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Abstract. The analysis carried out, as well as the systematisation and generalisation of flight safety problems, has 

allowed us to propose a model for a flight safety management system and to define directions for priority research.  

To solve flight safety problems, it is suggested to use the integrated methods of flight safety management on the basis 

of basic and partial criteria totality, where it is possible to take into account simultaneously the probabilistic indices 

of the system and informative indices, which are connected by means of using neural networks. 
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1. Introduction 

 
Civil aviation is a strategic priority for the geopoliti-

cal, social and economic development of Ukraine, as well 

as an important element of manufacture and social infra-

structure, and its continuous and effective functioning is a 

necessary  condition  for the  provision of national safety, 

 

 

 

 

gradual economic growth, and a rise in living standards. 

Differential diagnosis of risk factors (RF) involved 

in the occurrence of air incidents (AI) is associated with 

considerable difficulties having a probabilistic character; 

the lack of a priori information leads to a situation when 

decision making at all stages is carried out in conditions 

of   uncertainty,   and   the   characteristics  of   every   air  
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operator have individual features.  

Local activities concerning the prediction, authentic-

cation and management of RF are the focus of conside-

rable scientific work performed by key scientists in the 

aviation industry. The basic methodological issues rela-

ting to the creation and application of mathematical 
models of flight safety management systems (SMS) are 

also described there. However, the lack of materials 

containing a complex integrated solution of the SMS 

problem and its automation should be mentioned 

(Safety… 2006). 

 

2. Conceptual model of safety management 
system (SMS)  

 

In the formation of the strategy of a SMS (
i

H ), 

special attention is given to factors and decision makers 

(DM) with the highest levels of priority. The processes of 

formation, decrease and recovery of the flight safety level 

(FSL) for actions classified as potentially dangerous are 

determined by the following matrix:  
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On the stage of periodic control during realisation of 

automated SMS algorithm, the following requirement to 

periodicity of measures is taken into account: the interval 

between two successive verifications must be less than 

the normative time interval for which FSL will decrease 

to the minimum acceptable value of SMS: Thus, during 

the period between measures it is necessary to provide the 

assured maintenance of the flight safety level within the 

range of standard operation. Implementation of this 

condition is provided by specifying individual verifica-

tion periodicity for each air operator with the purpose of 

detecting and timely eliminating risk factors (Kharchenko 

et al. 2008).  

The formalised general model of the system ( ( )ST

Tren
S ) 

follows: 
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In this model, the main elements of system implementa-

tion are: 

1

N

j

j

U
=

∑  is the totality of recommendations based on 

j  generalised analyses of AI, (1, )j N=  used as the 

basic components. 

1

( )
N

k

k

Y t
=

∑  is the totality based on k  models of 

operators (1, )k N∈ . ( )
k

Y t  changes over time ( t ) in the 

course of professional training (PT) and professional 

activity (PA). 

( , , )
i i i

P S S T
∗  is an inspector’s activity model; 

( ( )
i

P S  is for automated procedure of diagnosis, ( )
i

P S
∗  

is for partially automated procedure of diagnosis, and 

( )
i

P T  is used at analysis of AI investigation. 

1

( )
N

i

i

P H
=

∑  is the individual i-strategies of preventing 

the AI (
i

H ) which represent the totality of decisions 

made dependently on ( )
k

Y t  and recommendations (stan-

dards). ( )( ( ), ( ))I J M
B R T R Y  is a database of professional 

reliability during PA; ( ( ) ( )I J
R T  is the results of 

professional training (activity of specialists registered 

over the course of training on a simulator), and ( )M
R Y  is 

the secondary results of professional training (after 

executing the complex analysis and interpretation 
( ) ( )I J

R T ). The functional diagram of an integrated Auto-

mated Flight Safety Management System (AFSMS) is 

shown below. 

The structure of the system is based on the necessary 

condition of constant information gain. The system 

automatically creates abstract objects based on the input 

signals and forms their adequate pattern. The intellectual 

system has multiple input channels Ki for receiving 

external information. Information in NN is distributed 

according to levels. In case of level rise, the information 

elements enlarge. Let us mark out three NN levels with 

sublevels in each of them: 
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Every level of information is characterised by infor-

mation elements Eij, which are saved in information 

matrices of MIi level. The first level elements are 

represented by the clusters E1i = KLi (properties of exter-

nal objects; information about these objects is supplied 

via the input channels). The second level elements are 

represented by the images of objects E2i = OBri as a 

combination of clusters (properties of objects). The third 

level elements are represented by the models of object 

images E3i=Mi as static frames Si(tk) being a totality of 

information elements activated in information matrices of 

this level at time tk. 

Information contained in these frames is analysed by 

the intellectual system. This analysis is accompanied by 



Aviation, 2010 14(1): 19–23 

 

 - 21 -

the creation of information elements on high levels: 

processes Pij being the totality of static frames from 

beginning to finish of process action and stored in the 

matrices of the processes of this level МРi. On the first 

level, the process represents the totality of objects’ 

properties, on the second it represents objects’ images, on 

the third it represents objects’ models. Each element of 

high level of information representation in the system is 

assigned a specified totality of the lower level 

information elements, i.e. the limit to which any localized 

totality of information elements tries to reach if the 

condition number of frames goes to infinity. In the 

display system, the principle of the hierarchical saving of 

information is used. Activation of any element of the 

system causes activation of all elements of the lower 

levels associated with the primary element. Activation of 

any element in combination with other elements of the 

same level causes activation of the higher-level elements 

for which this combination is the basic one.  

