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Abstract. The possibility of using a model based on random Daniels’ sequence and Markov chain theory for ap-
proximation of S-N fatigue curve of fiber reinforced material is studied. The model allows observing the connection 
between static strength distribution parameters and parameter of S-N fatigue curve. Although the model is too simple 
and does not provide numerical correspondence with experimental fatigue test data, it can explain the existence of 
a fatigue limit and can be used as a nonlinear regression model of S-N fatigue curve when taking into account the 
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1. Introduction 

Each year the use of fiber reinforced material (FRM) in 
aircraft and other technical structures increases. In order 
to provide reliability of flight the fatigue phenomenon in 
this material should be studied. Some research on this 
topic may already be found (Harris 2003). One of the 
main quantitative characteristics of this phenomenon is 
a fatigue curve. Various sources provide their own defin-
ition of this concept. One frequently used example is 
the equation suggested by Weibull: 1 ( )S S C N B -a

-- = + , 
where S-1, C, B, and a are some parameters, S is the 
stress amplitude and N is the corresponding average 
number of cycles. A deep discussion of the considered 
problem is presented in (Pascual, Meeker 1999). In table 
2 of this paper the seven models for estimates of the 
fatigue curve quantile are given. However, the paramet-
ers of these models have no connections with the para-
meters of the tensile strength distribution of composite 
material components.

This paper is a review integrating, amending and 
developing the approach applied in previous works of 
authors (Paramonov et al. 2006, 2010, 2011, 2012b, c; 
Cimanis, Paramonov 2012), which are devoted to the 
connection of tensile strength distribution parameters 
and parameters of fatigue curve, S-N, for unidirectional 
fibre composite using the model, based on the Markov 
chain (MCh) theory. In (Cimanis, Paramonov 2012; 
Paramonov et al. 2012b, c) the MCh state space is defined 
by Daniels’ sequence, the definition of which was intro-
duced initially in (Paramonov et al. 2006). It is also con-
nected with the comulative distribution function (cdf) 
of strength of longitudinal items (LI) (fiber or strands) 
of unidirectional FRM. Here, the estimate of cdf based 
on the random sample will be used instead of cdf itself, 
and the definition of random Daniels’ sequence (RDS) is 
introduced. The “likelihood” of theoretical and experi-
mental fatigue curves may be considered as proof of the 
model offered in this paper. A numerical example of car-
bon-fiber fatigue test dataset processing is provided. The 
paper is an expansion of indeas on the problems con-
sidered in book (Paramonov et al. 2011).

The statistical description of the strength of bundles 
of threads was theoretically described in the papers 
(Daniels 1945, 1989; Phoenix, Taylor 1973; Smith 1982; 
Phoenix et al. 1997). Application of the Markov chains 
(MCh) theory to the analysis of fatigue phenomenon is 
thoroughly discussed in (Bogdanoff, Kozin 1989; Goda 
et al. 2006). The result of processing fatigue test dataset 

using models of fatigue curve with random fatigue limit 
is presented in paper (Pascual, Meeker 1999). 

The model for connection of cdf of tensile strength, 
fatigue life, residual strength and residual fatigue life 
(after some preliminary fatigue loading) with the cdf of 
tensile strength of a composite material component is 
relatively new. First steps in that direction were made in 
(Kleinhofs 1983). 

In the present article we discuss the probability 
model of one week micro volumes (WMV) for descrip-
tion of fatigue progress using the definition of the ran-
dom Daniels’ sequence (RDS) and simple Markov chains 
(MCh), followed by a numerical example of carbon-fiber 
fatigue test dataset processing.

2. Model of WMV of unidirectional FRM.  
The definition of a random Daniels’ sequence 

The composite specimen for the test of fatigue life can be 
regarded as a series of parallel systems (Gucer et al. 1962) 
every link of which (parallel system) is some WMV, in 
which gradual accumulation of fatigue damage takes 
place. After failure of any of these WMVs, the failure of 
the specimen also takes place. Here we mainly consider 
the failure of one WMV. This is a special case and the 
kernel of the whole problem. The use of the considered 
model of WMV for the analysis of fatigue problem of 
the specimen as a whole is considered in (Paramonov 
et al. 2011, 2012a). 

