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Abstract. Laminated constructional elements have widespread applications in aerospace. This paper presents of the 
buckling for E-Glass. Design solution based by the criteria of strength materials. The delamination of composite 
constructional elements is determined by the normal and shear stress. The non-linear strength criterion suggested by 
the author in case of complex state of stress. 
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1. Introduction 
 

The delamination of composites depends on their 
matrix and the changed mechanical characteristics of 
reinforced elements during deformation. In the case of 
mechanical behaviour of laminated composites during 
compression the bending moment appears besides axial 
forces. The fibre experiences normal and shear stresses 
(Kim et al. 1998; Keller et al. 2004; Barbero et al. 1993; 
Barbero et al. 1999). Similar work was done while analy-
sing the interfaces of I-beam shelves and walls (Bank et 
al. 1999), columns (Mosallam et al. 1992), beams (Bank 
et al. 1994), and cases of bar buckling depending on their 
geometry (Shu et al. 1993a; Shu et al. 1993b; Brewer et 
al. 1988). J. Brewer and P. Langace, as well as M. Fenske 
and A. Vizzini, suggested evaluation criteria for dela-
mination. S. S.Wang and C. Hwu et al. tried solving the 
problems of composite fracture (Wang 1983; Hwu et al. 
1995) The investigation of composite delamination re-
mains topical, however, because the investigation and 
evaluation of fibre remain difficult. 

 
 
 

2. Buckling of composite constructional 
elements 
 

According to Euler’s formula, critical buckling force 
is written as follows: 
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where crF  – critical buckling force; E  – modulus of 

elasticity; L  – length of column; efI  – minimal moment 

of inertia. 
The important characteristic of material is compo-

site’s modulus of elasticity CE . It can be calculated in the 

following way (Bai et al. 2009): 
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where t  – thickness of layer and indexes ,v m  and f  

mean cover, fiber and filling respectively. 
The modulus of elasticity, vE , is accepted as resin. 

The composite’s cE  is received experimentally. 

Limit shear stresses limτ  are calculated in the 

following way (Bai et al. 2009) 
 

lim

1
sin2

2 Uτ θ σ= ⋅   (3) 

 
where Uσ  – ultimate strength and θ  – angle of layers 

with regard to stretching axis. 
Lateral displacement is calculated as follows (Timo-

shenko et al. 1993) 
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where w  – lateral displacement; x  – coordinate in the 
longitudinal direction of the plate; maxw  – maximal late-

ral displacement in the middle part of the plate during 
delamination. 

Thus when the plate is compressed by force F , 
transverse forces Q  will be received in the following 

way (Timoshenko et al. 1993) 
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where 

tan
dw

dx
θ = .   (6) 

 
3. Strength criteria 

 
In order to evaluate the strength of composites, 

various criteria are applied. One of the simplest is the 
Tresca criterion, which evaluates normal stresses and 
shear stresses (Fenske et al. 2001): 
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where xσ  – normal stresses and xyτ  – shear stresses. 

It has to be noted that normal stresses, yσ , in the 

direction of y axis and shear stresses, yzτ , on the yz plane 

are quite small and need not be taken into account. 
Then: 
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where A  – area of cross-section; M  – bending moment. 

The normal stresses are calculated in the following 
way: 
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,  (9) 

 
where rV  and fV  are volumes of resin and reinforced 

elements, and n  is the ratio of elasticity module of rein-
forcement and matrix. 

According to the yield criterion of von Mises (Bai et 
al. 2009) 

 
2 23x xy Yσ τ σ+ = ,   (10) 

 
where Yσ  – yield stress or 
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The main stresses are calculated in the following 

way: 
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We shall apply polynomial strength criteria 

(Vasiliev et al. 2007): 
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where R  and S  – constants 
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We find the constants R  and S  from the marginal 

conditions: 
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Then equation (13) is as follows: 
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The stresses 1 2,σ σ  are received: 
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When the strength criterion is put in this form 

(Vasiliev et al. 2007): 
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the marginal conditions: 
 

( )

( )

( )

( )
( )

1 1 2 12 1

1 1 2 12 1

1 2 2 12 2

1 2 2 12 2

1 2 12 12

, 0, 0 1, if 0

, 0, 0 1, if 0

0, , 0 1, iif 0

0, , 0 1, if 0

0, 0, 1

F

F

F

F

F

σ σ σ τ σ

σ σ σ τ σ

σ σ σ τ σ

σ σ σ τ σ

σ σ τ τ

+

−

+

−

= = = = >

= − = = = <

= = = = <

= = − = = <

= = = =

   (18) 

 
Then we write: 
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According to experimental tests (Vasiliev et al. 

2007), strength criterion (19) corresponds to experimental 
results better than criterion (15) and even more precisely 
than criteria (7) and (11). 

