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Abstract. A method of solving nonlinear equation systems with Boolean variables, which realizes the strategy of 

variant-directed enumeration, is related. Necessary and sufficient conditions of feasible plans existence are for-

malized. A procedure for the formal analysis of subsets of the variants is described. The structure of the algorithm 

that possesses the completeness property is given. Special cases of systems of equations are considered. 
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1. Introduction 
 

The necessity of research of the nonlinear equations 

systems with Boolean variables (the combinatory equa-

tions) appears during derivation of solutions in expert 

control systems of complex organizational and techno-

logical processes and in the diagnostic systems of com-

plex technical objects, in which there can be plural refus-

als with the effect of “imposing” their consequences 

(Литвиненко 1992, Литвиненко 2002). 

Besides, equation systems with Boolean variables 

are part of mathematical models of numerous applied 

combinatory optimization problems, to which belong the 

problems of routing traffic scheduling, ordering and 

scheduling interconnected jobs designing complex ob-

jects, etc. (Hillier et al. 2005, Taha 2006, Winston 2003, 

Литвиненко 1983, Пападимитриу et al. 1985). 

Various heuristic algorithms are traditionally used 

for the solution of similar problems. It is known that such 

algorithms have a number of grave disadvantages that re-

strict their practical application. First of all, these include 

weak   action   purposefulness   and   completeness   the  

 

 

absence of the property of completeness As a result, there 

are unfairly high machine time expenses and also situa-

tions in which there is no success in resolving a problem 

though the solution obviously exists.  

The aspiration to provide the solution process of 

nonlinear equations systems with Boolean variables on a 

strict mathematical basis has lead to the development of 

this new method, which realizes the strategy of the di-

rected enumeration of variants. The statement of this 

method is the purpose of this article. 

 

2. Problem statement 
 

Nonlinear equation systems with Boolean variables 

can be represented in the following general view:  

( ) ; 1,
j j

g x b j n= = ,    (1) 

where x  is the m -dimensional vector of the independent 

Boolean variables: 

( ; 1, )
i

x x i m= = ; {0,1}
i

x ∈ ; 

where ( )j
g x  is the function of independent variables 

that has a nonlinear structure: 
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( ) ( ); 1,
j

j jr r
r R

g x a x j nϕ
∈

= ∑ = ; 

( )r
xϕ  is a product of independent variables ( x -

product): 

( )
r

r i
i I

x xϕ
∈

= ∏ ; 1,r q= ; 

jR  is a set of numbers of x -products that are in-

cluded in the j-th equation; 1,j n= ; 

rI  is a set of numbers of the independent variables 

that form the r-th x-product; 1,r q= ; 

jra , 
j

b  are the rational numbers that are not peri-

odic fractions; 1,j n= ; jr R∈ . 

It is necessary to define a vector of the bivalent vari-

ables’ values as ( ; 1, )ix x i m= =  to satisfy the equation 

system (1). 

The problem has a combinatorial nature and belongs 

to the class of the NP-full problems, which require huge 

(and, in some practical cases, unacceptable high) ex-

penses of machine time for their solution.  

The suggested method allows one to minimize the 

number of steps involved in the realization of the algo-

rithm and, hence, duration of the solution to the equation 

system due to high direction and maximal narrowing of 

the search area of the vector of the values of the Boolean 

variables ( ; 1, )ix i m=  that satisfy the given system.    

The method is based on consecutive breaking of the 

initial set of variants until the optimal plan or the incom-

patibility of system of restrictions is established. Allo-

cated subsets of variants are subjected to formal analysis, 

the purpose of which is:  

– to reveal and exclude from further consideration 

the subsets that do not contain feasible plans;  

– to reveal and exclude from further consideration 

the equations that have lost the property of activity with 

respect to the plans of the analyzed subset of variants dur-

ing the solution of the problem;  

– to reveal and fix the variables that can accept only 

non-alternative values (only 0 or only 1) to provide the 

permissibility of supplemental plans of the analyzed sub-

set of variants.  

 

3. Basic notions and conventional signs    
 

Let us say that at the beginning of a certain step of 

the problem’s (1) solution subtracted λ  have not crossed 

subsets 
kG , containing feasible plans, are allocated in the 

full set of variants G ; 1,k λ= . 

