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Abstract. The optimization of flapping wing trajectory for the minimization energy consumed by the wing and 
associated with induced power losses is considered in this paper. An aircraft with such a wing is assumed to move in 
a horizontal direction at constant velocity. The flapping wing moves up and down at constant velocity. Unsteady 
vortex wake influence is analyzed. Comparison of the efficiency coefficients is performed for the steady case, as well 
as for the one with the sinusoidal and optimal control for the flapping wing. Also, comparison with another type of 
the thrust creation (propeller) is performed. 
 
Keywords: flapping wing, unsteady vortex wake, optimal control. 

 
1. Introduction 

 

Scientists are motivated to consider different 
problems in this field by the interest produced by 
flapping wing and aircraft with such wings. For example, 
K. D. Jones et al. have analyzed the wake structure be-
hind plunging airfoils (Jones et al.1996). They have com-
pared the picture obtained with the aid of the numerical 
method with the inviscid incompressible flow, and the 
experimental results and have shown that a plunging 
airfoil can produce drag, zero drag, or thrust depending 
on the motion parameters (reduced frequency and 
plunging amplitude). The thrust coefficient was obtained 
and it was noted that in the case of very small or very 
large reduced frequencies the numerical and the 
experimental results no longer coincide. It is because of 
the significant viscous influence in the first case and the 
flow  separation in the second one. I. H. Tuncer and M. F. 

 
 
 

Platzer have compared the numerical results for the 
plunging airfoil obtained with the help of the different 
methods: with the in viscid incompressible flow, with the 
hybrid method with the Navier-Stokes equations solved 
in the boundary layer, and with viscous flow (Tuncer et 

al.1996). It was shown that these methods give close re-
sults (Re ~106). They also have investigated the questions 
of the efficiency of a plunging airfoil and of two airfoils 
in tandem interaction and their efficiency. I. H. Tuncer 
and M. Kaya have solved the optimization task for the 
maximization of thrust and efficiency for the airfoil in a 
combined plunge and pitch with the plunge and pitch 
amplitudes and phase shift between them as optimization 
parameters (Tuncer et al. 2004). Then they have solved a 
similar problem for the two airfoils in a biplane 
configuration (Tuncer et al. 2009). H. Nagai and T. 
Hayase have investigated the numerical and experimental  
aerodynamic characteristics  and  efficiency  of  an  insect  
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wing in forward flight (Nagai et al. 2009). G. J. Bermang 
and Z. J. Wang have considered the case of hovering 
insect flight and have found optimal wing kinematic that 
minimizes power consumption (Bermang et al. 2007). Z. 
J. Wang has sought the simplest efficient flapping mo-
tions with the aid of the model of quasi-steady forces and 
has made a comparison with steady forward flight (Wang 
2008).  

But up to now, in my opinion, there have not been 
enough studies concerned the question of the optimal 
kinematic of the flapping wing motion. This work there-
fore deals with this question; analytical and numerical 
investigations were made to determine flapping wing 
efficiency for a typical case. The results obtained were 
compared with the “traditional” type of thrust generation 
(propeller). 

 
2. Model 

 

The flight of an aircraft in a horizontal direction at 
constant speed and steady altitude is considered. The 
aircraft has a fixed wing for the production of lift and a 
flapping wing (or wings) only for the creation of thrust 
(Jones 2006). The flapping wing also creates lift at every 
moment of the motion, but the period-average lift is zero.  

It is assumed that the wing is perfectly rigid (does 
not change its form under load) and that its mass and 
moment of inertia are zero (i.e., wing speed and its 
orientation in space can change instantly). It was shown 
earlier without taking the unsteady effect into conside-
ration that the flapping wing should move in a straight 
line at constant velocity to minimize the amount of power 
consumed (Кравченко 2009). In this study, the flapping 
wing therefore moves up and down at constant velocity. It 
can also perform pitching motion. The oscillation 
amplitude and frequency are considered so that the vortex 
wake remains nearly flat. It was shown by J. Young, that 
there exists a region of the parameters of the flapping 
wing motion (reduced frequency and amplitude) where 
the Kutta condition is valid (Young 2005). So, assume 
that our wing parameters correspond to this region. This 
means that the flow is coming off the trailing edge of the 
wing without separation. 

