuzzy statistical analysis during the preliminary identification of the 

technical condition of engines. 

Research of changes in the values of correlation coefficients also demonstrates their fuzzy character. Therefore for 

models choice the application of the Fuzzy Correlation Analysis results is offered. The fuzzy multiple correlation 

coefficient of fuzzy multiple regression is considered for checking the adequacy of models. 

At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification 

(hard computing technology is used) on measurements of input and output parameters of the multiple linear and non-

linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). 

The system that is developed to monitor the condition of GTE provides stage-by-stage estimation of the technical 

condition of an engine. As an application of this technique, an estimation of the new operating aviation engine 

temperature condition was made. 

 

Keywords: aviation gas turbine engine, fuzzy logic and newral networks, fuzzy statistics, fuzzy coefficient of 

multiple correlation. 

 

 

 

Nomenclature 
 

H  Flight altitude [m] 

M  Mach number – 
*

HT  Atmosphere temperature [oC] 

*

Hp  Atmosphere pressure [Pa] 

LP
n  Low pressure compressor speed (RPM)  [%] 

*

4T  Exhaust gas temperature [oC] 

T
G  Fuel flow [kg/h] 

T
p  Fuel pressure [kg/cm2] 

M
p  Oil pressure [kg/cm2] 

M
T  Oil temperature [oC] 

BS
V  Back support vibration [mm/s] 

FS
V  Forward support vibration [mm/s] 

1 2 3, , ,...a a a  Regression coefficients in initial linear multiple regression equation of model of GTE condition  

1 2 3, , ,...a a a′ ′ ′  Regression coefficients in actual linear multiple regression equation of model of GTE condition  

1 2 3, , ,...a a a� � �  Fuzzy regression coefficients in linear multiple regression equation of model of GTE condition  

,X Y� �  Measured fuzzy input and output parameters of model of GTE condition   

,X Y
r  Correlation coefficients between GTE work parameters  

,X Y
r�  Fuzzy correlation coefficients between GTE work parameters  

⊗  Fuzzy multiply operation  

ini Initial 

act Actual 

GTE Gas turbine engine 

ADS Automatic diagnostic system 

CIS Commonwealth of independent states 

NN Neural network 

FL Fuzzy logic 

LSM Least squares method 
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1. Introduction 
 

One of the important maintenance requirements for 

the modern aviation gas turbine engine (GTE) on 

condition is the presence of an efficient parametric 

technical diagnostic system. As is known, the diagnostic 

problem of the GTE of some aircraft is mainly that the 

onboard systems of the objective control don’t register all 

engine work parameters. This circumstance causes the 

need for additional manual registration of other 

parameters of GTE work. Consequently, there is the 

necessity to create a diagnostic system that provides the 

possibility of monitoring the condition of a GTE and 

making an exact recommendation about the further 

maintenance of the GTE by using registered data either 

on manual record and onboard recorders. 

In the subdivisions of CIS airlines, various 

automatic diagnostic systems (ADS) are currently used to 

determine the technical conditions of GTE. The essence 

of ADS methods is mainly to form flexible ranges for the 

recorded parameters as the result of engine operating time 

and to compare the recorded meaning of parameters with 

their point or interval estimations (values).  

However, it should be noted that statistic data 

processing using the aforementioned method is conducted 

by the preliminary allowance of the recorded parameters 

meaning normal distribution. This allowance affects the 

reliability of the monitoring of the technical condition of 

GTE and causes of the error decision in the GTE 

diagnostic and operating process (Pashayev et al. 2004a, 

Pashayev et al. 2003, Abdullayev et al. 2005). 

Moreover, some identical combination of changes in 

the various work parameters of GTE can be caused by 

different malfunctions. This complicates the location of 

the defect. 

 

2. Fuzzy-neural identification system of 

technical condition of GTE (Preliminary 

stage) 
 

A combined diagnostic method of monitoring the 

condition of GTE based on the evaluation of engine 

parameters by soft computing methods, mathematical 

statistics (high order statistics), and regression analysis is 

suggested. The method provides stage-by-stage (three 

stages) evaluation of the technical conditions of GTE  

(Fig 1). Experimental investigation conducted by manual 

records shows that, at the beginning of monitoring during 

40÷60 measurements, accumulated values of recorded 

parameters of GTE in good working order are not normal 

distribution.  