First, we assume that the WMV consists of Cn  
LIs in parallel with the applied load shared equally 
among surviving elements. The value of Cn is as-
sumed to be equal to some constant (it is not a ran-
dom variable). If the sorted strengths of the indi-
vidual LIs are denoted by (1) (2) ( ), , ...,

CnX X X , the 
strength of the WMV, Y , is provided according to 

( )max{ ( 1) / :1 }k C C CY X n k n k n= - + ≤ ≤ . The distri-
bution of Y  was investigated by H. E. Daniels (Daniels 
1945; Phoenix, Taylor 1973) under the assumption 
that the fibre strengths, 1 2, , ...,

CnX X X , are independ-
ent random variables with a known common distri-
bution function. R. L. Smith obtains limit theorems as 

Cn →∞ , Ln →∞  simultaneously in consideration of 
probabilities of large deviations in Daniels’ model and 
improved approximations which lead to significant re-
ductions in error (Smith 1982). If 1: 1( , ..., )

C Cn nx x x=  is 
a sample, i.e. a vector of observations of strength of Cn
LIs of some WMV, 1 2, , ...,

CnX X X , then while ‘develop-
ing’ the Daniels’ model in time, we obtain the following 

existence of a random fatigue limit. By using of this model fatigue curve (and especially, fatigue limit) changes as a 
consequence of tensile strength parameter changes may be predicted. A numerical example of carbon-fiber fatigue test 
dataset processing is provided.

Keywords: fibers, strength, fatigue, Daniels’ sequence, Markov chains.
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sequence, which we refer to as the random Daniels’ se-
quence (RDS), ,...},,{ 210 sss :

1
ˆ/ (1 ( )),   0,1,2,...,i X i Cs s F s i n+ = - = , (1) 

where 0 ,s s= s is the initial nominal stress (initial load 
of one LI), ˆ (.)XF is the estimate of cdf of strength of a 
LI, which is defined by sample 1: .

Cnx  In what follows, for 
definiteness, it is assumed that s is the maximum (nom-
inal) stress of the cycle; items of RDS, ,...},,{ 210 sss , are 
local stresses in a cross section in which some part of 
LI is destroyed. The following definition of cdf may be 
used: ˆ ( ) ( ) /X CF x k x n= , where ( )k x  is the number of 
observations which are lower than or equal to x , but 
here we use the estimate of cdf developed on the base of 
maximum likelihood estimates of unknown parameters 
obtained using sample 1: Cnx . The RDS has the following 
specific features:

1) inequality ˆ ( ) 1XF x ≤  means that 1i is s+ ≥ ;
2) if there is the solution of equation 

ˆ(1 ( ))Xs x F x= - , (2)

then there is some *i  , such that * *1i is s+ =  and the pro-
cess of increasing is  halts. The maximum value of s  
which results in the phenomenon is referred to as RDS-
fatigue-limit (RDSFLm). The solution of the equation (2) 
exists if ˆmax (1 ( ))Xs x F x≤ - . So, for specific 1: Cnx  the 
specific RDSFLm is equal to ˆmax (1 ( ))Xx F x- . But this 
value is equal to the value of Daniels’ tensile strength 
of bundle of LI. Real fatigue-limit is much lower than 
the ultimate strength of FRM (USFRM). The decrease 
of the fatigue limit in comparison with the USFRM may 
be explained in two ways. Firstly, it may be considered 
to be the result of some additional stress concentration 
taking place during repeated load cycles. It may also be 
maintained that the “local tensile fatigue strength” of LI 
is lower than the one of single LI. Examples of data pro-
cessing the fatigue test of carbon-fiber composite using 
the assumption about development of additional stress 
concentration for the case Cn →∞  and ˆ ( ) ( )X XF x F x=  
are illustrated in (Cimanis, Paramonov 2012; Paramonov 
et al. 2012b, c). Here we assume that Cn  is limited and 
that the final “local fatigue tensile” strength decreasing 
in fk time takes place: /L fX X k= . In the following we 
use (.)

LXF  instead of (.)XF  and define the RDSFLm by 
equation DS = ˆmax (1 ( ))

LXx F x- . In fact, these two ap-
proaches are “convertible” but it appears that the termin-
ology is easyier in this case.