Let 0

kI  and 1

kI  be sets of numbers of the decision 

variables, which receive the values 0 and 1 in the plans 

of k -th subset of variants, and let 
kI  be a set of numbers 

of variables, the values of which are not fixed in 
kG . 

The set of variable values 0 1,i k kx i I I∈ ∪  such as 

0( )( 0)k ii I x∀ ∈ =  and 1( )( 1)k ii I x∀ ∈ =  is called the par-

tial plan of the k-th subset of variants. Any set of variable 

values ,i kx i I∈ satisfying the bivalent condition 

{ }0,1ix ∈  is called the supplemental plan of subset kG . 

Let us introduce the following signs:   
0

kR  and 
1

kR  – the sets of numbers of functions 

( )r xϕ converted by the partial plan of the k -th subset of 

variants accordingly to 0 and 1: 

{ }0 0:
k r k

R r I I= ≠ ∅∩ ; { }1 1:
k r k

R r I I= ⊆ ; 

kR  – the set of numbers of functions ( )r xϕ , that are 

not converted by the partial plan of subset kG  to a con-

stant: 
0 1{1,..., } \ ( )k k kR q R R= ∪ . 

The constitution of sets jkR  and 1

jkR , 1,j n= , simi-

lar to the mentioned above, but relating to the j-th equa-

tion of system (1), is defined according to the formulas: 
1 1; .jk j k jk j kR R R R R R= =∩ ∩  

The equation of system (1), when even one of the 

supplemental plans of subset kG  does not satisfy it, is 

called active with respect to the plans of a given subset. 

A set of numbers with such restrictions we shall desig-

nate as { }; 1, 2, ...,k kJ J n⊆ . 

Equations system (1), brought into accord with the 

k-th subset of variants, will have the following form:  

( )jk jkg x b= ; kj J∈ ;                    (2) 

where  

( ) ( )
jk

jk jr rk
r R

g x a xϕ
∈

= ∑ ; 

( ) ;  ;  
rk

rk i rk r k k
i I

x x I I I r Rϕ
∈

= ∏ = ∈∩ ;  

{ }0, 1 ;i kx i I∈ ∈ ; 

1
jk

jk j jr
r R

b b a
∈

= − ∑ . 

On sets jkR  and jkI , kj J∈ , the following subsets 

are defined: 

{ }2 : 0
jk jk jr

R r R a= ∈ < ; 

{ }2 2

'
( ') { '} :

jk jk jr jr
R r r r R a a= ∈ ≤∪ ; 

{ }3 : 0
jk jk jr

R r R a= ∈ > ; 

{ }3 3

"
( ") { "} :

jk jk jr jr
R r r r R a a= ∈ ≥∪  

{ }4 3 2( ') : ( ')
jk jk rk jk

R r r R I I r= ∈ ⊆ ; 

{ }5 2 3( ") : ( ")
jk jk rk jk

R r r R I I r= ∈ ⊆ ; 

{ }6 2 8( ") : ( ")
jk jk rk jk

R r r R I I r= ∈ ≠ ∅∩ ; 

{ }7 3 9( ') : ( ')
jk jk rk jk

R r r R I I r= ∈ ≠ ∅∩ ; 

{ }8 3( ") ( ") : 1
jk jk rk

R r r R r m= ∈ = ; 

{ }9 2( ') ( ') : 1
jk jk rk

R r r R r m= ∈ = ; 

{ }
( `)

( ') ; 2,9
v
jk

v

jk rk
r R r

I r I v
∈

= ∈∪ ; 

{ }
( ``)

( ") ; 3,8
v
jk

v

jk rk
r R r

I r I v
∈

= ∈∪ , 

where rk rkm I= . 
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Let us introduce the following signs: 

,  if 

0, if

v
jk

v

jr jk
r R

jk

jk

a R

s

R

ν

ν

∈

 ∑ ≠ ∅


= 
 = ∅

 ; {2,3}ν ∈ ; 

,  if ( *)

( *)

0, if ( *)

v
jk

v

jr jk
r R

jk

jk

a R r

s r

R r

ν

ν

∈

 ∑ ≠ ∅


= 
 = ∅

,  

where 
' at {4,7}

*
" at {5,6}

r
r

r

ν

ν

∈
= 

∈
. 

For each j-th (
k

j J∈ ) equation of the system (2), the 

necessary and sufficient conditions of its performance can 

be formulated. The necessary condition is the belonging 

of the free member 
jk

b  to the numerical axis segment re-

stricted to minimal and maximal values of the left part of 

the equation: 

min ( ) max ( )
jk jk jk

g x b g x≤ ≤ . 

