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Abstract. To keep the fatigue failure probability of an aircraft fleet at or below a certain level, an inspection program 
is appointed to discover fatigue cracks before they decrease the residual strength of some structurally significant item 
of the airframe lower than the level allowed by regulations. In this article, the p-set function for random vector, 
which, in fact, is a generalization of p-bound for random variable, and minimax approach to the problem of 
inspection number choice are used. It is supposed that the exponential approximation of a fatigue curve with two 
random parameters can be used in the interval when the fatigue curve becomes detectable and then grows to critical 
size. For estimation of distribution parameters, results of an approval test are used. A numerical example is given. 
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1. Introduction  
 

The development of an inspection program is 
necessary in order to provide reliability in a complex 
system. Examples of a solution to this problem and a lot 
of references can be found in books [1, 2, 3]. As a rule, a 
solution to this problem is provided under the condition 
that the cumulative distribution function (cdf) of time to 
failure is known. But really we should make some 
estimation of the cdf or at least the parameters of the cdf 
on the basis of processing the lifetime test result. A 
confidence interval is usually used for the estimation of 
the lifetime distribution parameter and then for the 
estimation of reliability. It is always very difficult to find 
a compromise between required reliability and 
confidence probability. But if we process some approval 
test data when we make some redesign of the tested 
system if some requirements are not met, then, as it will 
be shown later, it is possible to use the minimax 
approach, which provides required reliability 
independently of unknown parameters of lifetime 
distribution without using a confidence probability. For 
this purpose, the p-set function definition is used. Here 
we consider some example of p-set function application 
to the problem of development and control of an 
inspection program. We make the assumption that some 
structurally significant item (SSI), the failure of which is 
failure of the system being considered, are characterized 
by a random vector (r.v.) (Td , Tc ), where Tc is critical 
lifetime (up to failure) and Td  is service time when some 
damage (fatigue crack) can be detected. So we have some 
time interval such that if in this interval some inspection 
will be fulfilled, then we can eliminate the failure of the 
SSI. We suppose also that the required operational life of 
the system is limited by the so-called specified life (SL), 

SLt , when the system is discarded from service. In 

previous publications, we consider the case when in the 
equation of fatigue crack model there is only one random 
parameter [4–7]. This time we consider the case with two 
random parameters. 
 
2. P-set function definition 

 
P-set function for random vector is a special 

statistical decision function that, in fact, is a 
generalization of p-bound for a random variable, the 
definition of which was introduced much earlier. P-set 
function for random vector is defined in following way. 
Let Z and X be random vectors of m and n dimensions, 

and we suppose that the class {Pθ, θ ∈ Ω} is known. 

The probability distribution of the random vector W = (Z, 

X) is assumed to belong to this class. Of the parameter θ, 
which labels the distribution, it is assumed known only 
that it lies in a certain set Ω, the parameter space. If 

,( ) ( )Z z i
i

S x S x= ∪  is such set of disjoint sets of z values as 

function of x that : 
 

,sup ( ( ))
Z i

i

P Z S X p
θ

∑ ∈ ≤ , 

then the statistical decision function Sz(x) is the p-set 
function for r.v. Z on the basis of the sample, x=(x1,...,xn). 
Later on, the value x, the observation of the vector X, is 
interpreted as the result of some test or (sometimes it is 

more convenient) as the estimate θ̂ = ˆ( )xθ  of the 

parameter θ; Z is interpreted as some random vector-
characteristic of some SSI in service: for example, 

( , )
d c

Z T T= . For the development of the inspection 

program, the p-set function defines the sequence of 
inspection moments, which defines some set Sz(x) of 
values of r.v. ( , )

d c
Z T T= . 

 
3. Development of inspection program  
 
By processing the results of some special approval test 
(full-scale fatigue test of airframe, for instance), we can 

get the estimate θ̂  of parameter θ . The problem is to 

find (in a general case) a vector function )ˆ(θt , where 

1 2( , ,...,  )
n

t t t t= , ti is the time of the ith inspection, 

i=1,2,…,n, n is the inspection number =+1nt SLt  in such 

a way that the failure probability of the SSI under 
consideration  
 

1 1( , ) ( )r

f i i d c i
p t P T T T Tθ = −= Σ ≤ < < , 

 
does not exceed some small value :ε  

 
sup ( , )

f
p t

θ

θ ε≤ , 

 
where 1,...,

n
T T  are random moments of inspections: r.v. 