 
3. Evaluation of vortex wake influence  

 

The problem in a simplified statement (the task of 
the model) has been considered to understand the main 
features of the processes taking place. 

The wing is modelled with a bound vortex and two 
free vortices coming off the wings tips and closing to 
“rings” when the vertical velocity component is reversed 
(Fig 1). Assume that the distribution of circulation is 
constant along the wing.    

It is well known, that the induced velocity Vi from 
the vortex section at a certain point of observation is 
given by the formula 

 

( )cos cos
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h

θ ϕ
π
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= +  

 

 
Fig 1. Simplified model for investigation of nonstationarity 

influence  
 

where Γ is the circulation, h is the length of the perpendi-
cular between the observation point and the line contain-
ing the vortex section, and θ and ϕ are the angles between 
the lines from the observation points to the ends of the 
vortex section and the line of the vortex section (Fig 2) 
(Лойцянский 2003). 

 

 
Fig 2. Vortex section 

 
The analytical formula was found for the induced 

velocity created at a certain wing point M(z) at a certain 
moment of wing motion as the sum of the velocities 
generated by all the vortex sections: 
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Since the above expression is too complicated for 

analytical investigation, numerical analysis was conduc-
ted for the detection of the main features. 

Since the circulation value at the wing tips must 
always be equal to zero, let us specify the circulation 
function as 

 
Γ=Γ0, ε<z<L-ε, 

Γ=0, 0<z<ε, L-ε<z<L, 
 

where ε is a certain parameter, and L is wing span 
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(Лойцянский 2003). The following parameters were ta-
ken for calculation: L=2m; Γ0=1m

2
/s; ε=0.01L; b=0.1L; 

p – over the range from 0.5L to 10L, where b is the wing 
chord.  

Such are the main results. The induced force value 
averaged for a time period and for the wingspan was 
obtained. The vortices nearest the wing were found to 
give the main contribution. The induced velocities of the 
vortex wake generated on the wing alternate in direction 
forces, the first of them being positive (drag). 

 

 
 

Fig 3. Comparison with the steady case 
 

Comparison with the stationary case was made, the wing 
being modelled with a bound vortex and two infinite free 
vortices (Fig 3). Here, ∆F

100 is the difference between the 
force in the steady case and the force from the first hun-
dred vortex circular elements, ∆F

2 is the difference bet-
ween the force in the steady case and the force from the 
first two vortex circular elements, and σ is the difference 
between ∆F

100 and ∆F
2. As shown in the figure, neglec-

ting all vortices and starting with the third one, gives an 
error of several percent if the value of the parameter p/L 
is not too small.  

The force dependence on the wing position during 
the period is shown in figure 4: 
 

 
 

Fig 4. Plot of force vs. the wing position during the period 
 

The horizontal line corresponds to the force in the steady 
case, and the dashed line corresponds to the nonsteady 
force. One can see that significant extra drag appears at 
the beginning of the period and then decreases fast, and 
during the rest of the time the movement is close to the 
stationary case. 

 

4. Optimization task 
 

It is clear that the instantaneous changing of the 
circulation value may not correspond to the optimal case, 
so for simplicity let us assume that the circulation 
distribution along the wing span is constant but suppose 
the circulation time dependence is a certain periodical 
function Γ(t) (Fig 5): 

 

 
 

Fig 5. Vortex sheet investigated 
 

At every moment of motion, the horseshoe vortex with 

circulation 
1

d d
V

ξ
τ∞

∂Γ
Γ =

∂
 (τ=t-x/V∞) leaves the wing. 

The span-averaged induced velocity generated with the 
vortex wake of length of 2p is: 
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The two vortices coming off the wing tips should also be 
taken into account. They induce the velocity: 
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The induced force is F=ρ(vi+ui)Γ, and the required power 
for the generation of this force is Wi=FV∞. The problem is 
to minimize the period-average induced power Wi, that is: 
 

0 0 0

1
( )

T T

i i i

V
I W dt v u dt

T T

ρ ∞= = Γ +∫ ∫ ,         (1) 

 
provided that the power spent on the oscillatory motion is 
taken: 
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∫ ∫         (2) 

 
As we assume the flapping wing produces no lift, then 
the following condition must be taken into account: 
 

0
0

T

dtΓ =∫ . 