With the certain approximation degree as 

min ( )
jk

g x  and max ( )
jk

g x , the sum of negative and 

positive coefficients of function ( )
jk

g x  accordingly can 

be accepted: 
2 min ( )
jk jk

s g x= ;. 3 max ( )
jk jk

s g x=  

The sufficient condition of performance of the j-th 

(
k

j J∈ ) equation of system (2) should be the existence 

of a combination of its coefficients, the sum of which ex-

actly equals 
jk

b . The presence or absence of such a com-

bination we shall reflect as value “true” (1) or “false” (0) 

of the predicate ( )
j k

P G  accordingly: 

0 ( )

1, if
( )

0,otherwise

k

jr jk
r R G

j k

a b
P G ∈

∑ =
= 


, 

where ( )
j k

R G  is some subset of numbers of x-products 

that are included in the j-th equation of system (2); 

( )
j k jk

R G R⊆ . 

The establishment of the fact of fulfillment or non-

fulfillment of a sufficient condition of the existence of a 

solution to the j-th equation of system is generally 

equivalent to the solution of the unique linear equation 

with 
jk

ρ  Boolean variables: 

jk

jr r jk
r R

a y b
∈
∑ = ,                                    (3) 

where {0,1}
r

y ∈ ; 1,
jk

r ρ= ; 
rk jk

Rρ = . 

Because the given equation can be considered a spe-

cial case of system (1), the simplified modification of the 

method for its solution is used in this article. Obviously, 

the presence of a bivalent vector of variable values 
r

y ; 

1,
jk

r ρ= , satisfying equation (3), indicates the fulfill-

ment of a sufficient condition of the existence of a solu-

tion to the j-th equation of system and the absence indi-

cates non-fulfilment. 

 

 

 

 

4. Analysis of subsets of variants 
 

The analysis of any subsets of variants 
k

G  ( 1,k λ= ) 

is based on the establishment of the fact of possibility or 

impossibility of the observance of necessary and suffi-

cient conditions of the existence of the feasible decisions 

of equation set corresponding to the given subset. In addi-

tion, it is necessary to take into account the “side effect”; 

the non-alternative (with respect to certain equation fea-

sibility) values of variables can be completely unaccept-

able for other equation of the same system. 

Obviously, the specified properties of the solution 

subsets of the candidates of the problem are defined by 

equation properties that are included into partial equation 

systems (2) corresponding to these subsets.  

The properties of every k-th subset of variants are 

formulated as the following statements, the evidence of 

which relieves the necessity of their proof.  

Statement 1. The subset k
G  does not contain feasi-

ble plans if for some j-th (
k

j J∈ ) equation of system (2) 

one of the following conditions is carried out: 

a) 2

jk jk
s b> ; 

b) 3

jk jk
s b< ; 

c) ( ) 0
j k

P G = ; 

d) 2 2( ) & ( ' )
jk jk

R r R≠ ∅ ∃ ∈ ⋅  

              ( )2 2 4

'( ) & ( ')
jk jr jk jk jk jk

s a b s s r b ⋅ − > + >  ; 

e) 3 3( ) & ( " )
jk jk

R r R≠ ∅ ∃ ∈ ⋅  

   ( )3 3 5

"( ) & ( ")
jk jr jk jk jk jk

s a b s s r b ⋅ − < + <  ; 

f) 3 3( ) & ( " )
jk jk

R r R≠ ∅ ∃ ∈ ⋅  

  ( )2 2 6

"( ) & ( ")
jk jr jk jk jk jk

s a b s s r b ⋅ + > − >  ; 

g). 2 2( ) & ( ' )
jk jk

R r R≠ ∅ ∃ ∈ ⋅  

  ( )3 3 7

'( ) & ( ')
jk jr jk jk jk jk

s a b s s r b ⋅ + < − <   

Statement 2. The equation at number j (
k

j J∈ ) of 

system (2) is not active with respect to subset 
k

G  plans if 

the following condition satisfies it:  
2 3 0
jk jk jk

s b s= = = . 