1( ,..., )
n

T T T= =  ˆ( )t θ ; 0 0T = ; 1n SLT t+ = . This means 

that vector function ˆ( )t θ  in fact defines some p-set 

function for vector ( , )d cT T  at p=ε . 

Usually we put 1 ( 1)it t d i= + − , 1( ) /SLd t t n= − , 

1,2,...,  i n= . Then we need choose only 1t  and n . For 

the purpose of simplicity, we put 1t d= (in a general case 

1t  can be chosen, for example, as parameter-free p-bound 

for Tc ,   or we can try to get the minimum of the expected  
value of n  at fixed required reliability, etc) . Now the 
probability of failure will be the function of θ  and n  
and we will denote it by ( , )fp nθ . We suppose that 

( , )fp nθ  monotonically decreases when n increases 

(really this requirement is met only if n is large enough) 
and lim ( , ) 0f

n
p nθ

→∞
=  for all θ  (Fig 4). Let ( , )n θ ε  be the 

minimal inspection number n  at which ( , )fp nθ ε≤ , 

where ε  is some small value. But the true value of θ  is 

not known. So ˆˆ ( , )n n θ ε=  and ˆ ˆ( , )f fp p nθ=
 

are 

random variables. We suppose that we begin commercial 
production and operation only if some specific 
requirements are met. For example, the following 
requirements have to be met: 1) ˆ

Rn n≤ , 2) ĉ Rt t> , … , 
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where Rn  , Rt  are some constants, ct̂  is an estimate of 

the expected value of Tc. If these requirements are met, 

let us denote in a general case this event as 0θ̂ ∈ Θ , 

where 0Θ , 0Θ ⊂ Ω, is some part of parameter space. We 

suppose that if 0θ̂ ∉ Θ  (estimate of required inspection 

number for some fixed ε  exceeds some threshold Rn  or 

estimate of expectation value of cT , ĉt  is too small in 

comparison with Rt ), and then we redesign the SSI in 

such a way that probability of failure after this redesign 
will be equal to zero.   

Let us define
0

0

0

ˆˆ( , )   ,
ˆ

ˆ0    .

f

f

p n if
p

if

θ θ

θ

 ∈ Θ
= 

∉ Θ

 

For this type of strategy the mean probability of fatigue 
failure 0ˆ( , ) ( )

f
w E pθθ ε = is a function of θ  and ε      

(Fig 1). If for limited 
SL

t it has a maximum, depending 

on ε then the choice of maximal value of ε  = *ε  for 

which *
w = *max ( , ) 1w R

θ
θ ε ≤ −  and the strategy that 

defines the inspection number n = ˆ( , *)n θ ε  is the 

strategy (decision function) for which the required 
reliability R is provided.  
 

 

 
Fig 1. The value of w= 0ˆ( , ) ( )

f
w E pθθ ε = as function of ( )

C
E T  for three design versions and corresponding random fatigue crack 

growth example sets 
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4. Exponential approximation of fatigue 
crack growth function 
 

The numerical calculations will be based on 
exponential approximation of fatigue crack growth 
function when the size, ( )a t , of a fatigue crack is 

described by the equation ( ) (0)exp( )a t a Qt= . Despite 

its simplicity, this formula in the range of observation 

[ ],  
d c

T T , where Td is the time when the crack becomes 

detectable and Tc is the time when the crack reaches its 
critical size, shows us rather comprehensible results. 
Then 
 

0(ln ln ) / /
d d d

T a a Q C Q= − = , 

 

0(ln ln ) / /
c c c

T a a Q C Q= − = , 

 
where a0    is a(0), 

d
a  is a crack size when the probability 

to discover it is equal to unit, and ac is a crack size that 
corresponds to the maximum residual strength of an 
aircraft component allowed by special design regulation. 
We see that parameters Cc and Cd can be derived can each 
be derived from the: 

d c
C C δ= − ,   where ln ln ln c

c d

d

a
a a

a
δ = − = , 

so actually for the model of fatigue crack growth 
considered, the distribution of the r.v. ( Td , Tc ) is defined 
only by two random variables (parameters): Cc and Q. 
They are the random fatigue crack growth model 
parameters (FCGMP). 

Let us denote lnX Q=  and 

( )( )ln ln ln
c c

Y C a α= = , so durability 
c c

T C Q= . 

From the analysis of the fatigue test data, it can be 
assumed that the logarithm of time required for the crack 
to grow to its critical size (logarithm of durability) is 
distributed normally: 2

ln lnln ~ ( , )
c cc T T

T N µ σ . 