Consequently, in the first stage of the diagnostic 

process (at the preliminary stage of GTE operation) when 

initial data is insufficient and fuzzy, GTE condition is 

estimated by soft computing methods: the fuzzy logic 

(FL) method and neural networks (NN). In spite of the 

rough parameters estimations of GTE conditions, the 

privilege of this stage is the possible creation of an initial 

image (initial condition) of the engine on the indefinite 

information.  

As is known, one of the methods used to estimate 

the technical condition of GTE is the control of the 

temperature of exhaust gas and analysis of the trends in 

the changes in these values during operation. The 

application of various mathematical models described by 

regression equations for estimating the condition of GTE 

used in aviation is presented by L. A. Ivanov and S. M 

Doroshko  (Ivanov et al. 2003, Doroshko 1984). 

Let us consider mathematical linear and non-linear 

models of aviation GTE temperature described by fuzzy 

regression equations:  

 

1

; 1,
n

i ij j

j

Y a x i m
=

= ⊗ =∑� � � ,         (1) 

1 2

,

; 1, ; 1, ;r s

i rs

r s

Y a x x r l s l r s l= ⊗ ⊗ = = + ≤∑� � � � ,  (2) 

 

where 
i

Y�  is the fuzzy output parameter (e.g. GTE exhaust 

gas temperature *

4T ), 
j

x�  or 1 2,x x� �  are input parameters 

( H , M , *

H
T , *

H
p ,

LP
n ,

T
G ,

T
p ,

M
p ,

M
T ,

BS
V ,

FS
V ), and 

ij
a�  

and 
rs

a�  are required fuzzy parameters (fuzzy regression 

coefficients). 

The general task is to define the parameters of the 

fuzzy values 
ij

a�  and 
rs

a�  of the equations (1) and (2) on 

the basis of the fuzzy statistical experimental data: input 

co-ordinates 
j

x�  and 1 2,x x� �  and the output co-ordinates 

Y� of the model. 

Let us consider the decision of the given tasks by 

using FL and NN (Abasov et al. 1998, Yager et al. 1994, 

Hassoun 1995). 

NN consists of interconnected fuzzy neurons sets. 

When using NN to solve equations (1) and (2), the input 

signals of the network are accordingly fuzzy values of 

variable 1 2( , ,..., )
n

X x x x=� � � � , 1 2( , )X x x=� � � , and output Y� .  

As the parameters of the network are fuzzy values of 

parameters 
ij

a�  and 
rs

a� , we shall present fuzzy variables 

in the triangular form for which membership functions 

are calculated with the formula:  

 

1 ( ) / , ;

( ) 1 ( ) / , ;

0, .

x x if x x x

x x x if x x x

otherwise

α α

µ β β

 − − − < <


= − − < < +



 

 
At the identification task decision of parameters 

ij
a�  

and 
rs

a�  for equations (1) and (2) using NN, the basic 

problem is training the parameters 
ij

a�  and 
rs

a� . For 

training the values of parameters, we shall take advantage 

of a α -cut (Hassoun 1995). 
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Fig 1. Flow chart of aircraft gas turbine engine fuzzy-parametric diagnostic algorithm 

 

We suppose there are statistical fuzzy data received 

on the basis of experiments. On the basis of these input 

and output data training pairs ( , )Х Т� �  are made for 

training a network. For construction of process model on 

the input of NN gives input signals Х� , and further 

outputs are compared with reference output signals Т�  

(Fig 2). 

After comparison, the deviation value is calculated: 

 

2

1

1
( )

2

k

j j

j

Е У T
=

= −∑� � �  

With application α -cut for the left and right part of 

deviation value are calculated with the formulas 
2

1 1 1

1

1
( ) ( ) ,

2

k

j j

j

Е y tα α
=

 = − ∑  

2

2 2 2

1

1
( ) ( ) ,

2

k

j j

j

Е y tα α
=

 = − ∑  1 2 ,Е Е Е= +  

where 

1 2 1 2
( ) ( ), ( ) ; ( ) ( ), ( ) .

j j j j j j
У y y T t tα α α α α α   = =   
� �  

 

 

 
Fig 2. Neural identification system 

 

  GTE condition  monitoring using 
fuzzy correlation- regression 

analysis -  (AL3) 

GTE condition monitoring using  fuzzy 
mathematical statistics  - (AL2) 

Income data 

Identification of GTE  initial 
fuzzy  linear  multiple 

regression  model  - (AL33) 

GTE condition monitoring 
using  complex skewness and 

kurtosis  coefficients fuzzy 
analysis - (AL24) 

GTE condition monitoring 
using  fuzzy  logic and neural 

networks –(AL1) 