Statement 3.1. If some j-th (
k

j J∈ ) equation of sys-

tem (2) is satisfied with the condition: 
2 2 2 4 2

'
( ) & ( ' ) ( ')

jk jk jk jk jk jk jr
R r R s s r b s a ≠ ∅ ∃ ∈ ⋅ + ≤ < −  , 

then from subset 
k

G  supplemental plans the feasible 

plans are only those in which 
2 ( ') ( ) 1
jk rk

r R r xϕ   ∀ ∈ =    . 

Statement 3.2. If some j-th (
k

j J∈ ) equation of sys-

tem (2) is satisfied with the condition: 
3 3 3 3 5

"
( ) & ( " ) ( ")

jk jk jk jr jk jk jk
R r R s a b s s r ≠ ∅ ∃ ∈ ⋅ − < ≤ +  , 

then from subset 
k

G  supplemental plans the feasible 

plans are only those in which  
3 ( ") ( ) 1
jk rk

r R r xϕ   ∀ ∈ =    . 
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Statement 4.1. If some j-th (
k

j J∈ ) equation of sys-

tem (2) is satisfied with the condition: 
3 3 2 6 2

"
( ) & ( " ) ( ")

jk jk jk jk jk jk jr
R r R s s r b s a ≠ ∅ ∃ ∈ ⋅ − ≤ < +  , 

then from subset 
k

G  supplemental plans the feasible 

plans are only those in which  
3 ( ") ( ) 0
jk rk

r R r xϕ   ∀ ∈ =    . 

Statement 4.2. If some j-th (
k

j J∈ ) equation of sys-

tem (2) is satisfied with the condition: 
2 2 3 3 7

'
( ) & ( ' ) ( ')

jk jk jk jr jk jk jk
R r R s a b s s r ≠ ∅ ∃ ∈ ⋅ + < ≤ −  , 

then from subset 
k

G  supplemental plans the feasible 

plans are only those in which 
2 ( ') ( ) 0
jk rk

r R r xϕ   ∀ ∈ =    . 

The procedure of analysing the k -th subset of the 

problem’s candidate solutions is based on a consecutive 

check on the fulfilment of each statement condition for all 

equations of system (2). Depending on the results, in the 

analysis cycle this or that sequence of actions is carried 

out. 

1. If the condition of statement 1 is performed for 

some equation of system (2), the analyzed subset of vari-

ants 
k

G  is excluded from further consideration as not 

containing feasible plans and the analysis procedure is 

completed. Otherwise, the following item of the given 

procedure is carried out. 

2. If the *j th ( *
k

j J∈ ) equation of system (2) is 

satisfied by the condition of statement 2, it is excluded 

from the given system, as it cannot influence the choice 

of the supplemental plan of the k-th subset of variants. 

After that, the set Jk, elements of which identify the equa-

tions active with respect to plans Gk, is corrected. The 

updated set is defined according to the formula: 
* \{ *}
k k

J J j= . 

Furthermore, if the equation that is considered is not 

the last in system (2), the condition of statement 2 is 

checked for the next equation, etc. 

If *

k
J = ∅ , that means that all supplemental plans of 

the subset of variants 
k

G  satisfy the system of equations 

(2). This ends the computing process because the solution 

of the initial system of equations (1) is found. The solu-

tion is the decision variables value vector, consisting of 

partial and any supplemental plans of subset Gk. 

If after checking the fulfilment of the condition of 

statement 2 for all equations of system (2), it appears 

that *

k
J ≠ ∅ , then the transition to the next step of the 

procedure of analysing the subset of variants 
k

G  is made. 

3. If the j-th *( )
k

j J∈  equation of system (2) and 

some 2'
jk

r R∈  are satisfied with the condition of state-

ment 3.1, the variables 
i

x , 2 ( ')
jk

i I r∈ are set to 1s. 

These values are substituted in all active (with respect to 

the plans of subset 
k

G ) equations of system (2). After 

that the repeated analysis cycle of the k-th subset of vari-

ants is made starting with the first item. The performance 

check of the condition of statement 1 for the given ine-

quality in a repeated cycle is omitted. 

Otherwise, the next step in the analysis of subset 
k

G  

is carried out. 

4. If the j -th *( )
k

j J∈  equation of system (2) and 

some 3"
jk

r R∈  are satisfied with the condition of state-

ment 3.2, then the variables 
i

x , 3 ( ")
jk

i I r∈  are set to 1s. 