 

3. Administrative decisions and diagnosis 
 

Decision made with the help of the aforementioned 

models and algorithms may not always satisfy the 

decision makers. Furthermore, cases can occur when the 

situation cannot be described or related to a certain class 

by means of these tools. To avoid such deadlock situa-

tions, a mathematical tool in the form of a network model 

and based on representation of knowledge by the rules 

was developed. This tool allows creating the decision 

making plan and determining the cause-and-effect rela-

tion which is described using a structure similar to that of 

a Petri net (Berger 1993; Daubechies 1992). The nodes of 

such a network are the classes of conditions (sets of 

determined classification identifiers of RF) and decision 

making, respectively the positions and transitions of the 

grid.  

The modification of Petri nets developed, rules for 

their functioning, and algorithmic support of the simula-

tion of the functioning of the diagnostic process allow 

one to carry out the creation of a functional model of the 

diagnostic process, to keep track of the current state of 

the diagnostic system, and to execute decision making 

option generation by means of simulation.  
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Fig 1. Modification of Petri networks  

 

A description of the settings follows: b0 – identifica-

tion of probable risk factors based on initial information; 

b1 – evaluation of the flight safety level based on quanti-

tative estimations of the totality of the risk factors 

identified and factors preventing the occurrence of special 

situations; b2 – diagnosis of ‘thin places’ (factors which 

jeopardize the flight safety level in the greatest degree) 

using partial indicators of risk; b3 – synthesis of 

recommendations (options of control actions) to enhance 

the flight safety level; b4 – evaluation of costs which are 

necessary to implement the synthesized recommendations 

during the established time interval; b5 – preliminary 

evaluation of the efficiency of the recommendations 

executed; b6 – analysis and diagnosis; and b7 – on-line 

and periodical (resultant) monitoring and evaluation of 

flight safety management efficiency using the probability 

indices system  for air incidents preventing (Kharchenko 

et al. 2008; Berger 1993; Cheeseman et al. 1988).  

 

4. Neural network approach  
 

At the stage of the pre-arranged processing of flow 

of information, the classification of events and processes 

depends on the factors that influence safety, and it is 

necessary to determine the risks that bring in different 

data in the case of these decisions. Mathematic statistics 

may be used, but many of these methods cannot be 

effective with a large volume of information. In our case, 

this could take place for many phenomena due to factors 

influencing BP and usually to a shortage of information. 

In this case, statistical methods cannot guarantee a 

successful result. In such cases, neural network (NN) 

technologies should be used to solve the problems.  

The task of automating the processes of UBP and 

prediction and creating consulting models will require the 

application of the NN theory that is considered in section 

1 in detail. To solve this task, it is suggested to use the 

NN structure shown in figure 2. 

The network consists of two layers. The first and the 

second layers have m neurons, where m is the number of 

samples defined by the aggregate of possible ‘risks’.  

The neurons of the first layer have p synapses 

connecting with the network entrances. At the network 

entrance, an unknown vector is given, and the dimension 

of this vector is determined by the information flow about 

phenomena, events, actions and processes that influence 

safety. 

The NN model described in section 1 generally 

performs the following conversions: 

: ,S X A⇒   : ,H A A′⇒  : ,P A y′⇒  

where X-N is the measuring space of continuous input 

signals; А-n is the measuring space of associations; А is 

the space of associations converted by means of a hashing 

algorithm; and y is the output signals vector. 

Conversion corresponds to information encoding: 

( )a S x= ,    

hashing: ( )a H a′ = ,   

output signal calculation: 

( ) ( ) ( ) ))T T
y P a a H aω ω′ ′= = = . The selection of a base 

function is an important item during the implementation 

of the network.  
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This expression describes the conversion carried out 

in conventional NN using information hashing while 

selecting rectangular base functions. If neurons with 

activation functions different from rectangular ones are 

used in the network, the conversions will have the form 

(Narenda et al. 1990; Child 2005; Daubechies 1992):  

( ( )) ,T
y H a Ф x ω=  

1

2

( ) 0 ... 0

0 ( ) ... 0
( ) ,

... ... ... ...

0 0 0 ( )
n

Ф x

Ф x
Ф x

Ф x

 
 
 =
 
 
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1

( ) ( ); ( )
N

i j j
ij ij

j

Ф x x x
=

= ∏ ∫ ∫� �  

values of selected base function in point. 

In the NN, the rectangular base functions that allow 

executing permanent approximation are used. In this case, 

the calculation time will be minimal, ensuring a conside-

rable decrease in the network reaction time after input 

signal appearance. In this case, the association vector 

components can have the value 0 or 1. Rate of network 

adaptation at the selection of rectangular base functions 

will have maximum value.  