GTE condition  monitoring 
using fuzzy skewness 
coefficients of fuzzy 

parameters distributions - 
(AL22) 

GTE condition  monitoring 
using  fuzzy kurtosis 
coefficients  of  fuzzy 

parameters distributions - 
(AL23) 

 GTE condition  monitoring 
using of comparison  results 
skewness-kurtosis-parame- 

ters  ranges analysis by fuzzy 
logic - (AL25) 

Comparison of GTE fuzzy 
initial and actual models - 

(AL35) 

Identification of GTE actual 
linear multiple regression 

model - (AL34) 

GTE condition monitoring 
with comparison of results 
AL1, AL2 and AL3 using 

fuzzy logic  - (AL4) 

Rules for GTE operation - 
(AL5) 

GTE  condition monitoring 
using  fuzzy  mathematical 

statistics – (AL2) 

GTE condition monitoring 
using  fuzzy 

correlation-regression 
analysis – (AL3) 

GTE condition  monitoring 
using  fuzzy admissible  and 
possible  ranges  of  fuzzy 

parameters - (AL21) 

Fuzzy correlation analysis of 
GTE condition parameters - 

(AL31) 

Fuzzy comparison of GTE 
condition parameter’s fuzzy 

correlation  coefficients  with 
it’s  fuzzy initial  values - 

(AL32) 

GTE condition monitoring 
using  correlation-regression 

analysis  results by  fuzzy 
logic - (AL36) 

 

Блок  масш- 
табирования 

Нечеткая 
НС табирования 

Input-output 
(knowledge base) 

Scaler 

Fuzzy NN Scaler 

E 
~ 

+ 

- 

T 
~ 

X 
~ 

Y 
~ 
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If for all training pairs the deviation value Е is less 

than given, then training (correction) parameters of the 

network come to an end (Fig 3). In the opposite case, it 

continues until value Е reaches a minimum. 

The correction of network parameters for the left 

and right parts is carried out as follows: 

1 1 2 2
,n o n o

rs rs rs rs

rs rs

E E
a a a a

a a
γ γ

∂ ∂
= + = +

∂ ∂
, 

where 1 1 2 2, , ,o n o n

rs rs rs rsa a a a  are the old and new values of the 

left and right parts NN parameters, [ ]1 2,rs rs rsa a a=�  and 

γ  is training speed.  

The structure of the NN for the identification of the 

parameters of equation (1) is given in figure 4. 

For equation (2), we shall consider a concrete 

special case as a regression equation of the second order 

 
2 2

00 10 1 01 2 11 1 2 20 1 02 2Y a a x a x a x x a x a x= + + + + +� � � � � � � � � � � � �    (3) 

 

For the solution of equation (2), let us construct a 

neural structure in which the parameters of the network 

are coefficients 00a� , 10a� , 01a� , 11a� , 20a� , and 02a� . The 

structure of the NN will therefore have four inputs and 

one output (Fig 5). 

Using the NN structure, we are training network 

parameters. For 0α = , we receive the following 

expressions:  

 

1 2

1 1 2 2

1 1001 002

( ); ( );
k k

j j j j

j j

Е Е
у t у t

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑  

1 2

1 1 11 2 2 12

1 1101 102

( ) ; ( ) ;
k k

j j j j

j j

Е Е
у t x у t х

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑  

1 2

1 1 21 2 2 22

1 1011 012

( ) ; ( ) ;
k k

j j j j

j j

Е Е
у t x у t x

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑  

1 2

1 1 11 21 2 2 12 22

1 1111 112

( ) ; ( ) ;
k k

j j j j

j j

Е Е
у t x х у t x х

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑  

2 21 2

1 1 11 2 2 12

1 1201 202

( ) ; ( ) ;
k k

j j j j

j j

Е Е
у t x у t x

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑  

2 2 21 2

1 1 21 2 2 22

1 1021 022

( ) ; ( )
k k

j j j j

j j

Е Е
у t x у t x

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑        (4) 

 

It is necessary to note that at negative values of the 

coefficients rsa�  ( 0rsa <� ), the calculation formulas of the 

expressions that include parameters rsa�  in equation (3) 

and correction of the given parameter in equation (4) will 

change the form. For example, if we allow 0rsa <� , then 

the calculations of the formula of the fourth expression, 

which includes in equation (3), will take the following 

form: 

41 111 12 22y a x x= ; 42 112 12 21y a x x= , 

and the correction formulas will be  

1

1 1 12 22

1111

( )
k

j j

j

Е
у t x х

а =

∂
= −

∂
∑ ; 