If stress s  is more than RDSFLm then items of 
RDS grow up to infinity. Growth of stress corresponds 
to the decrease of local specimen cross section area. Let 
us define that the failure of specimen takes place if local 
cross section area becomes less than Cf  (a critical part 

of still intact LI; initial cross section area is equal to one) 
of some value. Then critical stress corresponding to this 
event, *

UTs , is defined from equation *1 ( )
LC X UTf F s= - : 

* 1 (1 )
LUT X Cs F f-= - . The number *max{ : }D i UTN i s s= <

is referred to as Daniels’ fatigue life (RDSFLf) at stress s . 
Therefore, there are two different types of RDS: 1) RDS is 
directed upwards to infinity if level of cycling stress s  is 
greater than RDSFLm, in which case RDSFLf is limited; 
2) after a slight increase RDS is directed to infinity in a 
horizontal direction if s  is smaller than RDSFLm; in this 
case RDSFLf is equal to infinity. Examples of processing 
of fatigue test dataset in which there are right-censored 
fatigue observations are shown in figures 1 and 2. The 
dataset employed in this analysis was kindly given to the 
authors by W. Q. Meeker, who already studied them (Pas-
cual, Meeker 1999) and provides the following description 
of the data: “the data come from 125 specimens analysed 
in four-point out-of-plane bending tests of carbon eight-
harness-satin/epoxy laminate. Both fiber fracture and fi-
nal specimen fracture occurred simultaneously. Thus, fa-
tigue life is defined as the number of cycles until specimen 
fracture. The dataset includes 10 right-censored observa-
tions (referred to as “runouts” in the fatigue literature)”.

The RDSs for different stress levels: s = 340, 300, 
280, and 270 MPa are shown in figure 1a (RDS for s = 
380 is not shown because it is too short).
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Fig. 1. Examples of (a) RDS, and (b) fatigue curve S – ND
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Nevertheless, there are some reservations. If 
DN = ∞  then in the figure the “censored” value 

20DCN =  is shown because ∞  cannot be shown. 
Therefore, the output is min( ,20)DC DN N= .

It is evident that employment of an RDS definition 
allows to explain the existence of a fatigue limit: for s = 
270 MPa the DN = ∞ . But the value of DN  is very small 
if s  is not very close to the RDSFLm. Therefore, in or-
der to meet the real fatigue life value the value of DN
must be “stretched out”. This may be achieved by using 

D Dk N , 1Dk ≥  , instead of DN . Two other approaches 
are offered in (Paramonov et al. 2011, 2012b, c; Cimanis, 
Paramonov 2012). In Paramonov et al. (2011, 2012b), 
Cimanis and Paramonov (2012) the MCh model was 
used. Evidently, accumulation of some energy and cor-
responding number of cycles are needed to cause failure 
of LIs even if their local strength already is lower than 
stress. Therefore, in (Paramonov et al. 2012b) the DN  
was connected with the time needed for accumulation 
of some energy, which is a part of energy necessary for 
failure of specimen at a tensile test. It is not clear which 
approach is better and a special investigation is needed 
to provide an answer. 

In this analysis the first approach and Monte Carlo 
modelling of sequence {s0, s1….} was used. In this case 
the description of a random process of accumulation of 
fatigue damage is defined by: 
(1) initial (maximum cycle) stress, s ;
(2) cdf of strength of LIs, (.)

LXF , taking into account 
the decrease of local stress by fk time;
(3) sample size, Cn ; 
(4) method of estimation of (.)

LXF  using sample, 
,1: .

CL nx
The description of a specific realization of this 

process begins with the recording of a specific sample, 
,1: CL nx , and with the definition of RDS type. For two dif-

ferent types of RDS we consider MChs with two types 
of absorbing states (see two following sections). In both 
cases the state space of MCh is connected with items of 
RDS. In this paper we consider a simple MCh, in which 
the transition can be made only in the next seniour state. 
A more complex two dimensional MCh (when the in-
fluence of composite matrix is taken into account) is 
considered in (Paramonov et al. 2011, 2006), however, 
for the state space of MCh matrix, which is not connec-
ted with the RDS. The main object in this paper is the 
employment of the RDS for explanation of existence of 
random RDSFLm and for analysis of fatigue RDSFLf 
processing result of a specific fatigue test (see numerical 
example).

