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Abstract. In aviation, satellite navigation is generally only used to determine the absolute position of aircraft. 
We show that the signals can also be used for safe relative navigation provided that a data link exists between the two 
aircraft. The link can be used to form a double difference combination of code phase measurements and determine a 
three dimensional baseline vector. The baseline vector is protected by protection levels which determine the 73 10−×  
error bound of the baseline estimation. Thus, the distance vector can be used to perform safe approximation maneuvers 
in instrument weather conditions. We derive the protection level expression and test the baseline vector estimation 
using data from two real satellite navigation receivers on the ground. Moreover, we simulate an intercept mission us-
ing a Spirent GNSS7790 simulator and show that with the derived protection bounds an approximation up to 10 m is 
possible. 
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1. Introduction

Before the creation of the Global Positioning 
System (GPS), navigation in the sea, on the ground or 
in the air was approximate and not very precise. Indeed, 
at the beginning of navigation, humans used fixed stars, 
sun and moon to sail around the earth. The methods 
did not need an infrastructure nor any other equipment, 
apart form clocks; however, they were not accurate and 
robust (for example, a cloud could mask the stars). Since 
then, other techniques have been invented. Some are 

robust but need an infrastructure like the hyperbolic 
navigation system LORAN and some are only applicable 
locally like dead-reckoning. Others are world wide solu-
tions, but are not precise over long distances. Inertial 
sensors for instance can measure the acceleration and 
rotation of an object in three dimensions, but drift over 
time and need to be reset again after a certain period. 
The creation of the American Navstar Global Position-
ing System (GPS, a constellation of satellites, which send 
signals to the user who can then compute his position 
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from the visible satellites) created a revolution by provid-
ing users with accurate navigation information. The pre-
cision is at the order of meters, but can decrease to a few 
millimeters using augmentation systems like Satellite 
Based Augmentation Systems (SBAS) or Ground Based 
Augmentation System (GBAS). Moreover, the position 
can be computed using a small handheld receiver which 
can be taken everywhere. This technology has revolu-
tionized our way of navigating. The impact on aviation is 
huge: planes are now able to determine their position all 
around the world with very high accuracy. Furthermore, 
in order to ensure that the computed position does not 
have an error above a certain threshold, integrity con-
cepts have been developed (e.g. Receiver Autonomous 
Integrity Monitoring (Walter, Enge 1995), which aims 
to detect faulty satellites). 

Commercial air traffic is assumed to multiply twice 
in the next ten years within European airspace. Air-
planes are flying on sky highways, controlled by Air 
Traffic Control (ATC), telling them if they can or cannot 
move to another altitude or another airway. For the mo-
ment, in order to prevent collision, ATC requires min-
imum distances between planes. In the enroute phase, 
these minimums are usually 5nm laterally and 1000 ft 
vertically under RSVM Minima (FAA Order 7110.65). 
This makes the sky safe but limits the number of civil 
aircraft on a given airway. Here, precise knowledge of 
the distance between aircraft would help to decrease the 
interval between them and allow more planes to fly in 
the sky simultaneously. Autonomous and safe formation 
flying of two or more aircraft is thus a very promising 
technology for many future systems that need precise 
and safe baseline measurements. A system which would 
provide such a precise and robust distance vector could 
help to decrease separation and thus increase the traffic 
flow during en-route and approach phases. 

From a military point of view, such a system could 
also be very effective for the interception of a civil plane 
by a fighter. When a civil plane does not respond to con-
trollers, and may be a potential danger (e.g. flying over 
restricted area), a fighter automatically takes off and 
reaches the uncooperative plane. For the time being, the 
fighter detects the plane in instrument weather condi-
tions by using a primary radar. It sends a high frequency 
radio sweep that is reflected back to the radar aerial by 
the civil aircraft. The fighter can then position its target 
and fly towards it. The fact that the plane does not need 
to be cooperative is the main advantage of this method. 
The drawbacks, however, are the weight of the radar and 
its expensive price and maintenance cost. 