2

2 2 11 21

1112

( )
k

j j

j

Е
у t x х

а =

∂
= −

∂
∑ ; 

For value 1α = we shall receive 

 

3 3

3 3 3 3 13 23

1 1003 113

( ); ( ) ;
k k

j j j j

j j

Е Е
у t у t x х

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑  

23 3

3 3 13 3 3 13

1 1103 203

( ) ; ( ) ;
k k

j j j j

j j

Е Е
у t x у t x

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑  

23 3

3 3 23 3 3 23

1 1013 023

( ) ; ( ) ;
k k

j j j j

j j

Е Е
у t x у t x

а а= =

∂ ∂
= − = −

∂ ∂
∑ ∑ (5) 

 

As the result of training (4) and (5), we find 

parameters of the network satisfying the knowledge base 

with required training quality. 

 

 

 

Fig 3. System for network-parameter (weights, threshold) training (with feedback) 

 

 

 

 

 

 Correction algorithm 

Input 
signals 

Target 
signals 

Deviations 

Training 
quality 

Random-number 
generator 

NN       Parameters Y 
~ 

X 
~ 
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1 x ~ 

2 
2 x ~ 

2 x ~ 

2 1 11 x ~ x ~ a ~ 

00 a ~ 

Y 
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Fig 4. Neural network structure for multiple linear regression equation  

 

Fig 5. Structure of neural network for second-order regression equation  

 

3. Monitoring GTE condition by fuzzy 

statistical analysis (First stage) 
 

The choice of the GTE technical condition model 

(linear or non-linear) may be made with the help of the 

complex comparison analysis of fuzzy correlation 

coefficients xyr�  and fuzzy correlation ratios /y xρ� . The 

following cases are therefore possible: 

a) if y�  is not dependent on x� , / 0y xρ = �� � (fuzzy zero); 

b) if there is the fuzzy functional linear dependence of 

y�  on x� , / 1xy y xr ρ= = ��� � � (fuzzy one); 

c) if there is the fuzzy functional non-linear dependence 

of y�  on x� , / 1xy y xr ρ< = �� �� � ;  

d) if there is the fuzzy linear regression of y�  from x�  

but there is no functional dependence, / 1xy y xr ρ= < ���� � ;  

e) if there is some fuzzy non-linear regression of y�  

from x� , but there is no functional dependence, 

/ 1xy y xr ρ< < �� ��� , 

 

where <�  and =�  are fuzzy relations that are determined 

by the appropriate membership functions ( )xyrµ  and 

/( )y xµ ρ . 

The values of xyr�  and /y xρ�  may be estimated as 

follows 

 

xy

x y

R
r

R R
=

⊗

�

�
� �

; 

2

/

/ 2
1

y x

y x

y

σ
ρ

σ
= −

�
�

�
, 

 

where  

 

1
R x y x y

n
= ⊗ − ⊗∑ ∑ ∑� � � � � ;  

( )
22 1

xR x x
n

= −∑ ∑� � � ; 

( )
22 1

yR y y
n

= −∑ ∑� � � ; 

 
2

2

/

( )x

y x

y y

n
σ

−
=
∑ ��

�  is residual dispersion y� , which is 

formed by the influence of x� ; 

2

2
( )

y

y y

n
σ

−
=
∑ ��

�  is 

general variation, which takes into account all influences 

of fuzzy factors; xy�  is the partial fuzzy average value of 

y� , which is formed by the influence of x� ; and y�  is the 

general fuzzy average value of y� . 

 
1 i a ~ 

2 i a ~ 

ij a ~ 

1 x ~ 

2 x ~ 

j x ~ 

i Y 
~ 
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However, research carried out shows that the 

distributions of the work parameters of GTE have an 

unstable character (fuzzy character). Therefore, it is 

necessary to note that the correct application of the fuzzy 

correlation-regression approach demands the analysis of 

the fuzzy characteristics of the distributions of the work 

parameters of GTE. With this purpose in mind, one must 

carry out a fuzzy analysis of the distribution of GTE work 

parameters on the basis of fuzzy values of skewness and 

kurtosis coefficients using the following formulas (Tabs 

1–2; Appendix): 

 

( )
( )

3

3

n

М P
А P

S
=
�

�

�
; ( )

( )
4

4
3

n

М P
Е P

S
= −
�

�

�
 

 

where ( )А P�  and ( )Е P�  are fuzzy skewness and kurtosis 

coefficients of the GTE work parameter P  (e.g. for 

output y  or input x  parameter); 

( ) ( )
3

3
1

1 n

i n

i

М P P P
n =

= −∑ �� �  is the fuzzy third central 

moment of parameter P ; ( ) ( )
4

4
1

1 n

i n

i

М P P P
n =

= −∑ �� �  is the 

fuzzy fourth central moment of parameter P ; and 

( )2

1

1

1

n

n i n

i

S P P
n =

= −
−
∑ �� �  is the fuzzy standard deviation of 

parameter 

P  (e.g. H , M , *

H
T , *

H
p ,

LP
n , *

4T ,
T

G ,
T

p , 
M

p , P  

M
T ,

BS
V ,

FS
V  ). 