Polynomial strength criteria show formal approxi-
mation of experimental data in the coordinates of princi-
pal axes, however. These criteria become more complex 
in other coordinates. Tensoric strength criteria are there-
fore applied. For example, when the orthotropic material 
moves from principal axes 1 and 2 to turned axes 1´ and 
2΄ at the angle 045φ = , the strength criterion is put in the 

following way: 
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When the marginal conditions are applied to receive 

constants, according to the equation (18) we receive: 
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This criterion differs from the criterion (19) because 

new constant 12R  cannot be received, according to the 

conditions of equation (18). 
Thus, the author suggests a tensoric criterion 

(Žiliukas 2006) , which is put in the following way: 
 

1 2 0i Um m µσσ σ σ+ ≤   (22) 

 
where 1 2,m m  – ultimate material’s; U µσσ  – strength limit 

at σµ  stress state; iσ  – intensity of stresses (when xσ  is 

used and xyτ  2 21
3

2
i x xyσ σ τ= + ). 

Average stress (when xσ  is used and xyτ  
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Parameter of stress state: 
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(at xσ  and xyτ ), i. e. 1 ,u tσ σ=  while stretching, and 

while compressing when 3σ  stress is used, 1σµ = +  and 

3 ,u cσ σ= . 

Then criterion (22) is put in the following way: 
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When criterion (26) is written in non-linear form: 
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we receive: 
 

( ) 2 2 2
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4. Delamination analysis 
 

In order to solve the delamination problem of com-
posite, we should apply strength criterion (25). Taking 

into account equation (3), 
1

sin2
2xy xτ θσ= , and (25), the 

strength criterion is put in the following way: 
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When the angle is 045θ = , we receive net shear and 

,

2
u c

x

σ
σ = , and when the angle is 0θ = , we receive axial 

compression and ,x u cσ σ= . Then the constants 3m  and 

4m  in equation (25) are calculated by these equations: 
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From where 3 4m = ; 4 3m = − . 
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Thus, strength criterion (26) is put in the following 
way: 

 

( )2 2 21 sin 2x ucσ θ σ+ ≤   (28) 

or 
2
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Taking into account formula (9), and after we enter 

buckling force from formula (1) and do the operations, 
we receive: 
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This formula determines the relation between the 

values of length crL  and shear angle crθ  when a straight 

bar or plate made from composite is being buckled. 
 
5. Experimental tests 
 

In order to do experimental tests, a 12-mm-thick 
composite plate was chosen. It is laminated by 

0.5 mmvt =  cover, the thickness of the resin is 

2mmmt = , and the thickness of the fiberglass is 

7 mmft = . This makes relative volume of filling 

0.62fV = , and of matrix rV  – 0.35. The modulus of 

elasticity are the following: filling– 45GPafE = , resin – 

11GPamE = , and cover 11GPav mE E= = . Thus the 

total modulus of elasticity received from the formula (2) 
is 30.89GPaE = . fE  and mE  proportion is 

/ 4.09f mn E E= = . According to ASTM D 638, the 

width of the sample is 12.7 mm.  
Then the area of cross – section is 

2 6 2152.4 mm 152.4 10 mA −= = ⋅ .  

 Moment of inertia:  
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33 33

9 4
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−
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Strength limit of compression:  

 

9
, 2

N
3000 MPa 3 10

mu cσ = = ⋅  and 263N mefEI = ⋅  

 
When we enter the values of experimental and 

calculated parameters into formula (30), we receive: 
 

241, 28 1 sin 2 coscr cr crL θ θ= +   (31) 

 
In such a way, if we have various values of critical 

delamination angle crθ , we can calculate the critical 

length of the plate. The calculation results are presented 
in table. 

 
Table. Dependencies of critical delamination angles and lengths 
of plate 

 

No crθ , degrees crL , m 

1 0 1.28 
2 5 1.286 
3 10 1.308 
4 28 1.3705 
5 29 1.3706 
6 30 1.39 
7 31 1.368 
8 32 1.367 
9 40 1.103 

10 45 1.076 
11 90 0 

 
According to table, the maximal critical length of the 

plates is received when the delamination angle is 030 . 
 

6. Conclusions 
 

1. The delamination of composite constructional 
elements is determined by the normal and shear 
stresses in the fiber. 

2. The strength criteria used to evaluate the strength of 
composites are too complex because of the large 
number of constants and the difficulty of determining 
them. 

3. The non-linear strength criterion suggested by the 
author for a complex state of stresses allows a simple 
dependency between critical delamination angles and 
critical lengths of the plate at buckling to be 
determined. 

4. According to experimental and calculation data, the 
maximal critical length of the plate at buckling is 
received when the delamination angle is 030 . 
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KOMPOZITINIŲ KONSTRUKCIJŲ ELEMENTŲ ATSISLUOKSNIAVIMAS KLUPDANT 
 
A. Žiliukas 
 
S a n t r a u k a 
 
Kompozitinių konstrukcijų elementų atsisluoksniavimas nustatomas remiantis normaliniais ir tangentiniais įtempiais. Autorius siūlo 
netiesinį stiprumo kriterijų, įvertinantį sudėtingą įtempių būvį sprendžiant kompozitų atsisluoksniavimo problemą. 
 
Reikšminiai žodžiai: atsisluoksniavimas, kompozitas, stiprumo kriterijus. 