The first goal of GPS was to provide absolute posi-
tion all around the world. It can, however, also be used 
to compute the relative position between two objects. If 
the fighter can compute the baseline between itself and 

the civil aircraft, it could then intercept it without visib-
ility. Nevertheless, this data must be precise and reliable, 
which means that navigation integrity is a critical para-
meter to ensure safety. To compute the baseline between 
two objects, a method called Double Difference (Goad 
1996) was developed using measurements between two 
receivers and two satellites. Thus, in the case of a master 
and a rover flying together, the master just has to send 
its GPS measurements to the rover which in turn com-
putes the baseline between them using the double differ-
ence technique. The major advantage of this method lies 
in removing most of the errors inherent to GNSS sig-
nals and thus allowing high accuracy in the computed 
baseline. However, having the baseline is not enough; we 
also need a measure of the quality of said estimate. Thus, 
to ensure integrity, protection levels (PL) for the distance 
vector which have to be compared with maximum allow-
able alarm limits will be required. 

Within the framework of the implementation of 
datalinks, new ways of digital communications between 
aircraft are being developed as part of the European 
NEWSKY project, for example LDACS (Schnell et al. 
2010). It aims is to create datalinks and networks in the 
sky, where planes will be able to exchange data between 
them and with the ground using digital communica-
tions. In this context, pseudoranges could be easily ad-
ded to the messages sent, without the need of specific 
equipment. The double difference method would then be 
a powerful tool for pilots to know reliably where planes 
are located around them. 

2. Code based double differences

One of the standard methods to determine the baseline 
between two GNSS receivers is the formation of 
double differences (DD) to remove correlated errors 
(Cosentino et al. 2006). Since positioning based on 
carrier phase measurements is not well accepted in the 
aviation community, we form the double differences 
based on code measurements. For this, we assume that 
the pseudorange between receiver k and satellite p can 
be modeled as: 

( ) ( ( ) ( )) ( ) ( )p p p
k k iono tropok kt r c t t Q t tρ = + δ − δ + + γ + γ , (1)

where p
kr  being the geometric range; pδ  and kδ  – the 

satellite and receiver clock biases; kQ  – the receiver 
noise; ionoγ  – the error induced by the ionosphere and 

tropoγ  – the error induced by propagation through the 
toposphere. In order to suppress errors correlated with 
one particular satellite such as the clock bias pδ , we 
form the Single Difference (SD) pseudorange, between 
the measurements of two receivers k and m. Because 
of the proximity of our two receivers, we assume for 
the remainder of this section that the ionospheric and 
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tropospheric delays between receiver k and m are the 
same and can also be removed: 

( )p p p p
m km k mkm k kmSD r Q c= ρ −ρ = + + δ − δ   (2)

is the difference between raw pseudoranges of receiv-
ers k and m, for satellite p. It corresponds to the differ-
ence of geometric ranges, plus a term kmQ  of noise and 
multipath, and the remaining receiver clock biases. The 
satellite bias pδ  is common to the two pseudoranges 
and was thus canceled by the difference. We can also 
express the SD as a function of the baseline between the 
two receivers by linking the baseline with differential 
geometric ranges p

kmr . This is analogue to the principles 
of interferometry. 

Figure 1 depicts a single GPS-interferometer inter-
acting with a single satellite. An interferometer takes into 
account the interferences between two coherent waves; 
in our case, we assume that the signal reaching receiver 
k is equal to the signal reaching receiver m plus an addi-
tional signal corresponding to the differential geomet-
ric ranges p

kmr . Let k and m be the phase center of the 
antennas, and b



 the unknown baseline vector between 
them. Knowing that satellite p is at a distance of about 
20 000 km, we can assume that the paths of propagation 

between the satellite and the two antennas are quasi par-
allel. We also know the line of sight vector pe  to satel-
lite p. Figure 1(a) shows us that the Single Difference can 
easily be expressed as the projection of the relative pos-
ition vector onto the line of sight vector to \ satellite p. 

The differential geometric ranges p
kmr  can thus be 

expressed as the scalar product between unit vector pe  
and baseline b



: 

pp
kmr e b= ⋅



 

.         (3)

This means for the single difference equation:

( )
pp

km k mkmSD e b Q c= ⋅ + + δ − δ


 

. (4)

We still have the error due to the receiver’s clock 
bias in this equation. To remove this term, the difference 
between the SD of the same two receivers with another 
satellite q is formed:

( )
qq

km k mkmSD e b Q c= ⋅ + + δ − δ


 

, (5)

then differentiate the two SD Equations yielding a 
double difference: 

( ) ( )

( ) ,

pq p q p p q q
m mkm km km k k

p q pq
km

DD SD SD

e e b Q

= − = ρ −ρ − ρ −ρ =

− ⋅ +
 

  