 

At known membership functions of fuzzy skewness 

A�  and kurtosis E�  coefficients, a check of the 

distributions of the fuzzy parameters of GTE work can be 

carried out with the help of the fuzzy 2χ� criterion (fuzzy 

Chi-square test criterion) 

 
2 2

2 ( ) ( ( ) 3)

6 / 24 /

A P E P

n n
χ

−
= +
� �

�  

 

The use of the given formula requires finding the 

values of A�  and E�  that correspond to cores 1
A

d =  and 

1
E

d = , where 

 

max ( )
A

A

d Aµ

⊂

=
Α
Α

, 

max ( )
E

E

d Eµ

⊂

=
Ε
Ε

. 

 

Here A  and E elements of fuzzy Α  and Ε  sets, µ
Α

 

and µ
Ε

 membership functions A  and E  fuzzy sets to 

Α  and Ε  sets. 

The significance level of the fuzzy multiple 

correlation coefficient and fuzzy regression can be 

checked with the help of the so-called fuzzy F�  criterion 

(fuzzy Fisher test) 

 

2 2

[ , ( 1)]

([ ( 1)] ) ( (1 ))

F m n m

n m R m R

− + =

= − + −

�

� �
 

 

where R�  is the fuzzy coefficient of multiple correlation 

(Fig 7 and Tab 3; Appendix); 

 

1 2 1 3 1 2

1 2

1 2 1

2 2 2

. ... 2

...

1 (1 )(1 )(1 )...

...(1 )
n

n n

YX YX X YX X X

Y X X X

YX X X X

r r r
R

r
−

− − − −
=

−

� � �
�

�

 

 

n  is the number of measurements; m  is the number of 

factors (e.g. H , M , *

H
T , *

H
p ,

LP
n , *

4T ,
T

G , 
T

p , 
M

p ,
M

T , 

BS
V , 

FS
V ), and r�  is the values of fuzzy correlation 

coefficients with corresponding to cores 1
r

d =  

 

max ( )
r

r

d r
r

r

µ
⊂

= , 

 

where r  is an element (correlation coefficient) of fuzzy 

set r  and 
r

µ  is membership functions r to set r . 

F�  values calculated according to this formula are 

comparing with tabulated values (critical values) 
cr

F of 

Fisher distribution corresponding to the chosen reliability 

degree P  (or with significance level 1 Pα = − ). Thus 

that *
F� values is exposed to comparison with 

cr
F  which 

corresponds membership functions core   

 

max ( ) 1F F
f F

d fµ
⊂

= =  

 

where f  is an element of the fuzzy set F  and Fµ  is the 

membership function of f to set F . 

If *

crF F>� , the fuzzy coefficient of multiple 

correlation R�  admits significant at level α . 

 

4. Monitoring GTE condition using regre-

ssion analysis and Kalman-type filter 

(Second stage) 

 

The analysis shows that during following 60–120 

measurements occurs the approach of individual 

parameters values of GTE work to normal distribution. 

Therefore, at the accumulation of certain information in 

the second stage, GTE conditions are estimated with the 

help of mathematical statistics. Here the given and 

enumerated to the one GTE work mode and standard 

atmosphere parameters are controlled on conformity to 

their calculated admissible and possible ranges. 

Further by means of the Least Squares Method 

(LSM), the multiple linear regression models of changes 

in GTE conditions are identified. These models are made 

for each correct subcontrol engine of the fleet during the 

initial period of operation. On the basis of the analysis of 

the values of the regression coefficient (coefficients of 
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influence) of all engine’s multiple regression models with 

the help of mathematical statistics base and admissible 

range of coefficients (Abdullayev et al. 2005, Pashayev et 

al. 2004b).   

Monitoring GTE condition using regression analysis 

and Kalman-type filter (second stage) is presented by A. 

Pashayev (Pashayev et al. 2004a).  

