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Abstract. The paper considers theoretical explanation and construction of some mathematical models of a transportation 
mean operational process in reference to maintenance optimal periodicity. The important finding is that the objectively 
existing engineering transportation means maintenance optimal periodicity is determined in the different from the proba-
bilistic methods way. There is a scientifically proven explanation for the mentioned above periodicity optimization with 
the help of the specially introduced hybrid-optional effectiveness functions distribution. The developed doctrine uses the 
entropy paradigm conditional extremization approach. This contribution allows obtaining the wanted optimal periodici-
ties sidestepping the related states probabilities determination and their further extremization. The essential breakthrough 
of the developed doctrine is that the optional objective effectiveness functions, in such a case, are the corresponding com-
binations of the intensities of the studied system’s possible transitions from state to state, which relates with the set of the 
considered operational options. Corresponding limit solutions for the zero-to-zero ratio indeterminate forms are analyzed. 
Theoretical speculations are illustrated with the example calculation experiments. The necessary diagrams are plotted.

Keywords: transportation mean, maintenance, optimal periodicity, hybrid-optional function, entropy, probability, 
extremization, multi-optional situation.

Introduction

Operation of any transportation mean requires periodical 
maintenance and repair. As it has been considered in refer-
ences Dhillon (2006), Nakagawa (2005), and Smith (2005), 
issues of reliability, risks, maintainability, and maintenance 
ought to be taken into account by engineers. Applicably to 
aviation transportation (Wild & Kroes, 2014; Kroes, Wat-
kins, Delp, & Sterkenburg, 2013; Smirnov et  al., 1990), 
safety of operation greatly depends upon the timely and 
duly performed repair and maintenance of aircraft itself 
and the most important parts and systems of the airplane.

As to the aircraft powerplants and gas-turbine engines, 
there are quite perfectly developed progressive technolo-
gies of the engines elements restorations (Tamarin, 2002; 
Pallos, 2001; Dmitriyev, Koudrin, Labunets, & Kindra-
chuk, 2005). Such techniques, in conjunction with the 
other appropriate aircraft airworthiness ensuring strat-
egies (Thian, 2015; Le & Lappas, 2015; Goncharenko, 
2017a), provide a good quality in aviation maintenance 
(Gališanskis, 2004).

Regarding other types of transportation, there is a pos-
sibility to notice the similar problems of safety provisions 
(likewise airworthiness support in aviation). For example, 
in the sea-going vessels area (Klaas van Dokkum, 2005; 
Kuiken, 2008a, 2008b), analogous notion of seaworthiness 
might be deemed as an equivalent to the airworthiness in 
aviation, with some adequate processes of the correspond-
ing engineering facilities technical state support (Fisher & 
Hodge, 1986).

The same operational problems appear in different 
fields. It is worth mentioning the problems of aircraft 
noise assessment, prediction, and control (Zaporozhets, 
Tokarev, & Attenborough, 2011); estimation of quality 
parameters in the radio flight support operational system 
(Solomentsev, Zaliskyi, & Zuiev, 2016); synergy of piloted, 
remotely piloted and unmanned air systems in single air 
navigation space (Chepizenko, Kharchenko, & Pavlova, 
2013); consequences of shallow flows of liquid on the air-
port runways and automobile roads (Beljatynskij, Prent-
kovskis, & Krivenko, 2010).

AVIATION
ISSN: 1648-7788 / eISSN: 1822-4180

2018 Volume 22 Issue 2: 60–66

https://doi.org/10.3846/aviation.2018.5930

*Corresponding author. E-mail: andygoncharenco@yahoo.com

http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com/author/Prentkovskis%2C+Olegas
http://www.tandfonline.com/author/Prentkovskis%2C+Olegas
http://www.tandfonline.com/author/Krivenko%2C+Julij
mailto:andygoncharenco@yahoo.com


Aviation, 2018, 22(2): 60–66 61

In any case, the optimal periodicity for maintenance 
and repair carrying out is very important and it must be 
predetermined in order to avoid possible damages and 
troubles related with the probable crashes. Although fore-
casting of the engineering technical states is rather well 
developed in reliability theory, still, there is a deficiency of 
some new scientific approaches for explanations of proba-
bilistic phenomena on some other, different from the tra-
ditional form, basis.

A few attempts in this direction have been made 
in some particular cases (Goncharenko, 2017b, 2018b, 
2018c). Still, there is a necessity of further theoretical de-
velopments, with possible generalizations. The presented 
paper contains one of such proposed approaches.