3. Simple MCh model of first type 

First of all we are interested in the cases when RDSFLf 
is final. Let us denote the pair {nominal stress, s ; the 
sample, ,1: CL nx } with which this event takes place by 

*
,1:{ , }

CL ns x  and corresponding RDS by *
0 1 1{ , ,..., }rs s s - . 

We regard the MCh as conditional as long as the RDS 
of this type takes place and the first r  states of cor-
responding MCh are related with items of Daniels’ se-
quence, *

0 1 1{ , , ..., }rs s s - ; ( 1r + )-th is the absorbing state. 
Sr, corresponding to the situation when the RDS-item 
becomes greater than *

UTs . We assume for simplicity, 
that only the transitions to the nearest ‘senior’ states can 
take place. The following matrix illustrates transition 
probabilities: 


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P ,  qi=1-pi, i=1,...,r.

The main characteristics of this type of 
Markov chain are well known: time until absorp-
tion 1 2 ... ,  A rT X X X= + + + where iX  (time the 
process spends in i-th state) and i = 1,…,r, are in-
dependent random variables which have a geo-
metric distribution with probability mass function 

i
n

ii ppnXP 1)1()( --== ,. i = 1, 2, ... Expectation 
value and variance are equal to ii pXE 1)( =  and 

.)1()( 2
iii ppXV -=

Probability generating function for random vari-
able AT  is equal to 

1 1

( ) ( )
1 (1 )

r
i i

T T
i i i

zpG z p i z
z p

∞

= =

= =
- -∑ ∏ , 

the cdf is equal to tP bπ , where π  is a row vector of a 
priori probabilities (in the simplest case π  is a row vec-
tor of the type (1,0,…,0)) and vector column b is vec-
tor of the type (0, … 0,1). The new steps which we of-
fer are: 1) the connection of transition probabilities with 
tensile strength distribution parameter and paramet-
ers of cycles of fatigue loading, and 2) the connection 
of MCh state space with RDS. Let us denote by θ  the 
vector parameter, the components of which include the 
parameters of the distribution functions of local strength 

(.)
LXF , and some other parameters of the model ( Cf , 

fk , Cn ,…). Matrix P  and cdf of AT  are functions of 
parameter θ  and the pair *

,1:{ , }
CL ns x : 

*
,1:( ; ,{ , } )

A C
t

T L nF t s x P bθ = π , 1,2,3,....t = . (3)

It is assumed that one step of Markov chain case 
corresponds to Mk  cycles in general ( Mk  is also a com-
ponent of vector θ ). Then the fatigue life (the fatigue 
cycle number up to specimen failure) T is equal to m Ak T . 
The p-quantile fatigue curve, which defines the fatigue 
life ( )pt s  (the number of cycles corresponding to the 
probability of failure p under a nominal stress s), and the 
corresponding mean fatigue curve are defined by equa-
tions:
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1 *
,1:( ) ( ; ;( , ) )

CAp m L nTt s k F p s x-= θ ;

 *
,1:0

( ( )) ( ; , ; )
A CT L nE T s tdF t s x

∞
= θ∫ . (4)

It should be reminded that the sample ,1: CL nx
is random. So the matrix P , and cdf of AT  are also 
random. A row vector π  of a priori probabilities and 
vector column b of the type (0, … 0,1)’ are also ran-
dom because their length is defined by random RDS 

*
0 1 1{ , ,..., , }r rs s s s- . Therefore, it is necessary to calculate 

the mean values or to find the corresponding quantiles 
(at specific argument s ) of these functions under the 
condition that the pair *

,1:{ , }
CL ns x  takes place. Calcula-

tion of the corresponding integrals takes up a lot of time, 
so it is more convenient to use the Monte Carlo (MC) 
method. First, a sample ,1: CL nx  must be obtained. Then 
for every specific s (the point of S-N curve) the RDS 
should be calculated and if it is a first type RDS, func-
tions FTA (.), tp (.) and E(T(s)) for this specific stress level, 
s , should be calculated. Modelling of samples should be 
repeated long enough to reach the necessary precision. 
The value of part of the MC trials which provide the pairs 
of the first type, *

,1:{ , }
CL ns x , is an estimate of the prob-

ability that Daniels fatigue limit is lower than stress level 
s . Calculation for different s  gives the estimate of cdf of 
random Daniels’ fatigue limit. 