 

5. Monitoring GTE condition using results of 

complex analysis of first and second stages 

(Third stage) 
 

On the third stage (for more than 120 measurements) 

by the LSM estimation conducts the detail analysis of 

GTE conditions. The essence of those procedures is 

making an actual model (multiple linear regression 

equation) of the conditions of GTE and comparing actual 

coefficients of influence (regression coefficients) with 

their base admissible ranges. The reliability of diagnostic 

results in this stage is high and equal to 0.95÷0.99. The 

influence coefficient's values going out the mentioned 

ranges allows make conclusion about the meaning 

changes of physical process influence on the concrete 

GTE work parameters. The stable going out one or 

several coefficient's influences beyond the above-

mentioned range affirms about additional feature of 

incorrectness and permits to determine address and 

possible reason of faults. To receive stable (robust) 

estimations by LSM, ridge-regression analysis is 

therefore used.  

With the view of forecasting GTE conditions, the 

regression coefficients are approximated by second and 

third degree polynomials. 

As an example of the application of the 

aforementioned method, changes in the conditions of a 

GTE (aviation engine D-30KU-154) were investigated. 

At the preliminary stage, when the number of 

measurements is 60N ≤ , the technical condition of the 

GTE is described by the fuzzy linear regression equation 

(1). The identification of the fuzzy linear model of the 

GTE is made with help of NN, the structure of which is 

given in figure 2. The GTE exhaust gas temperature is 

therefore accepted as the output parameter of the GTE 

model 

 
* *

4 1 2 3 4 5 6

*

7 8 9 10 11

( )ini Н LP Т M

М T FS BS Н

T a H a M a T a n a p a p

a T a G a V a V a p

= + + + + + +

+ + + + +

� � � �� � � � � � � � �

�� � �� � � � � �

   (6) 

 
* *

4 1 2 3 4 5 6

*

7 8 9 10 11

( )act Н LP Т M

М T FS BS Н

D T a H a M a T a n a p a p

a T a G a V a V a p

′ ′ ′ ′ ′ ′= = + + + + + +

′ ′ ′ ′ ′+ + + + +
(7) 

 

On the subsequent stage for each current 

measurement’s 60N > , when observes the normal 

distribution of the engine work parameters, GTE 

temperature condition describes by linear regression 

equation (6) which parameters is estimated by recurrent 

algorithm (Pashayev et al. 2004). 

As the result of the research conducted for the varied 

technical condition of the considered engine was revealed 

certain dynamics of the correlation and regression 

coefficients values changes which is given in figures 6 

and 8 (Appendix). 

The basic characteristics of correlation coefficients 

(Fig 6; Appendix) show the necessity of using fuzzy NN 

for the processing of flight information. In that case 

correct application of this approach on describing up of 

the GTE technical condition changes is possible by fuzzy 

linear or non-linear model (Pashayev et al. 2004a, 

Abdullayev et al. 2005). 

For the third stage was made the following 

admission of regression coefficients (influence 

coefficients of various parameters) of various parameters 

on GTE exhaust gas temperature in linear multiple 

regression equation (1): frequency of engine rotation 

(RPM of low pressure compressor) − 0.596÷0.622; fuel 

pressure − 1.16÷1.25; fuel flow − 0.0240÷0.0252; oil 

pressure − 11.75÷12.45; oil temperature − 1.1÷1.2; 

vibration of the forward support − 3.0÷5.4; vibration of 

the back support − 1.2÷1.9; atmosphere pressure − 

112÷128; atmosphere temperature − (−0.84)÷( −0.64); 

flight speed (Mach number) − 57.8÷60.6; and flight 

altitude − 0.00456÷0.00496. Within the limits of the 

specified admissions of regression coefficients was 

carried out approximation of the their (regression 

coefficients) current values by the polynomials of the 

second and third degree with help LSM and with use 

cubic splines (Fig 8; Appendix). 

 

6. Conclusions 
 

1. The GTE technical condition combined diagnosing 

approach is offered, which is based on engine work fuzzy 

and non-fuzzy parameters estimation with the help of 

Soft Computing methods (Fuzzy Logic and Neural 

Networks) and the confluent analysis. 

2. It is shown that the use of soft computing methods to 

recognise the technical condition of GTE has certain 

advantages in comparison with traditional probability-

statistical approaches. First of all, it is connected by that 

the offered methods may be used irrespective of the kind 

of GTE work parameters distributions. As at the early 

stage of the engine work, because of the limited amount 

of information, the kind of distribution of parameters is 

difficult to establish.  