Besides, sometimes there is a lack of the theoretical 
considerations with regard to the mathematical limit solu-
tions in cases with the indeterminate forms, for instance, 
the case of the aeronautical engineering maintenance opti-
mal periodicity determination (Smirnov et al., 1990, Sub-
Chapter 15.4, pp. 168–173, especially p. 171 (15.1) and 
on). There is the indeterminate form of the ratio of the 0

0
 

kind for the probability of the damaged state, as well as for 
the optimal periodicity there.

Therefore, the presented paper is going to deal mostly 
with those theoretical research gaps mentioned above.

An investigation tool, which is going to be used in the 
presented research, is similar to subjective analysis (Ka-
sianov, 2013; Goncharenko, 2016, 2017a). However, the 
developed herewith doctrine uses just objective charac-
teristics of a system’s functioning and only. For the pres-
ent moment, this doctrine, applying the entropy paradigm 
(like the one proposed in subjective analysis) is undergo-
ing an evolution loop. The doctrine is entering the scien-
tific sphere operating with both:

1) the objectively existing parameters of the consid-
ered processes and

2) multi-optional hybrid functions of a special kind, 
which are composed for discovering some sought 
after optimal (in a certain respect) values with tak-
ing into account the uncertainty of the functions 
“multi-optionality” (Goncharenko, 2016, 2017a, 
2017b, 2018a, 2018c).

1. Schematic consideration of the problem 
statement

In order to formulate the problem presented in this re-
search about a transportation mean operation processes 
of maintenance and technical state support, with taking 
into account multi-optionality of the processes, it is rec-
ommended to consider schematically the transportation 
mean operation process, depending upon the options, 
shown in Figure 1.

In Figure 1, three states are depicted as follows: “0” is 
the initial state of the transportation mean, it is supposed 
to be in the up state (best working conditions, for example, 
from the manufacturing, or overhaul, complete restoration 

of the abilities); “1” is the state with the partially good 
(not excellent but not bad or poor) technical conditions 
as compared with the initial “0” state. Functional abilities 
of the transportation mean are not as much as that for 
the initial “0” state; the system is degrading gradually. “2” 
is the state with the worst allowable state (the transpor-
tation mean is not in a good as that described with “1” 
state but still working, functioning, running). The arrows 
symbolize certain transitions from state to state with the 
intensities denoted as l1, l2, and m1, and the correspond-
ing directions of the transitions.

Such problem formulation is a simplified and one of 
the possible, similar to the discussed at references (Gon-
charenko, 2017b, 2018b, 2018c). However, the presented 
hereafter problem is significantly different form the pre-
vious since there is no state without an exit. Nonetheless, 
there is a group of states with no exit.

2. General methods of research

The problem statement is such as for some Markovian 
random process; however, the options of the process, hy-
brid optional functions, their degree of uncertainty and 
the proposed optimization method (different from the tra-
ditional classical probabilistic approach, yielding the same 
correct result although) appears to be the intrinsic matter.

2.1. Classical probabilistic approach

It is assumed that the flow of random events transferring 
the system from state to state is the simplest one.

Then, it is possible to compose the system of ordinary 
differential equations (by Erlang) of the first order (such 
method has also been applied in references (Goncharen-
ko, 2017b, 2018b, 2018c), although the system is differ-
ent, herewith the presented paper, in accordance with the 
stated problem setting illustrated with the scheme repre-
sented in Figure 1), in order to determine the probabilities 
of the states as the dynamical characteristics of the system 
development in time:

0
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2 1 1 2

;

;
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Where, 0P , 1P , and 2P  are probabilities of the corre-
sponding states; t  – time.
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Figure 1. Graph of states of a system with a degrading and 
possible partial restoration
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The system of the ordinary linear differential equa-
tions of (1) can be solved either with the help of Laplace 
transformations or in another way, for instance, applying 
characteristic equation:

( )
( )

( )

1

1 2 1

2 1

0 0
0

0

k
k

k

− l −

l − l − m =

l − m −

, (2)

where k  is parameter to be determined for finding the 
probabilities of 0P , 1P , and 2P  of the system correspond-
ing states.