4. Simple Markov chain model of second type 

The second type of the MCh corresponds to the situ-
ation when stress s  is smaller than RDSFLm and 
RDSFLf is equal to infinity. This case corresponds to the 
existence of the solution of equation (2). Assuming that 

*
1min( : ; 0,1,2,...)i ii i s s i+= = = , the states of MCh are 

connected with the first *i  items of RDS: *1 2, , ,...,o is s s s . 
The last state is the absorbing one. All previous equa-
tions for the number of steps of MCh to absorption can 
be used again but they are not of great interest for the 
definition of fatigue life, which is in this case infinite. 
This type of matrix may be useful for calculation of 
cdf of fatigue life under program fatigue loading, if the 
loads are included in the program that the fatigue life is 
limited. Here we do not consider the analysis of fatigue 
life under program loading. This problem in relation to 
different types of state space of MCh is considered in 
(Paramonov et al. 2011, 2006). 

It must be noted once more that all equations re-
lated to the calculation of cdf of fatigue life using the 
MCh of first type are conditional: under the condition 
that stress s  is greater than RDSFLm. Hence, the main 
interest is the calculation of the probability of this event. 
The probability can be calculated using the MC method 
but an approximate value can be obtained using Daniels’ 
result as well: random variable DS  = ˆmax (1 ( ))

LXx F x-  

has an approximately normal distribution with mean 
value Dµ   = * *max (1 ( )) (1 ( ))

L LX Xx F x x F x- = -  and 
standard deviation Dσ  = * * 1/2( ( ) / )

LD X Cx F x nµ  defined 
by (.)

LXF  (Daniels 1945, 1989; Smith 1982). 

5. An example of censored data processing using 
f mk  -RDS_MCh model

The studied model will be referred to as f mk -RDS_MCh 
model. For modelling vector ,1: 1( ,..., )

C CL n L LnX X X=  
the Weibull distribution was used with cdf being 

0 1( ) 1 exp( exp((log( ) ) / ))
LXF x x= - - -θ θ ,  w h e r e 

0 5.99θ =  and 1 0.1416θ = . These parameters corres-
pond to the result of tensile test of carbon fiber strands 
(Kleinhofs 1983): (log( )) 6.44E X = , (log( )) 0.1816Xσ =  
(pity, there are no data of tensile test results of specific 
carbon fibers or strands in (Pascual, Meeker 1999)).The 
first value was corrected in accordance with f mk -RDS_
MCh model: (log( )) (log( )) log( )L fE X E X k= - . The local 
strength decreasing coefficient fk  = 1.7 was found by 
fitting the considered dataset. It was excepted that the 
fatigue failure of specimen corresponds to the failure 
of some weak micro volume, which consists of Cn =  
20 longitudinal items (it is assumed that after their 
failure the “domino-effect” takes place (Paramonov 
et al. 2011); but the failure of WMV takes part if its 
critical part Cf  = 0.5 is destroyed. Corresponding crit-
ical stress *

UTs  is equal to 379.7. Here and in the fol-
lowing the the MPa is used as stress unit. Time scale 
factor mk  (N.B. one step of MCh corresponds to mk  
fatigue loading cycles) is equal to 57.8. This value was 
also obtained by fitting the test dataset (Pascual, Meeker 
1999). It is maintained that, in accordance with Daniels’ 
theory for Weibull distribution of strength of single 
LI, the parameters of normal distribution of DS  (for 
strength of bundle LIs) are: 1

1 0 1exp( )D
θµ = θ θ -θ  and 

1/2
1((exp( ) 1)/ )D D Cnσ = µ θ - ). As for the parameter of 

cdf (.)
LXF  of local tensile strength mentioned previously 

Dµ  is equal to 263.2 and standard deviation Dσ  is equal 
to 22.95. It is very important to know the maximum of 
stress, which is denoted as ∞σ , for which RDSFLm is 
more than this value with high proability p∞ . Taking 
into account the normal distribution of DS , the fol-
lowing equation is derived: 1( )D Ds p-