These values are substituted in all active (with respect to 

subset 
k

G  plans) equations of system (2). After that the 

repeated analysis cycle of the k-th subset of variants is 

made starting with the first item. The performance check 

of the condition of statement 1 for the given inequality in 

a repeated cycle is omitted. 

Otherwise, the next step in the analysis of subset 
k

G  

is carried out. 

5. If the j-th *( )
k

j J∈  equation of system (2) and 

some 3"
jk

r R∈  are satisfied with the condition of state-

ment 4.1, then the variables 
i

x , 8 ( ")
jk

i I r∈  are set to 0s. 

These values are substituted in all active (with respect to 

subset 
k

G  plans) equations of system (2). After that the 

repeated analysis cycle of the k-th subset of variants is 

made starting with the first item. The performance check 

of the condition of statement 1 for the given inequality in 

a repeated cycle is omitted. 

Otherwise, the next step in the analysis of subset 
k

G  

is carried out. 

6. If the j-th *( )
k

j J∈  equation of system (2) and 

some 2'
jk

r R∈  are satisfied with the condition of state-

ment 4.2, then the variables 
i

x , 9 ( ')
jk

i I r∈  are set to 0s. 

These values are substituted in all active (with respect to 

subset 
k

G  plans) equations of system (2). After that the 

repeated analysis cycle of the k-th subset of variants is 

made starting with the first item. The performance check 

of the condition of statement 1 for the given inequality in 

a repeated cycle is omitted. 

To check the performance of the conditions of the 

statements 3.1 and 4.2 for the next j -th equation, starting 

by considering the minimal (negative) coefficient of func-

tion ( )
jk

g x  as 
jr

a ′  is recommended. Subsequently, if at 

this 
jr

a ′  the condition of the given statement is fulfilled, 

it is expedient to use the maximal negative coefficient of 

function ( )
jk

g x , for which the condition 2

jk jr jk
s a b′− >  

satisfies, as this parameter. 

The fulfilment of the conditions of statements 3.2 

and 4.1 for the next j -th equation is originally checked 

for the case when the maximal (positive) coefficient of 

function ( )
jk

g x  is taken as 
jr

a ′′ . If at this 
jr

a ′′ , the condi-

tion of the given statement is fulfilled, then the minimal 

positive coefficient of function ( )
jk

g x  satisfying the 

condition 2

jk jr jk
s a b′′+ >  is considered this parameter. 
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The choice of parameters 
jr

a ′  and 
jr

a ′′  allows cut-

ting off from 
k

G  the greatest capacity subsets of variants 

that do not contain feasible plans. 

The procedure of analysing the variant subset 
k

G  

stops in the following cases: 

а) if it appears that the subset 
k

G  does not contain 

feasible plans; 

b) if the set of equation numbers active with respect 

to plans of k-th subset of variants becomes empty; 

c) if in the last analysis cycle, none of the variables 

,
i k

x i I∈  are given fixed values. 

 

5. The structure of the algorithm 
 

The algorithm that solves equation system (1), that 

realizes the strategy of the directed enumeration of vari-

ants, provides the performance at each computing process 

stage the following sequence of actions: 

– choosing a subset of variants subject to further 

splitting; 

– choosing a variable, the values of which are sub-

ject to fixing; 

– splitting a subset of variants into two not crossing 

subsets; 

– analysing new received subsets of variants; 

– checking the conditions of end of the computing 

process. 

1. Choosing a subset of variants subject to splitting. 

Since the problem that is being considered is not an 

optimization one, it is expedient to use the number of 

variables that have fixed values in subsets 
k

G , 1,k λ=  as 

criteria for choosing a subset of variants for further split-

ting. This means that for further splitting the subset of 

variants *k
G , 1 *k λ≤ ≤  is chosen, to which the partial 

plan of the maximal capacity corresponds: 

{ }* max , 1,
k k

kµ µ λ= = , 

where 0 1

k k k
I Iµ = ∪ . 

This criterion responds to the aspiration to achieve 

the result of required calculations for a minimum quantity 

of algorithmic steps. 

2. Choosing a variable, the values of which are sub-

ject to fixing. 

According to the reasons given in the previous step, 

it is expedient for the given operation to choose a vari-

able, the fixing of values of which can lead to essential 

simplification of system (2) corresponding to the subset 

of variants *k
G . Any variable of that x-product that be-

longs to equation set (2) with the maximal coefficient in 

absolute value can have such a property.  

