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Abstract. In order to provide knowledge on the intensity of sound transmission through the whole thickness of 
an isotropic spherical shell its vibrations are resolved on the radius. The vibrations are caused by harmonic sources lo-
cated on the inner surface. The relative vibration speed of the outer surface, which emits radial waves into the environ-
ment, was found. The analytical solution considers the contact interaction between the outer surface of the shell and 
the surrounding liquid. The method, which directs the Laplace transformations, enables to obtain a general solution 
of the wave problem for vibrations on the surface. The solution of the natural vibration equation and the expression of 
relative amplitude at non-resonance and resonance vibrations of the sphere have been investigated with regard to radial 
and circumferential elastic modulus as well as the relative parameters of surface thickness.
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1. Introduction

The feature of employing dynamic characteristics is of 
importance in developing test models for anisotropic 
materials (Rytov 1956; Lasn et al. 2011), along with the 
averaging and homogenization methods (Barski, Muk 
2011) for structurally inhomogeneous materials. In this 
relation, it must be noted that the dynamic solutions in 
the case of a complicated defor mation mechanism of 
materials that takes into account the interaction between 
elastic, piezoelectric, and dielectric properties require 
further modifications of material models (Lagzdin et al. 
2013). They include calculation models for revealing the 
relation between the eigenfrequency spectrum of aniso-
tropic plates and the piezoelectric effect in the case of 
different boundary-value problems (Narita 2003). The 
structural models of a medium, which take into account 
the effect of lamination on the dispersion of wave vibra-
tions or the porosity on their damping, are rather intri-
cate for the calculation of its dynamic behavior because 
of the multi-parametric relations in the search for a so-
lution. Therefore, to deduce the solutions to wave prob-
lems and to select an optimum one from them, in par-
ticular, for the problems of acoustic vibrations in solid 
layers submerged in liquid, calculation approximations 
including nonstandard approaches, such as the genetic 
algorithm, are employed (Daneshjou et al. 2011). 

The study assesses the capability of the operational 
method to implement boundary problem solving and to 
develop calculation models for dynamic characteristics 
of construction elements in which new composite ma-
terials are used. 

A more precise analytical analysis of the relation-
ship among the amplitude, the physical parameters and 
the intrinsic geometry of the solid body requires the use 
of appropriate solutions. However, calculations in the 
case of a combination of homogenous and inhomoge-
neous problems at dynamic loading can be difficult due 
to the anisotropy of elastic properties and the form of the 
region where the solution is given. The use of the Fou-
rier (Brekhovskikh, Goncharov 1982) or Laplace (Lav-
rentyev, Shabat 1973) transformation methods (applying 
a function of a complex variable) provides the possibil-
ity to present the solutions to boundary-value problems 
in simple series in terms of eigenvalues and to extend 
them to the cases of non-stationary wave processes. In 
the present study, a relative change in the amplitude as 
a function of model parameters has been obtained using 
the Laplace method. A non-stationary solution, taking 
into account the theory of functions of a complex vari-
able (Lavrentyev, Shabat 1973), is considered for the case 
of resonant coincidence of the disturbance and the first 
frequencies of waves.

2. Basic relations for the radial vibrations of the 
spherical model

The acoustic effect on the surrounding liquid (or gas-
eous) medium of a spherical shell’s vibrating surface is 
described by the intensity of radiation associated with 
the normal speed of its outer surface. The relation of 
speed caused by the action of a time-sinusoidal source 
of motion of the sphere’s inner surface, for the boundary 
conditions accepted, was found according to the method 
described in (Polyakov 2012a, b). A certain relation also 
exists among the physical material parameters of the 
sphere, the relative thickness of its wall and the indi-
vidual frequencies determined according to the bound-
ary conditions. The relative speed of the outer surface 
of the sphere in the considered boundary problem is 
characterized by the fact that it is obtained without lim-
its to the thickness of the sphere as a shell and, at the 
same time, without the simplifications of the Kirchhoff - 
Love deformation kinematics of vibrations of plates and 
shells. The limitation of the general model is related to 
its one-dimensional approach with regard to the space 
in the tests of vibrations along the radius. However, such 
a simplification enabled to produce approximate formu-
las of the parametric analysis for the selected analytical 
approach. The final expression has been derived for the 
relative speed values of the points on the sphere’s outer 
surface, in this way:
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in which, the imaginary eigenvalues , 1,2,...,k kl =  and 
the dimensionless material parameter v  are connected 
with the frequencies of natural kω  and forced ω  vibra-
tions by the external radius R0 of the sphere, and sound 
speed c according to the following relations:
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The remaining parameters in Eq. (2) express the ra-
tios of sound speeds in the sphere and liquid, their spe-
cific densities, and the radii of the hollow and the outer 
surface, respectively. At given values of these parameters, 
the first of the parameters, which determines the eigen-
frequencies, in (2) is found from the equation below:
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Both real and simple roots of Eq. (3), x = lk, k =1, 
2,.., also depend on the parameter c of the boundary-
value problem and the order m of Bessel functions, which 
give the general solution for the problem considered. The 
relations between the previously mentioned parameters 
and the elastic constants are:
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where the Poisson ratio v^r characterises the transverse 
contraction of the material under tension along the ra-
dius.