In case of Laplace transformations usage, similar to 
system (1), there is the system of transformed algebraic 
equations with respect to the transformation parameter p  
and at the initial conditions of 0 1P = , 1 0P = , and 2 0P = :

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 1 0
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 (3)

where ( )0F p , ( )1F p , and ( )2F p  are corresponding trans-
formants (images) of the original (initial) probabilities of 

( )0P t , ( )1P t , and ( )2P t .
The solution for the transformants of the system of (3) 

yields:
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Making inverse Laplace transformations, it is obtain-

able the originals:

( ) 10
tP t e−l= . (7)
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, (8)

where 1 1k = −l , ( )2 1 2k = − m + l , and 1 1 1c = l m .
The following conditions are imposed:

1 2k k≠ .
The other conditions, when the denominators of the 

members of the expressions of equation (8) turn to zero, 
that is when:

2 0k = ,

are impossible; since this root 2k  is the negative sum of 
the two initially supposed positive values of the intensities 

2 0l >  and 1 0m > .
On the contrary, if it had been possible 2 0l <  or 

1 0m < , although it is mathematically possible, the stated 
problem would not have had any physical sense.

And on the other hand, if 2k  had been zero, it would 
have been another problem setting since in such case

2 0l =  and 1 0m = ,
and corresponding changes would have been made start-
ing form Figure 1 and through the procedures of equa-
tions (1)–(8).

The same to:

1 0k = , ⇒  1 0l = .
Thus,

1 2k k≠ , ⇒  1 2 1m +l ≠ l , 1 0k ≠ , 2 0k ≠ .
With regard to what happens when:

2 1k k→ .
In such case equation (8) is a part of the problem with 

indeterminate forms since the equation’s (8) certain mem-
bers, as fractions, are going to their zeros values both in 
the numerator and denominators of the corresponding 
fractions.

In order to make it clear what is happening in the limit:

( )
2 1

1lim
k k

P t
→

,

there are certain methods applicable, allowing analytical 
finding the needed result.

According to the limit taking rules:
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Both the second and third members have their defi-
nite forms; and for the rest, the well-known in calculus 
L’Hôpital’s (L’Hospital’s) rule is applicable, since there are 
0
0

 and 
real number

0
 fractions of the kinds of the indeter-

minate forms.
Therefore:
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Because the nominator of the above fraction does not 
depend upon the variated parameter of 2k  and the de-
nominator is now having some definite value.

Thus:
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Finally:
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Analogously to equation (8), the results are obtained 
for the probability of the state “2”:
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where 1 1 2d = l l .
The same conditions as for equation (8) are also im-

posed for equation (9); as well as the same procedure of 
the indeterminate forms limits takings is applied for Eq. 
(9). Consideration of such conditions are absent in the 
reference (Smirnov et  al., 1990, Sub-Chapter 15.4, pp. 
168–173, especially p. 171 (15.1) and on).

The sought after optimal maintenance periodicity is 
obtained from the necessary conditions for an extremum 
existence for the probability of equation (8).

2.2. Multi-optional effectiveness hybrid functions 
entropy conditional optimization approach

Instead of the classical probabilistic approach represented 
with the procedure of equations (1)–(9) we propose to 
apply the multi-optional effectiveness hybrid functions 
entropy conditional optimization doctrine developed 
hereinafter. Several nuances of the doctrine have been 
discussed at the previous research publications and are 
reflected in the corresponding references (Goncharenko, 
2017b, 2018a, 2018c). That is a development of subjective 
analysis (Kasianov, 2013; Goncharenko, 2016, 2017a) for 
the use of the objective characteristics of an engineering 
system’s functioning.

Consider the following two options for the transporta-
tion mean functioning here:

The option #1 – it is to come optionally into the state 
“1” – the effectiveness function is:

1 1 1F = l −m . (10)
The option #2 – it is to come out of (to leave, go out 

from) the state “1” – the effectiveness function is:

2 2F = l . (11)

The optimized objective functional is:

( ) ( ) ( ) ( )
2 2

*
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lnh i i i i p i i i

i i
h F h F t h F F
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     Φ = − ⋅ ⋅ + ⋅ ⋅ +     ∑ ∑

( )
2

1
1i i

i
h F

=

   γ ⋅ −  
  
∑ , (12)

where i  is number of options, ( )i ih F ⋅   is hybrid option-
al function related to the corresponding option effective-
ness function (10) or (11), *

pt  is structural parameter (in-
ternal parameter of the process optimality) intrinsic value 
pertaining to the multi-optional situation with respect to 
its effectiveness and uncertainty of connected hybrid op-
tional functions, γ  is structural parameter (weight coeffi-
cient or uncertain Lagrange multiplier for the normalizing 

condition ( )[ ] 1
2

1

−⋅∑
=i

ii Fh  respectively).

The most important here is to comprehend that there 
must be some optimality in the framework of the nature 
things “optionality”. The doctrine is similar to seeking after 
preferences in subjective analysis (Kasianov, 2013; Gon-
charenko, 2016, 2017a) and applied to hybrid optional 
optimal distribution findings, likewise in (Goncharenko, 
2017b, 2018a, 2018c).