It comes from the additive property of the normal 
distribution that ln

c
T  could be normally distributed 

either if both ln
c

C  and ln Q  ( ln ln
c c

C a α= − ) are 

normally distributed (i.e. 2ln ~ ( , )
X X

X Q N µ σ= , 
2ln ~ ( , )

c Y Y
Y C N µ σ= ), or if one of them is normally 

distributed while another one is a constant. In figure 2 
these two cases are called one- and two-parametric 
models: 
Let us denote the coefficient of correlation between X and 
Y by r.  

For calculation of failure probability, ( , )
f

p nθ , for 

the particular inspection program, we have to sum up all 

failure probabilities in all intervals as 
1

1

n

f i
i

p q
+

=
= ∑ , where n 

represents the number of inspections, 
 

1( )
i i d c i

q P t T T t−= < ≤ < 1
d c

i i

C C
P t t

Q Q
−

 
= < ≤ < 

 
 

( )1ln ln ln ln( ) lnc i c iP C t Q C tδ −= − ≤ < − −

( )
ln

( ) Y

i

Y

y
g y d

δ

µ

σ

+∞

+  −
= Φ  

 
∫ ,  

where 

( )( )

( )

1ln ln
( ) max(0,

ln
)

y

i X y

i

X y

i X y

X y

e t
g y

y t

δ µ

σ

µ

σ

−+

 − − −
 = Φ −
 
 

 − −
−Φ   

 

 

 

( )X

X y X Y

Y

r y
σ

µ µ µ
σ

= + − , 21
X y X

rσ σ= − , 

ln ln ln c

c d

d

a
a a

a
δ = − = .  

 

 

 
Fig 2. One- and two-parametric crack growth modelling 

(LQ=ln(Q)) 
 

In this paper we suppose that parameters 
, and

X Y
rσ σ  depend on technology that does not 

change (for a new aircraft) and that these parameters can 
be estimated using information from previous designs. 
We suppose that they are fixed and are known values. 
Then unknown parameter, θ , have only two components: 
θ = (

X
µ , 

Y
µ ). 

And for the considered decision-making procedure, 
the mean probability of fatigue failure 

0ˆ( , ) ( )
f

w E pθθ ε = is a function of 
X

µ , 
Y

µ  and ε . 

An example of FCGMP estimates using the observation 
of only one fatigue crack (it is typical information for the 
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program of inspection development) is shown in the 
upper part of figure 3. The linear (in logarithm scale: 
ln( ( )) ln( (0))a t Qt a= + ) regression analysis estimates of 

Q and (0)a is shown. Using these estimates and known 

ac, we can get estimates of Xµ  and Yµ : Xµ̂  is just 

equal to ln( )Q  and Yµ̂ is equal to ln( )
c

C , where 

ln( ) ln( (0))
c c

C a a= − . To get estimates of 

, and
X Y

rσ σ , we made similar processing the 

observations of several cracks (see bottom part of figure 
3), which, we assume, grow under the same stress level. 

In following calculation, the vector ( Xσ , Yσ , r) was 

considered some constant.  
 

5. Numerical example  
 
Let us demonstrate the approach described in 

previous sections on the numerical example. Suppose that 
we have only one fatigue crack observation and make an 
estimation of ˆ

Y
µ  (Fig 3). And the vector (

X
σ , 

Y
σ , r) is 

known. Around the point ( ˆ
X

µ , ˆ
Y

µ ) we choose some area 

in plane {
X

µ , 
Y

µ }. Using Monte Carlo modelling in 

other points of this area we make a calculation for some 
set of θ  = (

X
µ , 

Y
µ ) in order to get the surface 

0ˆ( , ) ( )
f

w E pθθ ε = . In figures 4 and 5 are the results of 

modelling   for  ε  = 0.001   and   0.005   are   presented 

 

 
 
 

Time, hrs 
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Crack N 75 
y = 0.0001862x - 1.2513350 

R 2  = 0.9985112 
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4.5 

20000 25000 30000 35000 

Flights 

L
n
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) 

Ln(a) 
Linear (Ln(a)) 

 
 

Fig 3. Example of FCGMP estimates and of some set of fatigue cracks under equal stress level 

 

 
Fig 4. Numerical example for ε = 0.001 

 

 