Let us expand the periodical circulation function in the 
Fourier series and determine the zero moment of time so 
that the sine function will only be present in this expre-
ssion:  
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Assume an interchange of the operations of summation 
and integration can be done. By substituting expression 
(3) into (1) and (2) and carrying out some transforma-
tions, one can obtain: 
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where Φ is the expression in the square brackets from the 
formula for vi after integration with respect to z. Then, the 
optimization task can be reformulated:  
minimize:  
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where the tilde over n means that the odd summand only 
appears in the sum, since the rest is nulled after the 
integration. The Lagrange function for this task is: 
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where λ is the Lagrange coefficient. 
Optimum conditions are thus: 
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A really optimal solution can be obtained only if all the 
harmonics of oscillations are taken into account. This 

task is very difficult to solve and to analyze, however. Al-
so, it is well known that the amplitudes of higher harmo-
nics are usually rather small in comparison with the first 
ones. It was therefore decided to analyze the optimization 
problem only for a series of the first harmonics.  
 

 
 

Fig 6. Function of optimal control obtained; n=1, 2, 3, 4, 5 
 

The solution for the optimization task was found for a set 
of values of n for a set of values of С0 (the constant const 
from condition (2)). The circulation function of optimal 
control is given in figure 6 for 1, 2, 3, 4, and 5 harmonics 
under conditions С0=30 W. For n more or equal to 3, the 
graphics are rather close to each other (as was assumed 
above), so we may be content with the first several har-
monics. 

 
5. Determination of efficiency and 

comparisons 
 
It is interesting to compare the gain with the optimal 

control of the wing in comparison with more often used 
and more easily implemented sinusoidal movement law 
(number of harmonics is 1). Let us determinate the effici-
ency as the rate of period-averaged useful power (i.e., the 
one suitable to wing thrust) to mean full power (i.e., the 
one spent on oscillatory motion):  
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And after some computations, the formulas take this 
form:  
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The numerical investigation was made for a set of 
parameters: l=1m, p=2l and p=l, and vy=2m/s. The results 
are given in tables 1 and 2 for a set of values С0; η2 is the 
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efficiency for the optimal control case when the optimiza-
tion task is solved for n=2 (the circulation function inclu-
des two harmonics); η3, η4, and η5 are defined similarly 
when n=3 and n=4; n=5; η1 is the efficiency for the sinu-
soidal control. 
 
Table 1. Numerical comparison of the efficiencies for optimal 
and sinusoidal control p/l=1 
 

С0,W η1 η2 η3 η4 η5 
1 0.9937 0.9943 0.9943 0.9944 0.9944 
10 0.9336 0.937 0.9377 0.9381 0.9381 
20 0.8732 0.8797 0.8811 0.8817 0.8819 
30 0.8129 0.8224 0.8245 0.8254 0.8257 
40 0.7525 0.7651 0.7679 0.7690 0.7695 
50 0.6921 0.7078 0.7113 0.7127 0.7133 

 
Table 2. Numerical comparison of the efficiencies for optimal 
and sinusoidal control p/l=2  
 

С0,W η1 η2 η3 η4 η5 
1 0.9909 0.9913 0.9914 0.9914 0.9914 
10 0.8997 0.9042 0.9052 0.9056 0.9058 
20 0.8086 0.8178 0.8191 0.8198 0.8201 
30 0.7174 0.7301 0.7329 0.7339 0.7344 
40 0.6262 0.6431 0.6467 0.6481 0.6488 
50 0.5351 0.5560 0.5606 0.5623 0.5631 

 
It is obvious that the increase in the number of 

harmonics to more than two practically does not produce 
any changes in the efficiency advantages. The utilization 
of optimal control gives little gain, and it becomes 
smaller as the motion period becomes longer. 

The comparison of the efficiency for the steady case 
with sinusoidal control and with optimal control (n=5) 
was made. The plot of η(T), where T is the wing thrust, is 
presented in figure 7. 

 

 
 

Fig 7. Efficiency versus wing thrust for steady  
and nonsteady cases 

 
6. Comparison with ideal propeller 
 

Assume the propeller will be taken to be the flapping 
wing equivalent if they are of the same swept area. Then, 

the equivalent propeller diameter is: 
 

4 y
vpl

D
Vπ ∞

=                                (4) 

 
The coefficient of the efficiency of the ideal prope-

ller is defined (as described I. H. Tuncer et al.) (Tuncer et 

al. 2004): 
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The efficiency of the ideal propeller is much more 

than the efficiency of the flapping wing, even for the stea-
dy case (Fig 8). 