3. By complex analysis it is established that: 

− between the fuzzy thermodynamic and mechanical 

parameters of GTE operation, there are certain fuzzy 

relations which degree in operating process and in 

dependence of fuzzy diagnostic situation changes’ 

dynamics increases or decreases, 

− for various situations of malfunctions development is 

observed different fuzzy dynamics (changes) of 

connections (correlation coefficients) between engine 

work fuzzy parameters in operating, caused by 

occurrence or disappearance of factors influencing GTE 

technical condition,  

− for improvement of accepted decisions accuracy about 

GTE technical condition is expedient to apply fuzzy 
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statistics in offered condition monitoring system. 

The suggested methods make it possible not only to 

diagnose but also to predict the safe engine runtime. 

These methods give tangible results and can be 

recommended for practical application both for automatic 

engine diagnostic systems in which the handle records are 

used as initial information and for onboard systems of 

engine work control. 
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AVIACINIŲ DUJŲ TURBININIŲ VARIKLIŲ TECHNINIŲ SAVYBIŲ IDENTIFIKAVIMO SISTEMA 

 

A. Pashayev, D. Askerov, R. Sadiqov, P. Abdullayev 
 

S a n t r a u k a 

 

Straipsnyje atskleidžiamas tikimybinio-statistinio metodo nepagrįstumas diagnozuojant dujų turbininius variklius, kai informacija yra netiksli, ribota 

ir neapibrėžta. Parodytas technologijos Soft Computing taikymo efektyvumas. Taikant netikslios statistikos, netikslios logikos ir neuroninių tinklų 

tikslius metodus dujų turbininių variklių diagnozavimui atliekamas daugiamačių tiesinių ir netiesinių modelių (regresijos lygčių), gautų iš netikslių 

statistinių duomenų, apmokymas. Taikant aprašytą metodą buvo atlikta pradėto eksploatuoti turbininio variklio šiluminės būsenos analizė. 

 

Reikšminiai žodžiai: aviacinis dujų turbininis variklis, netiksli logika ir neuroniniai tinklai, netiksli statistika, netikslus daugialypės koreliacijos 

koeficientas. 
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Appendix 
 

Table 1. Basic characteristics of fuzzy skewness coefficients 

 

Coefficients  

( )A x  

of GTE work 

parameters 

Mean of 

Coefficients 

( )A x  

Standard 

deviation 

( )A x  

Minimum  of 

coefficients ( )A x  

Maximum of 

coefficients 

( )A x  

Characteristics of fuzzy 

skewness coefficients ( )A x , 

( ) ( ( ), , )A x A x α β=�  

( )LPA n  −0.23241 0.321967 −1.11971 0.336825 (0.107, 1.227, 0.230) 
*

4( )A T  0.50122 0.284556 −1.11657 1.040502 (0.359, 1.476, 0.681) 

*( )TA p  −0.18664 0.540657 −1.17936 0.9457 (−0.508, 0.671, 1.454) 

*( )MA p  0.99583 0.363439 −0.23443 1.45711 (1.3685, 1.603, 0.089) 

*( )MA T  0.38082 0.403829 −0.7176 1.173577 (−0.021, 0.697, 1.195) 

( )TA G  0.26658 0.383172 −1.37908 1.470736 (0.121, 1.50, 1.35) 

( )FSA V  0.77308 0.256291 −0.16279 1.181255 (1.0395, 1.202, 0.142) 

( )BSA V  0.4596 0.293852 −0.57932 1.078241 (0.5545, 1.134, 0.524) 

( )A H  −0.26294 0.403748 −1.86149 0.278945 (0.0535, 1.915, 0.225) 

( )A M  −1.62084 0.576057 −2.83662 1.485629 (−1.244, 1.593, 2.73) 
*( )HA T  0.96686 0.560755 −1.03063 1.65627 (1.515, 2.546, 0.141) 

*( )HA p  0.02898 0.420972 −0.57615 1.554167 (0.433, 1.009, 1.121) 

 
Table 2. Basic characteristics of fuzzy kurtosis coefficients 

 

Coefficients  

( )E x  

of GTE work 

parameters 

Mean of 

coefficients 

( )E x  

Standard 

deviation 

( )E x  

Minimum of 

coefficients 

( )E x  

Maximum of 

coefficients 

( )E x  

Characteristics of fuzzy 

skewness coefficients ( )E x , 

( ) ( ( ), , )E x E x α β=�  

( )LPE n  0.051116    0.45444 −1.81492 0.658448 (0.268, 2.083, 0.390) 