 
(6)

with ( ) ( )pq p p q q
m mkm k kQ Q Q Q Q= − − −  corresponding to 

the noise and the multipaths of all the receivers. Drop-
ping the vectorial notations and ignoring the noise term, 
the double difference becomes: 

( )
p qpq

kmDD e e b= − ⋅
  

,        (7)

which can be solved using standard least squares meth-
ods. The use of the matrix notation yields the following 
equation: 

prDD H b= ⋅


.      (8)

Note that the geometry matrix H contains the dif-
ference between unit vectors to different satellites for all 
possible satellite combinations. Therefore, this method 
does not have the inherent shortcomings of the GNSS 
position solution. In the GNSS position solution, due 
to the unavailability of measurements from below the 
user, the vertical precision of the solution is less than 
the horizontal. Here due to the differencing this ver-
tical dilution of precision is mitigated. Baseline b can 
then be obtained by using S, the pseudo-inverse of geo-
metry matrix H:

prb S DD= ⋅ ,     (9)

1( )T TS H H H−= . (10)

Fig. 1. a) – GPS interferometer with one satellite. By assuming 
that the two receivers are looking to the satellite p with the 
same angle, we can simply express the baseline as a function of 
the angle and the differential geometric ranges

 
p

kmr ; b) – GPS 
interferometer’s bias with one satellite
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Beyond a certain baseline the assumption that the 
paths of propagation between the satellite and the two an-
tennas are parallel is no longer valid. We analyzed the im-
pact of this hypothesis, by taking into account the angle β  
between the two paths of propagation (Fig. 1b) to com-
pute the remaining error brought by this hypothesis, and 
thus correct our estimated baseline. The baseline is calcu-
lated again using the double difference method, but taking 
into account angle β  between the two paths of propaga-
tion. Baseline b



 can be expressed as 
1 2

1 2b r e r e= ⋅ − ⋅
 

  

.       (11)

The scalar product between baseline b


 and unit 
vector 1e  becomes: 

1 1 2 1 2 1
1 2 1 2( )b e r e r e e r r e e⋅ = ⋅ − ⋅ ⋅ = − ⋅ ⋅

     

      

,    (12)

knowing that 
1

e




 and 
2

e




 are unit vectors: 

2 1

1
1 2 2

cos( );

(1 cos ).

p

p

additional term

e e

b e r r r
−

⋅ = β

⋅ = − + − β

 



 

 



  
(13)

Thus, a remedial term to the former single differ-
ence p

kmSD  must be added, which becomes: 

(1 cos( ))
pp p p

mkmSD r b e+ − β = ⋅


 

. (14)

The double difference then becomes: 

(1 cos ) (1 cos ) ( )pq p qp q p q
m mkmDD r r e e b+ − β − − β = − ⋅



. (15)

To measure the impact of this error, we drew the 
baseline correction (computed using equation 15), as a 
function of the distance for the constellation of midnight 
March the 1st, 2011 as observed at Oberpfaffenhofen, 
Germany. The result is depicted in Figure 2. It is evident 
that the hypothesis of parallel propagation paths created 
at the beginning has a large impact for long baselines. 

3. Error considerations and protection  
of the baseline

In Section 2 we assumed that the ionospheric and tropo-
spheric residuals were eliminated, and that the noise and 
multipath were negligible. We now consider the double 
difference method without ignoring the noise and mul-
tipath and by taking into account the ionosphere and 
troposphere residuals. We can thus reformulate equa-
tion 6 as:

, ,( )pq pq pq km pq kmp q
iono tropokm kmDD e e b Q= − + + δ + δ ,  (16)

where: 

( ) ( )pq p p q q
m mkm k kQ Q Q Q Q= − − −  ,

for the total noise and multipath. 

( ) ( )pq p p q q
m mkm k kδ = δ − δ − δ − δ , 

for the ionospheric and the tropospheric residuals. 

3.1. Receiver noise and multipath
The error behaviour of a single difference code meas-
urement is very similar to the behavior experience when 
using differential GNSS. The uncorrelated errors of two 
measurements propagate as the addition of two Gaus-
sian random variables, i.e. their variances and mean are 
additive. As such, the noise and multipath models used 
in GBAS are applicable for considering a single differ-
ence as well. For the double difference error model, the 
results from the two single difference error considera-
tions need to be propagated again. 