 

 
 

Fig 8. Efficiency comparison for p/l=2 
 

7. Comparison with the propeller blade ele-

ment theory 
 
The quasilinear statement of the problem is used, i.e. 

the diameter of the stream from the propeller remains 
practically constant (Шайдаков и др. 1995). Assume the 
circulation of the bound vortex along the blade is 
constant. Then, the vortex sheet is the vortices coming off 
the blade tip and the hub. Let us define the angular 
velocity ω of the equivalent propeller (4) so that the 
rotary velocity for the characteristic section at 0.5R is 
equal to vy: 
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The efficiency for such a propeller is 
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m V rd r= Γ∫  are the thrust and 

power coefficients of the propeller, V is the free stream 
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relative velocity, 1 1U r u= − , 1 1V V v= +  are the relative 

velocity components of the real stream, 
2

1 (1 )
2 2

V V
v

 
= − + + Γ − Γ  

 
, and 1  u

r

Γ
=  are the axial 

and the peripheral components of the induced velocity. 
The velocities marked by bar are related to the blade tip 

rate ωR, 
24 Rπω

Γ
Γ = . The dependency of η(T) was 

obtained for the same parameters as for the flapping wing 
case (Fig 8). It is practically the same as the efficiency of 
the flapping wing (in the case of p/l=2). The dependency 
for p/l=1 is presented in figure 9: 
 

 
 

Fig 9. Efficiency comparison for p/l=1 
 
As shown in the figure, the efficiency of the propeller is 
less than for the flapping wing one. 

Also it should be mentioned that the results of com-
parison strongly depend on the method of determining ω 
(see (5)). If ω is defined so that the distances, which the 
vortex wakes, passes during the one swing and during the 
one propeller period are equal 

 

V

p

π
ω ∞= , 

 
propeller efficiency appears higher for both parameters of 
p/l (Figs 8, 9). The results of the comparison are therefore 
not completely clear. Furthermore, the criterion of the 
comparison for the flapping wing in such a statement is 
not accurate, so the results presented for the propeller can 
be only qualitative. 
 

8. Concluding remarks and future work 
 

It is well known that constant circulation distribution 
is non-optimal regime both for the propeller and the 
wing. So, in the future, there are plans to solve a similar 
task for elliptical circulation distribution. It is possible 
that clearer results will be obtained. It should also be 
mentioned that we are taking into account only the power 
losses due to vortices. But viscous drag must also be 
taken into account in the analysis of efficiency.  

 

Conclusions 
 
1. An analytical model was proposed for the study 

of nonsteady effects. 
2. The vortices nearest the wing were found to give 

the main contribution to the drag. 
3. A method for the solution of the optimization 

problem was proposed based on the expansion of the 
characteristics in the Fourier series. 

4. Optimal control laws were found for the 
different harmonics numbers. The utilization of optimal 
control gives little gain in comparison with sinusoidal 
circulation, and it becomes smaller as the motion period 
becomes longer.   

5. Comparison with another variant of thrust crea-
tion was made. It was shown that the result of compari-
son strongly depends on the way ω is determined. 
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NESTANDARTINIUS POVEIKIUS SUKELIANTIS OPTIMALUS PLASNOJANČIO SPARNO VALDYMAS 

 

D. Kravchenko 

 
S a n t r a u k a 
 
Šiame tyrime svarstomas plasnojančio sparno trajektorijos optimizavimas tam, kad būtų minimizuota sparno sunaudota energija bei  jos įtakoti galios 
nuostoliai. Manoma, kad orlaivis su tokiu sparnu juda pastoviu greičiu horizontalia kryptimi. Plasnojantis sparnas aukštyn ir žemyn juda pastoviu 
greičiu. Analizuotas nestacionaraus sūkurių pėdsako poveikis. Taip pat palygintas koeficientų efektyvumas stacionariu atveju bei esant sinusoidiniam 
ir optimaliam sparno valdymui.  
 
Reikšminiai žodžiai: plasnojantis sparnas, nestacionarus sūkurių pėdsakas, optimalus reguliavimas. 
 