Fig 5. Numerical example for ε = 0.005  
 
(in this example, we use the inspection program with the 
special choice of 1t  and evenly distributed time moments 

between 1t  and 
SL

t ; the time moment of the first 

inspection is defined as 1 15
XSL

t t θ= − ⋅ ; the detectable 

and critical crack sizes are 20 
d

a mm= , 

237.84 
c

a mm= ). For these examples we assume that 

only one full-scale test was performed and we have data 
on just one single crack growth (crack #75: 
ln 8.588527, ln 1.905525

c
Q C= − = ). Let us say that 

we have to ensure the probability of failure not exceeding 
0.0326 and that we will return for redesign all projects 
when required number of inspections exceeds R

n  = 5. If 

we perform modelling using various values of failure 
probability ε , we will get a set of “surfaces” 

0ˆ( , ) ( )
f

w E pθθ ε = .  

The maximum values of the function ( , )w θ ε , 
* ( ) max ( , )w w

θ
ε θ ε= , are equal to 0.030990 and 

0.033874 for ε  = 0.001 and 0.005 correspondingly. A 

similar calculation gives * ( ) max ( , )w w
θ

ε θ ε= = 0.032593 

for ε  = 0.003.  
The complex form of the function ( , )w θ ε  is defined 

by the fact that ( , )
f

p nθ  might be the non-monotonous 

function of n . For relatively small n , ( , )
f

p nθ  can grow 

with the increase of n . The reason of such a “strange” 
effect comes from the relocation of the inspection time 
with the change in n . The example pictured in figure 6 
demonstrates how a crack, discoverable with a single-
inspection program, is missed if an inspection program 
with two inspections is applied. The function * ( )w ε is 

shown in figure 7.  
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Fig 6. Demonstration of non-monotonous nature of ( , )

f
p nθ  

 
In our example we see that to ensure the probability 

of failure not exceeding *
w = 0.0326 at the choice of *

n , 
the required number of inspections for our inspection 
program (using formula: n= min (n: ( , )

f
p nθ < ε )), we 

have to use the value ε  = *ε = 0.003 (it is worth 

mentioning that *
w is ten times higher than *ε !) (Fig 8). 

 

 

Fig 7. Numerical example: the function )(* εw  

 
Fig 8. Numerical example: determining required 

number of inspections 

The required number of inspections in our example is 
*

n =5 (the same data gives the required number of 
inspections n =4 for ε =0.0326). 
 
6. Conclusion  
 

This procedure for the development of an inspection 
program is offered for the case when the exponential 
model of fatigue crack growth has two random 
parameters. The p-set function and minimax approach are 
offered for the choice of inspection number using the 
results of a full-scale fatigue test on an airframe. It is 
shown that if instead of using unknown parameters of the 
exponential fatigue crack growth model, we can use the 
estimates of a parameter (processing only one fatigue 
crack observation), then the real probability can be 10 
times more than one that was used for the inspection 
number calculation. For the case of approval fatigue test, 
when we redesign the tested airframe if some 
requirements are not met, the minimax statistical decision 
functions allow us to find a decision that provides the 
required reliability of airframe in operation. 
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APŽIŪRŲ PROGRAMOS KŪRIMAS NUOVARGIO PLYŠIO AUGIMO MODELIUI SU DVIEM ATSITIKTINIAIS PARAMETRAIS 
 
Yu. Paramonov, A. Kuznetsov 
 
S a n t r a u k a 
 
Šiame tyrime nagrinėtas apžiūrų, skirtų surasti nuovargio įtrūkimus jėginiuose elementuose iki liekamojo stiprumo sumažėjimo žemiau leistinos 
ribos, programos planavimas. Čia apžiūrų skaičiui nustatyti buvo naudojamas mini-maksimalus statistinis sprendinys ir atsitiktinio vektoriaus p-aibės 
sąvoka, kuri yra atsitiktinio vektoriaus p-ribos  apibendrinta sąvoka. Taikyta prielaida, kad nuovargio įtrūkimo didėjimo kreivę galima aproksimuoti 
eksponentiškai laiko intervale nuo to momento, kai plyšys tampa matomas ir iki kritinio dydžio. Parametrų pasiskirstymo įvertinimui naudoti 
bandymo rezultatai.  
Daroma prielaida, kad jei bandymo rezultatai yra nepatenkinami, tuomet turi būti ruošiamas naujas, labai pagerintas bandomojo gaminio projektas. 
Pateikti ir skaitiniai pavyzdžiai. 
 
Reikšminiai žodžiai: p-aibės sąvoka, mini-maksimalus sprendinys, apžiūrų programa, aprobavimo testas. 

 
 