Thus, it is proposed to use an optimization method, 
which resembles subjective analysis. But the proposed 
method differs absolutely from subjective analysis (Ka-
sianov, 2013; Goncharenko, 2016, 2017a), since, being ap-
plied for the optional effectiveness iF , the method does 
not imply or consider any of active elements of the sys-
tem at all (Goncharenko, 2017b, 2018a, 2018b, 2018c). 
Only objectively existing characteristics of the intensities, 
denoted as 1l , 2l , and 1m  (however, presupposed with 
the background of the parameter of *

pt  and of the multi-
optional effectiveness hybrid functions distribution uncer-
tainty) are utilized.

The first member of the objective functional (12) is the 
exact distribution uncertainty parameter in the view of the 
optional hybrid effectiveness functions’ entropy, like also 
discussed at (Goncharenko, 2017b, 2018a, 2018b, 2018c).

Following the proposed here hybrid optional functions 
entropy optimization doctrine, traced with the contem-
plation above, the necessary conditions of functional (12) 
extremum existence is obtained, which yields:

( ) ( )*ln 1 0h
i p i

i
h t F

h
∂Φ
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∂
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. (17)
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In relation (17) the condition of
( ) ( )1 2F F⋅ ≠ ⋅

is imposed; similarly to the above considerations it is the 
equivalent of the conditions for the roots of 1 2k k≠ .

As the effectiveness functions ( )iF ⋅  are given with 
Eq. (10) and (11) and the hybrid optional functions ( )ih ⋅  
are deemed to be related with the effectiveness functions:

( ) ( )i ih xF⋅ = ⋅ , (18)
where x  is unknown, uncertain multiplier in type of the 
Lagrange one, it is found the sought optimal periodicity 
(solution):

( )
( )

( ) ( )
( ) ( )
( ) ( )

1 1

2 1 1 2*

1 1 2 1 1 2

ln
ln ln

p

x
x

t

 l −m
 

l l −m − l  = =
l −m − l l −m − l

. (19)

In relation (19) the condition of:

1 1 2l ≠ m + l ,
is imposed similarly to the above considerations, since it 
is equivalent to both 1 2k k≠  and ( ) ( )1 2F F⋅ ≠ ⋅ .

Concerning the case when:

1 2 1 0m + l −l → .
The limit solution for the optimal maintenance perio-

dicity (19):
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2
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2 1 1

ln
0lim lim
0pt

l → l −m l → l −m

  l
  l −m  = = l − l −m
 
  

,

corresponding to the case is also having the indetermi-
nate form; therefore it is obtained with the help of the 
L’Hôpital’s (L’Hospital’s) rule again.

This yields:
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Finally:

( ) ( ) 112

* 11limlim
112112 m−l

=
l

=
m−l→lm−l→l

pt .

3. Results and discussion

Calculation experiments illustrate the theoretical specula-
tions (1)–(19) of the above sections and subsections of the 
presented research.

The numerical simulation has been performed for 
the classical probabilistic method in both the ordinary 
differential equations system (1) calculation and the sys-
tem analytical solutions (7), (8), and (9), as well as for 

the multi-optional doctrine expressed with the Eq. (10)–
(19). In the modeled case the accepted conditions were 

1
0

0 =
=ttP , 0

00
21 ==

== tttt PP , 00 =t , and other val-

ues: 3
1 5 10−l = ⋅   h–1; 3

2 1 10−l = ⋅   h–1; 3
1 2 10−m = ⋅   h–1; 

30 1.5 10t = … ⋅  h. 3.549topt ≈  h.
The obtained results of the mathematical modeling are 

shown in Figure 2.
The results depicted in Figure  2 are denoted as fol-

lows: a1, a0, a2 – stand for numerical solutions of the 
ordinary differential equations system (1), i.e. the prob-
abilities of P1(t), P0(t), P2(t) in the corresponding indexing 
of the possible transportation mean states; ( )tP1 , ( )tP0 , 

( )00P t , ( )tP2  – analytical solutions for P1(t), P0(t), P2(t) 
by formulae (7), (8), and (9), both ( )tP0  and ( )00P t  are 
obtained for probability ( )tP0  with the help of character-
istic equation and Laplace transformations respectively.

The diagrams illustrating the limits solutions are plot-
ted in Figures 3–5.