*

4( )E T  −0.25381 0.276423 −1.4534 −0.01302 (−0.089, 1.364, 0.076) 

*( )TE p  0.050607 0.679819 −1.7868 0.914802 (0.773, 2.560, 0.142) 

*( )ME p  −0.37732 0.332528 −1.79575 0.124665 (−0.2795, 1.516, 0.404) 

*( )ME T  −0.01636 0.415829 −1.8803 0.484257 (0.2355, 2.116, 0.249) 

( )TE G  0.306218 0.488186 −1.59482 0.864367 (0.6055, 2.2, 0.259) 

( )FSE V  −0.8707 0.211368 −1.9007 −0.54713 (−0.7605, 1.14, 0.213) 

( )BSE V  0.118197 0.570606 −1.82124 1.583317 (−0.0295, 1.792, 1.613) 

( )E H  1.291274 0.831258 −2.17252 4.21139 (0.851, 3.024, 3.36) 

( )E M  3.18879 1.860652 −0.89764 7.868297 (1.8705, 2.768, 5.998) 

*( )HE T  0.080223 0.732302 −1.6196 1.813923 (−0.3545, 1.265, 2.168) 

*( )HE p  0.519337      0.56576 −1.96438 2.77291 (0.2795, 2.244, 2.493) 

 
Table 3. Basic characteristics of fuzzy multiple correlation coefficient  

 

Coefficient 

of multiple 

determination  

Mean of 

coefficient 

 

Standard 

deviation 

 

Minimum of 

coefficient 

 

Maximum of 

coefficient 

 

Characteristics of fuzzy coefficient 2
R , 

2 2( , , )R R α β=�  

2
R  0.989298 0.000137 0.989038 0.989576 (0.989243, 0.000205, 0.000333) 
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Fig 6. Change in values of correlation coefficient (relation values) between parameters included in linear multiple regression 

equation *

4( )actD T=  in GTE operation: a) H_T4-relation between H and *

4T (correlation coefficient *
4,H T

R ); b) M_T4-relation 

between M  and *

4T  (correlation coefficient *
4,M T

r ); c) TH_T4-relation between *

HT  and *

4T  (correlation coefficient * *
4,HT T

r ); d) 

PT_T4-relation between Tp  and *

4T  (correlation coefficient *
4,Tp T

r );  e) PM_T4-relation between Mp  and *

4T  (correlation coefficient 

*
4,Mp T

r ); f) TM_T4-relation between MT  and *

4T  (correlation coefficient *
4,MT T

r ); g)  GT_T4-relation between TG  and *

4T  (correlation 

coefficient *
4,TG T

r ); h) VPO_T4-relation between FSV  and *

4T  (correlation coefficient *
4,FSV T

r ); i) VZO_T4-relation between BSV  and 

*

4T  (correlation coefficient *
4,BSV T

r ); j) PH_T4-relation between *

Hp  and *

4T  (correlation coefficient * *
4,Hp T

r );  k) KND_T4-relation 

between LPn  and *

4T  (correlation coefficient *
4,LPn T

r ); N-number of measurements (scaling concerns to bottom numbers) 

Fig 7. Change in fuzzy multiple correlation coefficient values in GTE operation: 2R -coefficient of multiple correlation,  

N-number of measurements (scaling concerns to bottom numbers) 
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а) b) c) 

 

d) e) f) 

 

g) h) i) 

 

j) k) 

 
Fig 8. Change in values of regression coefficient (influence) of parameters included in linear multiple regression equation 

*

4( )actD T=  to *

4T  in GTE operation (continuation):  a) T4_H − influence of H  on *

4T  (coefficient 1a′ ); b) T4_M − influence of M 

on *

4T  (coefficient 2a′ ); c) T4_TH − influence of *

HT  on *

4T  (coefficient 3a′ ); d) T4_KND − influence of LPn  on *

4T  (coefficient 

4a′ ); e) T4_PT − influence of Tp  on *

4T  (coefficient 5a′ ); f) T4_PM − influence of Mp  on *

4T  (coefficient 6a′ ); g) T4_TM − 

influence of MT  on *

4T  (coefficient 7a′ ); h) T4_GT − influence of TG  on *

4T  (coefficient 8a′ ); i) T4_VPO − influence of FSV  on *

4T ( 

coefficient 9a′ ); j) T4_VZO − influence of BSV  on *

4T  (coefficient 10a′ ); k) T4_PH − influence of *

Hp  on *

4T  (coefficient 11a′ ); N − 

number of measurements 
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