As in GBAS, we treat the multipath and noise er-
ror as having a common Gaussian distribution with 
zero mean and an elevation dependent variance. The 
models were derived by G. A. McGraw et al. (2000) and 
can also be found in the airborne standards for GBAS, 
RTCA DO-253C: 

2 6.9, 0.15 0.43
j

j e
θ

∈σ = +  ,    (17)

where jθ  is the elevation angle (in degrees) for satellite 
j. This sigma represents the airborne contribution of the 
multipath and noise for one receiver-satelite pair. It also 
includes the effects of a Hatch filter (Hatch 1982) with a 
100s smoothing time constant. 

3.2. Ionosphere residuals
The ionosphere layer is a dispersive medium composed 
of ionized gas located in the upper atmosphere. Due to 

Fig. 2. Illustration of the impact of the first hypothesis (saying 
that the paths of propagation between the satellite and the 
two antennas are parallel. The Y semi-log axis represents the 
error introduced in the baseline because of this hypothesis. 
The scenario at stake here is: a rover gets away equally in 
each direction (X, Y, Z) from the master. We can see that this 
hypothesis is true up to a certain distance, depending on the 
wanted precision
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the sun’s radiation, free electrons and ions are generated 
and cause phase advance and group delay to electromag-
netic waves, like GPS signals. This layer is not uniform 
and varies in time and in space. To quantify the spatial 
decorrelation of the ionosphere, a vertical ionospheric 
gradient was introduced by M. Luo et al. (2002). The 
value of this gradient, expressed in mm/km, corresponds 
to the difference of ionospheric delays on the L1 fre-
quency between two points at a distance of one kilo-
meter. Thus, by doing a single difference between two 
receivers, the ionospheric delay is not totally removed, 
in the presence of gradients ionospheric residuals may 
remain. 

Figure 2 displays the impact of the double differ-
ence on the ionosphere. We see that the two single differ-
ences bring each one a ionospheric residual. In order to 
be conservative, we assume that there is no correlation 
between the two ionospheric residuals. 

The nominal ionospheric gradient is assumed to be 
a random variable (Christie et al. 1999) the distribution 
of which is Gaussian. We assume that the Single Differ-
ence operation carried out in our method has nearly the 
same impact on the ionospheric and tropospheric delay 
as the GBAS operation. The residual ionospheric un-
certainty for one satellite is then expressed in equation 
18 (RTCA DO-253C: 2008); it depends on the standard 
deviation of the nominal vertical ionospheric gradient 

vert iono grad− −σ , the satellite elevation angle through the 
obliquity factor FPP and distance airχ  between the two 
flying objects. If carrier phase smoothing is used, we 
also have to add a term representing the code-carrier di-
vergence due to the ionospheric divergence that occurs 
when the planes traverse a ionosphere gradient over one 
smoothing time constant t . 

22
, ( 2 )vert iono grad air airiono SD FPP − − σ = σ χ + tν  .   (18)

The obliquity factor, sometimes also referred to 
as an elevation mapping function, accounts for an in-
creased path length through the ionosphere at low el-
evations. vert iono grad− −σ  represents the gradient of the 
normally distributed ionosphere [mm/km]; its value is 
set as 5 mm/km, which is, according to M. Luo et al. 
(2002), a conservative one sigma value for vertical iono-
sphere spatial decorrelation. As depicted in Figure  2, 
ionospheric residuals depend on airχ  the slant range 
distance between the two aircraft. We are, however, us-
ing two satellites for the double difference instead of one; 
thus another ,res ionoσ  has to be taken into account. As-
suming the two gradients are uncorrelated, the following 
is obtained: 

2 2

,
2

( 2 )

( 2 ) .

pq p
vert iono grad air airkm kmiono DD

q
vert iono grad air airkm

FPP

FPP

− −

− −

   σ = σ χ + tν +   

 σ χ + tν 

 
(19)

3.3. Troposphere residuals
The troposphere is the lowest layer of the atmosphere 
and contains nearly all the moisture present within the 
atmosphere. More importantly, it is a non-dispersive 
medium which also delays electromagnetic signals. 
Tropospheric delay consists of two components: a dry 
component, which is only dependent on dry consti-
tutent gases of the atmosphere and accounts for ap-
proximately 90% of the delay, and a wet component, 
which depends only on the moisture content of the at-
mosphere and accounts for the remaining effect of the 
delay (Leva et al. 2006). 