Hence, for giving values 0 and 1 an arbitrary vari-

able, * * *i r k
x I∈ , which belongs to the x-product * * ( )

r k
xϕ , 

is chosen, so that  

* * *
max{ ; ; }

jr jr k jk
a a j J r R= ∈ ∈ . 

3. Splitting a subset of variants *kG . 

By fixing the values of variable *ix , the subset *k
G  

is broken into two not crossing subsets of variants 0

*k
G  

and 1

*k
G . In all plans of the first of them, * 0

i
x = , and in 

all plans of the second * 1
i

x = . These values are serially 

substituted in equations of system (2), with the help of 

which two new systems of equations corresponding to the 

two new subsets of variants 0

*k
G  and 1

*k
G  are formed. 

4. Analysing subsets of variants 
0

*k
G  and 

1

*k
G . 

The new subsets 0

*k
G  and 1

*k
G  are serially exposed to 

the formal analysis according to the procedure stated 

above. After that (if the required solution is not found), 

all considerations left in the subset of variants are renum-

bered again, starting with one. 

5. Checking the conditions of the end of the comput-

ing process. 

The computing process ends after finding a solution 

(a set of solutions) to equation set (1) or after establishing 

its incompatibility. 

Preassigned equation set has a unique solution if af-

ter the next searching stage only one subset of variants 

with the unique equation of system (2), which satisfies 

the condition of one of the statements 3.1-4.2, is left: 

( ) ( )
2 3 2

3

1 & 1 &{( 1) & (

) [( ) & ( ) ( ) &

&( )]& ( )( 1) & ( 0)}.

k jk jr

jk jk jk jk

jk jk rk jk

k J R a

b R R R

R r R m b

λ = = = = =

= ∨ = ∅ ≠ ∅ ∨ ≠ ∅

= ∅ ∀ ∈ = =

 

A formal attribute of the existence of more than one 

solution of system (1) is the absence of equations in sys-

tem (2) that are active with respect to the plans of some 

subset of variants involving variables that have not yet 

received fixed values: 

( 1) & ( :1 )[( ) & ( )]
k k

k k J Iλ λ≥ ∃ ≤ ≤ = ∅ ≠ ∅ . 

In particular, if for some subset 
k

G ; 1 k λ≤ ≤  the 

condition ( ) & ( )
k k

J I= ∅ ≠ ∅ is satisfied, that means that 

the given subset contains as many solutions of equations 

set (1) as supplemental plans. 

A formal attribute of the incompatibility of equation 

set (1) is the absence of subsets of variants left after per-

forming the analysis at any step of the computing proc-

ess: 0λ = . 

If at the current step the conditions of ending the 

computing process are not satisfied, the following step of 

the described algorithm is carried out. 

It is expedient to begin the problem solving with an 

analysis of the full set of variants G . In some cases, this 

allows one to determine the solution of equation set (1) 

without the splitting procedure, to establish the fact of its 

incompatibility, or at least to narrow the area of the 

search for a solution. 

 

6. Special cases 
 

In many management and diagnosis problems, mod-

els with a unimodular coefficient matrix and the whole 

non-negative right parts of equation set (1) can frequently 

be found: 
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( :1 )[( )( 1) & ( 0)]
j jr j

j j n r R a b∀ ≤ ≤ ∀ ∈ = ≥ . 

In this case, the necessary and sufficient conditions 

for the fulfilment of the j-th (
k

j J∈ ) equation of set (2) 

are expressed by the formula 

0
jk jk

b s≤ ≤ ,                         (4) 

where 
, if

0 otherwise

jk jk

jk

R R
s

 ≠ ∅
= 


, 

and the above statements, postulating properties of the   

k-th ( 1, )k λ=  subset of variants, get the following 

formulation. 

Statement 1'. Subset 
k

G  does not contain feasible 

plans if some j-th (
k

j J∈ ) equation of set (2) is satisfied 

with this condition: 

( 0) ( )
jk jk jk

b b s< ∨ > . 

Statement 2'. The equation at number j (
k

j J∈ ) of 

set (2) is not active with respect to subset 
k

G  plans if it 

is satisfied with this condition:  

0
jk jk

b s= = . 

Statement 3'. If some j-th (
k

j J∈ ) equation of sys-

tem (2) is satisfied with this condition: 

0
jk jk

s b= > , 

then from the supplemental plans of subset 
k

G  only those 

in which ( ) [ ( ) 1]
jk rk

r R xϕ∀ ∈ =  can be feasible. 