∞ ∞= µ -σ Φ . For 
p∞  = 0.99 we have 209.8s∞ = . Calculation of random 

RDSFLm should be made for every pair { s , MC-sample, 

1( , ..., )
CL Lnx x } in order to single out the RDS of the first 

type. In the example considered the calculation was 
made for every s  in the set {380 340 300 280 270} and 
the estimate of cdf of the random RDSFLf and mean 
conditional fatigue curve MS N-  were obtained. This 
is illustrated in figure 2. The dataset of fatigue test result 
(Pascual, Meeker 1999) is also shown. 
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Fig. 2. Mean model fatigue curve (-), two standard deviation 
intervals (▶,◀) for 15 MC trials and test data (+); the censored 
data are noted by *

As mentioned, the processing of the same data was 
performed in (Pascual, Meeker 1999) using the random 
fatigue-limit model (RFLM). It must be noted that the 
random fatigue limit model offered is described in the 
following way: “Y  is the fatigue life and s  is the stress 
level. We model Y  as 0 1log( ) log( )Y S= β +β - γ + ε , 
where 0β  and 1β  are fatigue curve coefficients, γ – is 
the fatigue limit of the specimen, ε  is the error term, 
and log denotes a natural logarithm. Let V = log( γ ), and 
supposing that V has a probability density function (pdf) 

( ; , ) (( ) / ) /V Vf v vγ γ γ γ γµ σ = φ -µ σ σ  with location and 
scale parameters γµ  and γσ , respectively, (.)Vφ  is either 
the standardised smallest extreme value (sev) or normal 
pdf. Let X = log(s) and W = log(y). Assuming that, 
condi tioned on a fixed value of V x< , |W V has a pdf 

| 0 1( ; , , , , )W Vf w x vβ β σ |(1/ ) (( ) / )W V w a= σ φ - σ  with 
location parameter 0 1 log(exp( ) exp( ))a x v= β +β - and 
scale parameter σ . | (.)W Vφ is either the standardised 
sev or normal pdf. For both random values: V and con-
ditional |W V ,the two mentioned pdfs can be used: for 
all four versions of sets { V , W|V } the fitting of the data-
set was performed using the RFLM and ML methods. 

The model considered in this paper in some way cor-
responds to the sev distribution of V and normal distribu-
tion of W|V (in accordance with Daniels’ proof of assimp-
totic normal distribution of strength of bundle of fibers). 
Concerning this case the following estimates are found in 
(Pascual, Meeker 1999): 5.39 and 0.02 for mean and strand-
ard deviation of V. This corresponds to 219.2 and 133 as es-
timates of mean and standard deviation of fatigue limit. 

In the considered dataset there are 2 and 8 right-
censored data for stress levels 280 and 270 correspond-
ingly (25 fatigue tests for every stress level). This corres-
ponds to estimates of the corresponding probabilities 
by values 0.08 and 0.32. In accordance with an assimp-

totic normal distribution of RDSFLm with mean 263.2 
and standard 22.95 deviation (for this dataset the value 

1.7fk = was accepted after fitting fatigue life), the prob-
ability that RDSFLm is higher than stress levels 280 and 
270 is equal to 0.232 and 0.383 correspondingly. The 
same probability calculated by the MC method is estim-
ated to correspond to values 0.133 and 0.400. 

6. Conclusion

The phenomenon of RDS allows to explain the exist-
ence of a fatigue limit. The reasonable fitting of fatigue 
test data of carbon-fiber composite specimen is obtained 
using a simple Markov chain model with states of space 
based on random Daniels’ sequence assuming the de-
crease of local tensile strength of LIs in comparison with 
tensile strength of single LI and some time scale factor. 
The basic specific feature of models of this type is the 
possibility of establishing a relation between the para-
meters of distribution of fatigue life and fatigue limit 
of a specimen and the parameters of tensile strength 
of its components. Although the model is too simple 
and does not provide precise numerical coincidence 
with experimental fatigue test data, it explains the ex-
istence of a fatigue limit and can be used as a nonlin-
ear regression model of an S-N fatigue curve. By using 
this model, fatigue curve changes as a consequence of 
tensile strength distribution parameter changes may be 
predicted. 

The great number of unknown parameters of the 
regression model prevents us (until a successful solution 
of the problem of creating an effective parameter search 
algorithm will be found) from recommending it for 
practical use. However, this model undoubtedly deserves 
a more extensive and careful verification and has a wider 
application than only as a source for training courses in 
higher education institutions. 
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