Similarly to the ionosphere, some tropospheric re-
siduals remain after taking the single difference between 
two receivers due to local variations of the troposphere’s 
composition. These errors can also be modeled as a 
Gaussian random variable. On the contrary to the iono-
sphere, the tropospheric delay residual error depends on 
the height difference between the receivers. Residual tro-
pospheric uncertainty can be expressed as (as defined in 
DO-253C): 

0

2
6 ( )

2
0, 2

10 (1
0.002 sin

h
h

ntropo SD
j

h e
∆− − 

 σ = σ − + θ  

.     (20)

This variance depends on a refractivity uncertainty 
1[ ]n m−σ , a tropospheric scale height 1

0[ ]h m− , the elev-
ation of the satellite [ ]el rad , and the difference in alti-
tude between airborne [ ]h m∆ . For the refractivity un-
certainty and the tropospheric scale height, we used 

33nσ =  and 0 15730h m=  from T. A. Skidmore and 
F. van Graas (2004). As for the ionospheric uncertainty, 
we are using two satellites for the double difference in-
stead of one; we then add the two variances: 

0

0

2
6 ( )2

0
, 2

6 ( )

0
2

10 (1 )
0.002 sin( )

10 (1 .
0.002 sin( )

h
pq h

nkm ptropo DD
km

h
h

n q
km

h e

h e

∆− −

∆− −

 
  σ = σ − +   + θ  

 
 σ − 

+ θ  

(21)

3.4. Protection levels
To simplify the notation, we drop the p, q and m, k in-
dices that were used previously. We assume that the er-
rors described in the previous paragraphs are independ-
ent and uncorrelated. Therefore, the error of the double 
differences can be expressed as 

, ,tropo DD iono DDerror DD Q= + δ + δ .     (22)

The variance of this error is: 

, ,var( ) var( )iono DD tropo DDerror DD Q= + δ + δ . (23)
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We have seen that Q is a sum of four uncorrelated 
random variables with a Gaussian distribution, and we 
can thus directly define its variance: 

2var( ) 4Q ∈= σ ,       (24)

where 2
∈σ  is the variance of the noise and multipath er-

ror for one receiver. We assume that the variance is the 
same for both receivers. 

Using the previously defined variances of the iono-
spheric and tropospheric residuals we can obtain the 
variance of the total range error: 

2 2 2 2
, ,4error DD iono DD tropo DD∈σ = σ + σ + σ .   (25)

With the errors regarded as randomly distributed 
Gaussian variables, now only the impact of the constel-
lation geometry on our variance has to be taken into 
account; therefore, the errors into the position domain 
through the pseudo-inverse S of the geometry matrix H 
(equation 10) have to be mapped. At the end, we multiply 
the result by factor K, representing the desired integrity 
risk (N here represents the number of satellites in view): 

1
2 2 2 2

, ,,
1

(4 )
N

i iono res DD tropo res DDi k
k

PL K S
−

∈
=

= σ + σ + σ∑ .  (26)

Note that, in comparison with GBAS, the protection 
levels will be larger since the double difference consists 
of four individual measurements. We have now obtained 
protection levels for the three dimensions, correspond-
ing to a certain integrity risk dependent on the value of 
K. These protection levels (PL) depend only on the noise, 
the tropospheric and ionospheric residuals, and the geo-
metry of the constellation. In all our simulations, we use 
the factor K = 5.32, which corresponds to an integrity 
risk of 10–7 for each of the three components, yielding 
a total risk of 3 × 10–7. The derived protection levels are 
given an acceptable risk for an approaching aircraft. To 
be meaningful, the coordinate system, in which the PLs 
are computed is centered at the user and the baseline. An 
illustration of the concept is shown in Figure 3. 

4. Static sites

In order to validate the application of the double differ-
ence method, we used the data from two GBAS reference 
receivers at Braunschweig (Dautermann et al. 2011). We 
used the measurements from BR01 and BR02, collected 
during 10 hours of the 17th of December, 2009 (from 
midnight to 10 a.m.). Figure 4 displays the results of our 
computation. It gives the error of the euclidean distance 
(for the three dimensions) over a period of 10 hours. 