Statement 4'. If some j-th (
k

j J∈ ) equation of sys-

tem (2) is satisfied with this condition: 

0
jk

b = , 

then from the supplemental plans of subset 
k

G  only those 

in which ( ) [ ( ) 0]
jk rk

r R xϕ∀ ∈ =  can be feasible. 

Let  

jk

jk rk
r R

I I
∈

= ∪ ; { : 1}
jk jk rk

R r R m′ = ∈ = ; 

 
'
jk

jk rk
r R

I I
∈

′ = ∪ . 

The general structure of the algorithm used to solve 

equation set (1) in the case of unimodular coefficient ma-

trix remains the former, but the procedure of analysing 

subsets of variants is reduced up to four steps. 

The basic action of the third step (replacing the third 

and fourth steps of the general procedure) in the special 

case considered is setting the value of 1 to variables 
i

x , 

jk
i I∈  if the j-th *( )

k
j J∈  equation of system (2) is satis-

fied with the condition of statement 3'. 

In the fourth step (replacing the fifth and sixth steps 

of the general procedure), one must set the value of 0 to 

variables 
i

x , 
jk

i I ′∈ , if the j-th *( )
k

j J∈  equation of sys-

tem (2) is satisfied with the condition of statement 4'. 

The other special case that also frequently occurs in 

diagnosing problems of complex objects with plural re-

fusals is characterized by the unimodality of not only the 

matrix of the coefficients, but also the vector free mem-

ber: 

( :1 )[( )( 1) & ( {0,1})]
j jr j

j j n r R a b∀ ≤ ≤ ∀ ∈ = ∈ . 

In this case, the necessary and sufficient conditions 

for the fulfilment of the j-th (
k

j J∈ ) equation of system 

(2) are expressed, as earlier, by formula (4), and the con-

ditions of four statements postulating the properties of the 

k-th ( 1, )k λ=  subset of variants are formulated as fol-

lows: 

– for statement 1': ( 0) ( 0) & ( 1)
jk jk jk

b s b< ∨ = = ; 

– for statement 2': 0
jk jk

s b= = ; 

– for statement 3': 1
jk jk

s b= = ; 

– for statement 4': ( 0) & ( 0)
jk jk

s b> = . 

The fulfilment of the condition of statement 3' 

proves that the left part of the j-th equation of system (2) 

will consist of the unique x-product ( )
rk

xϕ . In this case, 

all variables 
i

x , 
rk

i I∈  forming the given x-product are 

set to unique feasible values of 1s, and the equation turns 

to identity and is excluded from further consideration. 

The fulfilment of the condition of statement 4' re-

quires transformation the left part of the j-th equation of 

system (2). In this case, all variables 
i

x , 
jk

i I ′∈  are set 

values of 0s. 

 

7. Conclusion 
 

Problems that require solving nonlinear equation 

systems with Boolean variables are widely used in auto-

mated control systems and the design and diagnostics of 

the systems of complex objects. 

In order to solve such problems, various heuristic al-

gorithms are traditionally used, but they have limited 

practical application due to their known disadvantages. 

In this article, a mathematical method to solve 

nonlinear equation systems with Boolean variables is set 

forth. This method realizes the strategy of the directed 

enumeration of variants. 

The given algorithm has the property of complete-

ness because none of the allocated subsets of variants are 

excluded from consideration until the incompatibility of 

the corresponding set of equations is established. 

The computer realization of the method was carried 

out in the UNIX IP operational environment with the use 

of the language C ++. 
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NETIESINIŲ LYGČIŲ SISTEMŲ SPRENDIMAS SU BŪLIO KINTAMAISIAIS 
 

O. Lytvynenko 
 

S a n t r a u k a 

 

Netiesinių lygčių sistemos su Būlio kintamaisiais sprendžiamos naudojant variantų kryptinės numeracijos metodą. Formalizuojamos būtinos ir 

pakankamos galimų schemų sąlygos. Aprašomos variantų poeibių formalios analizės procedūros. Pateikiama struktūra algoritmo, turinčio užbaigtumo 

savybių. Svarstomos lygčių sistemų atskiri atvejai. 

 

Reikšminiai žodžiai: Būlio kintamieji, netiesinių lygčių sistemos, sprendimo algoritmas, kryptinė numeracija. 

 

 

 