Figure 2. Optimal value of the transportation mean 
maintenance periodicity

Figure 3. Convergence of the probability limit solution with 
respect to the roots convergence
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In Figure 3 the probability of ( )⋅1P , Eq. (8), is analyzed 
on the point of its dependence upon the two independent 
values: the root 2k  and time t . Time is distinguished as 

450=t  for the perception ease.
It can be traced and is easily visible by the ( )⋅1P , Eq. (8), 

curve that, when ( )005.0112 −=l−=→ kk , ( )⋅1P , Eq. (8), 

tends to its limit: ( )
1 1

1

2 1

1 1
1 1 12 2

11 1
lim

k t k t
k t

k k

c c e teP t te c
kk k→

= l + − + , 

denoted as ( )1 2 ,450 0.39499LP k = .
Both the right-hand and left-hand limits converge to 

that value (see the intersection of all the three lines at one 
point in the middle of the Figure 3 diagram).

The diagrams plotted in Figure 4 are devoted to the 
same probability ( )1P ⋅ , Eq. (8), limit convergence but now 
with respect to time.

It is quite noticeable that in the close neighborhood of 
the limit: ( )

2 1
1lim

k k
P t

→
 – ( )1LP 0.005,t− , the probability of 

( )1P ⋅ , Eq. (8), is getting closer and closer to its limiting 
solution through the whole range of the time t  diapason. 
The curves are practically coinciding, also from both-
hands sides.

At last diagrams in Figure 5 illustrate analogical limit-
ing convergence of the optimal maintenance periodicity 
*
pt , Eq. (19), designated as ( )12optt l , 12l  stands for 2l  

here, when 1 2 1 0m + l −l → , also from both-hand sides. 

It is seen that when ( )2 1 10.003l → = l −m , then *
pt  tends 

to its limit value of 
( )2 1 1

*

1 1

1lim 333.333pt
l → l −m

= =
l −m

. 01l  

stands for l1 and 21m  – for 1m  in the Figure 5 legend be-
cause of the computational designations in the computer-
ized MathCad calculation platform program.

Thus, all results reflected in Figures 3–5 undoubt-
edly make evidences about the limit solutions exis-
tence when the roots have the tendency to converge: 
2 1k k→ . The same statement (the same limits exist from 

right- and left-hand sides) is appropriate for the situations 
if 1 2 1 0m + l −l → .

This limits investigation makes one of the differences 
of the presented research from the theoretical consider-
ations of (Smirnov et al., 1990, Sub-Chapter 15.4, pp. 168–
173, especially p. 171 (15.1) and on; Goncharenko, 2017b, 
2018b, 2018c). The other difference is the consideration 
of the system’s possible partial restoration (see Figure 1).

In those cases when the parameters of the general 
models, similar to portrayed in Figure 1, and described 
with expressions (1)–(9), have some certain other specific 
values, the probability of the state “2”, Eq. (9), may have 
the extremum.

In such cases the optimal maintenance periodicities 
are determined in the framework of the proposed and 
developed herewith multi-optional conditional optimal-
ity doctrine, likewise (10)–(19), too. This is going to be 
considered in the further sequence of the related inves-
tigations.

The developed multi-optional approach (10)–(19) 
yields the optimal value for the transportation mean op-
timal maintenance periodicity Eq. (19), which coincides 
with the traditional method (1)–(9) result obtained as an 
extremum of dependence (8) (see Figure 2). The maximal 
value of the probability: ( )1 0.7308P t ≈ .

The important thing here is that the hybrid optional 
functions uncertainty conditional extremization method 
uses the hybrid optional functions entropy conditional op-
timization and is absolutely not the probabilistic approach.

All this instigates searching for a certain scientifically 
explainable principle for conditions when maintenance 
of a transportation mean occurs in operational situations 
which cannot be predicted with the absolute certainty. 
This is because some damages periodically happen to the 
transportation mean systems, or an engineering object it-
self, unexpectedly with the intensities and rates which can 
be estimated or at lest somehow presupposed in a substan-
tiated manner.

Figure 4. Convergence of the probability limit solution with 
respect to the roots convergence and through the time interval

Figure 5. Optimal maintenance periodicity limiting 
convergence
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Conclusions

From the presented theoretical methods (10)–(19), illus-
trated with the examples (see Figures 2–5), there is a pos-
sibility to conclude that in the studied simplified case (also 
see Figure 1) it deals with the intrinsic optimal property of 
the considered process, embodied in the hybrid optional 
functions uncertainty conditional extremization.

The further research according to the proposed ap-
proach has some perspectives for the investigations of 
conditional optimization and computer simulation in or-
der to illustrate the theoretical speculations expressed with 
Equations (1)–(19).
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