Expression (1) for the vibration speed of the sphere’s 
outer surface contains various vibration amplitudes. It 
should also be noted here that, in essence, all coefficients 
of the trigonometric functions are residues in a complex 
representation of speed function (1). It stems from the 
theorem of summation of residues in the entire complex 
plane, including the residue at the infinite point, where 
k→∞, and their sum is zero. According to Lavrentyev, 
Shabat (1973) we have:
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The initial residue is calculated at the pole 0 il = v . 
Assuming that the last residue of the sum (1) at the pole 

k il = ∞ is equal to zero, it can be found according to 
Eq. (5) that:
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In the case of resonance for any mode when 
'kv → l , according to L’Hospital’s rule, the following 

time dependence is obtained:
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where the prime at the summation sign means that 
'k k≠ .

A further analysis of the vibration speed of the 
sphere’s external surface is carried out relative to the pa-
rameters of relation ships (1), (6), and (7). The relative 
speed according to the quasi-static model, when the in-
ertial additive is neglected in the equation of motion, de-
pends on two model parameters m  and e :
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and coincides with the calculations obtained from (1) 
as shown in (Polyakov 2012a) at a great value of the pa-
rameter / rE Eθ >>1.

2.1. Examples of amplitude calculations and the 
approximation of time-dependent relations
The calculated values of the coefficients of exponents in 
series (1), including the free term, are equal to the rela-
tive amplitudes of the vibration modes at r = R0. Their 
sum is equal to the relative value of the vibration speed 
on the sphere’s external surface at the point in time where 
t = 0. At a finite number of terms of sum (1), condition 
(5) can serve as a criterion for accuracy of the choice of 
this number, i.e. it can show the variation of a particu-
lar sum from a zero. Figure 1 illustrates the variation 
in the values of the first four terms at the onset of the 
wave process as a function of parameter b, which shows 
the degree of anisotropy of the sphere’s elastic proper-
ties. The initial value, b = 1, corresponds to an isotropic 
material. The sharp drop in the values of all coefficients 
at b > 50 agrees with the growth in eigenfrequencies, as 
follows from (Polyakov 2012b). It should be noted that, 
at a low degree of anisotropy, neither a forced vibration 
alone, nor the simultaneous account of the first natural 
mode allows us to regard the calculated approximation 
of the vibration amplitude as sufficiently accurate when 
considering the sphere’s thickness, when R1/R0 = 0.50. 
The computation of three natural vibration modes led to 
a variation of sum (1) from zero within the limits of 2% 
with a light liquid surrounding the sphere, when g = 400 
(Fig. 1). In the case of a heavy liquid, when g = 1, this 
difference increased to 5%. The sum of ordinates of all 
four curves, at an arbitrary value of parameter b, shows 
the deviation of the speed from zero in an undisturbed 
state, as assumed in the operational transformation.

Fig. 1. Amplitude of the sphere’s relative speed of external 
surface 0r R=  versus the anisotropy parameter / rE Eθb =  for 
the three modes of natural vibrations and forced vibration with 
the relative frequency 1 / 4v = l  at 1 0/ 0.50R Re = = , 400g =

The influence of the sphere’s wall thickness on the 
resonant speed is related to the current time by means 
of the linear and oscil lating character of the time func-
tions. At a fixed time variable, the dependence ( )v e , in 
the entire spectrum of eigenfrequencies, can be regarded 
as, ( ), 1,2,...kv kl = corresponding to the assigned value 
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of e. The approximation of sum (7) at different values of 
the parameter and fixed time is presented in figure 2.

The change in the amplitude ( )A e  of the first reso-
nant mode at the time point 0 0 /t R c=  allows us to trace 
its monotonic growth, which is not connected with the 
time, but depends only on the growth of the function 

'
1/ ( ( ))Nme l e . The first values of 1( )l e  corresponding 

to the isotropic and anisotropic spheres immersed in a 
light liquid are taken from Polyakov (2012b). The quasi-
static model yields a relation between the vibration am-
plitude and the parameter e for these spheres according 
to Eq. (8).

Fig. 2. The relative amplitude of the resonant mode versus the 
parameter e = R1/R0, at t0 = R0/c and v = l1 for isotropic 
(b = 1 and ν = 0.3) and anisotropic (b = 10) spheres in a 
light liquid ( 400g = ). Dashed lines indicate variations in the 
stationary amplitude according to the quasi-static model

3. Conclusions

Based on the analysis performed on the sphere the am-
plitudes of the forced and resonant vibrations were ob-
tained analytically. As a result, the amplitude of wave 
radiation from the surface of the sphere into the sur-
rounding liquid was evaluated. It was found that lower-
ing the wall thickness through a growth in the parameter 
e = R1/R0, increases the oscil lation amplitude of speed. 
The most significant change of amplitudes by virtue of 
the thick-wall sphere theory is observed in the interval 
e ∈  (0.20–0.75). As a restriction on the highest ampli-
tude in a non-resonant mode, it is possible to use its 
dependence on the parameter e obtained for the quasi-
static model. With an increase in the degree of anisotro-
py of the sphere’s material (through an increase in the b 
parameter) the vibration amplitude decreases more than 
with an order of magnitude (at b > 50) in comparison 
with isotropic materials. The increase in the amplitude 
on t can be described with one element of the complete 
equation (7).
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