 

 
 

Fig 2. Neural networks 

 

Base functions are represented by Gauss functions, 

which have the property of local exciting (Daubechies 

1992; FSF… 1996). It is possible to specify the bounda-

ries of their exciting sufficiently clearly, which is impor-

tant for encoding the information in NN. The Gauss 

function shown below is free of this disadvantage.  
2
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and trigonometric (cosine) 
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ρ ρ
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where - is the centre of the quantization domain.  

Neurons of the second layer are interconnected by 

inhibitory (prohibiting) synaptic links. A single synapse 

with a positive reverse link for every neuron is connected 

with an axon of the same neuron.       

The idea of network operation consists in the deter-

mination of the Hamming distance from the tested image 

to all samples.  

For binary strings a and b, the Hamming distance is 

equal to the number of ones in a XOR b. The metric 

space of length-n binary strings with the Hamming 

distance is known as the Hamming cube; it is equivalent 

as a metric space to the set of distances between vertices 

in a hypercube graph. One can also view a binary string 

of length n as a vector in Rn by treating each symbol in 

the string as a real coordinate; with this embedding, the 

strings form the vertices of an n-dimensional hypercube, 

and the Hamming distance of the strings is equivalent to 

the Manhattan distance between the vertices. (Distance of 

Hamming is the number of separate bits in two binary 

vectors.) 

The network must select the sample with minimum 

Hamming distance to unknown input signal resulting in 

activation of only one network output which corresponds 

to this sample (Carlin et al. 2000; Child 2005). In other 

words, the NN will select (predict) the risk levels 

according to input vector X and offer the proposition on 

decision making in the form of output vector (Child 

2005; Artificial… 1994; Lane et al. 1992; FSF… 1996; 

56th International… 2003; Carlin et al. 2000).  

 

5. Conclusions 
 

This multifactor model for the risk of the occurrence 

of AI allows:  

– Monitoring risk for every type of aircraft, taking 

into account the number of flights performed in 

the estimation period; 

– Quantitatively evaluating the degree of change 

in the risk of AI according to results of flight 

operation or after every investigation of AI; 

– Predicting the risk of the occurrence of AI 

(either according to AI statistics or according to 

the results of the expert prediction of AI for the 

next period of flight operation); 

– Periodically correcting AI risk prediction results 

during the process of operation on the basis of 

newly collected statistic data or after every AI.  A 

neural network model of the automated manage-

ment of flight safety will allow effectively solving 

the task of the risk synthesis of the occurrence of 

AI and provide the network control signals vector 

using partial and distorted information on pheno-

mena and incidents and processes impacting flight 

safety.   

It is necessary only to provide a list of factors, which 

influence the predictable index and perform a selection of 



Aviation, 2010 14(1): 19–23 

 

 - 23 -

a sufficient amount of examples, which describe the 

behaviour of this index previously. The NN will adapt 

itself to specified totality of examples, minimizing the 

total error of prediction. Analysis of set NN allows 

determining the hidden correlations between input and 

output data that is impossible to carry out using conven-

tional methods.   

Foreseeing that the character of correlation between 

the specified parameters will not change during some 

time period, the expert can use the adapted NN for short-

term/long-term prediction and decision-making develop-

ment.  

The primary application of the method consists in 

use for an information system of a municipal air transport 

arrangement in megalopolis with large relief loading per 

area unit, maintaining a high level of requirements for 

route limitations and advanced level of flight safety with 

a maximum level of protection against damage to 

population and objects in the municipal zone.  

The implementation of method covers:  

– acquisition and statistic processing of informa-

tion using the declared methods with the complex 

evaluation of risks  being the primary condition of 

the arrangement automated decision-making sys-

tem, issue of flight clearance;  

– monitoring the values of parameters characteri-

zing the state of the flight safety system for opera-

tion within municipal boundaries;  

– providing the necessary flight information on 

board aircraft; 

– advisory control of moving objects with estima-

ting the situation and defining recommended solu-

tions;  

– automatic external lock on aircraft operator 

malfunction in case of a critical situation. 
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NEURONINIŲ TINKLŲ TECHNOLOGIJŲ, SKIRTŲ RIZIKOS VEIKSNIŲ NUMATYMUI IR JŲ VALDYMUI, AIŠKINIMAS 
 
V. Kharchenko, O. Alexeiev 
 
S a n t r a u k a 

 
Atliktas tyrimas, taip pat skrydžio saugumo problemų susisteminimas bei apibendrinimas leido numatyti skrydžių saugumo valdymo sistemos 

tobulinimo kelius, nustatyti prioritetines jų tyrimo kryptis. 

Siekiant užtikrinti skrydžių saugumą, siūloma taikyti integruotus skrydžių saugumo valdymo metodus, kurie remiasi bazinių bei dalinių kriterijų 

visuma; čia galima kartu įvertinti sistemos tikimybinius bei informacinius duomenis, kurių jungiamąja grandimi yra neuroniniai tinklai. 

  

Reikšminiai žodžiai: skrydžio sauga, neuroniniai tinklai, tikimybių metodas, rizikos faktoriai, vadybos sprendimai, diagnozė, automatizuotos siste-

mos, analizė. 

 