It is illustrated in Figures 4 (b) and 4 (c) that the er-
ror is 1.5±  m. According to the distance of 775.49 meters 
between the 2 stations, we can say that the ionospheric 
and tropospheric residuals after the double difference are 

very small. Indeed, at this distance, the ionosphere and 
troposphere between these two points are strongly cor-
related. Among the possible errors the noise of the two 
receivers remains. We can also assume that some ground 
multipath also have an impact on the error (the receivers 
are close to the ground). Moreover, the fact that the two 
objects are static increases the impact of the multipath. 
These assumptions are validated by Figure 4(a) repres-
enting the horizontal error after smoothing of the pseu-
doranges with a time constant of 30 sec. We can indeed 
notice that the error after smoothing is almost divided 
by two. 

Figure 4(b) depicts the error in North-East-Up side. 
It is interesting to notice that, as opposed to the error 
for a standalone positioning, the Up error is not much 
higher than the other ones. For the standalone position 
solver, the vertical error component was much higher 
than the horizontal ones because of the constellation 
geometry. This is not the case for the double difference 
method; the geometry used in the least squares solution 
is a differential geometry which mitigates the effect. Fig-
ure 4(c) illustrates that the protection levels are always 
well above the errors and very conservative. The protec-
tion levels react in the same way as the error, increasing 
when the error increases. Since the two sites are static, 
the main parameter for the computation of the protec-
tion levels is the number of satellites. 

Fig. 3. Protection levels in relative navigation. We can see it 
as an area where the rover is located relatively to the master
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Fig. 4. a) – distance error between two GBAS stations before 
and after smoothing (t = 30 sec). We can notice that the error is 
nearly divided by two; b) – errors in ENU between two GBAS 
stations with smoothing of the pseudoranges (t  = 30 sec). 
The three components all have the same order of magnitude;  
c) – errors and protection levels between 2 GBAS stations. The 
error is smoothed (t = 30 sec); we can notice that the spike (t = 
120 min) correspond to less satellites

5. Intercept mission

One of the special cases of interest is the intercep-
tion scenario. Here, a military fighter jet intercepts a ci-
vilian airplane and escorts it to the landing site. We used a 
dual Spirent GSS7790 constellation simulator to simulate 
the same constellation for both the intercepting aircraft 
(hereinafter referred to as rover) and the aircraft to be in-
tercepted (hereinafter referred to as master). The rover is 
the flying object which wants to define the baseline to ap-
proach and intercept the master. The rover gets closer to 
the master (up to 350 m), then flies alongside escorting 
the master to a landing. At the end they land together. 
Their trajectories are shown in Figure 5. During the sim-
ulations we used the GPS L1 signal, which is appropriate 
for aviation use. We arbitrarily decided to use the GPS 
constellation of the first of March, 2011. The simulations 
began at 22 h 30 min and lasted for about 30 minutes. 

Figure 6 depicts the errors in ENU and the protec-
tion levels in the case where the only error is receiver 
noise. The protection levels react to the loss of satellites 
and to the distance between the two vehicles. Indeed, 
after the approximation phase, we can see that the pro-
tection levels stay the same since the constellation does 
not change and the distance between the rover and the 
master remains constant. Also, as expected, the only er-
ror remaining is the receiver noise, equal to a white noise. 

As explained in section 3.1, during the en-route 
phase, only fuselage multipath impacts the pseudorange 
error. Thus, the aim of the scenario is to depict the effect 
of such a multipath on the baseline computation. 

The first step in our scenario is to define the fuselage 
multipath on the approach trajectory. We did not want to 
use the input model as described in the previous section, 
but rather wanted to see if a bias is still protected by our 
approach. To do so, the approach from A. Hornbostel 
et al. (2010) and A. Steingass et al. (2004) for fuselage 

Fig. 5. Presentation of the simulated trajectory; the rover gets 
closer to the master (up to 350 m) and then flies alongside. 
They at the end land together 

Fig. 6. Errors and protection levels in ENU for the simulated 
trajectory without smoothing. The number of visible satellites 
has been added
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multipath analysis was used. The authors show that the 
dominant component of fuselage multipath corresponds 
to a fixed offset of 1.5 ns (0.45 m) and an attenuation of 
14.2 dB with a random phase. Since the DLR’s spirent is 
composed of two units, we are able to simulate 24 chan-
nels on the L1 band. We have thus added, for each vis-
ible satellite (we take the worst case and assume that all 
the signals are affected by a Multipath), a corresponding 
multipath with the specifications defined above (we sim-
ulate two signals for each satellite: the light of sight and 
the multipath). In our scenario, the multipath appears 
three minutes after the start of approach and is then can-
celed after 15 minutes.  

We can already maintain that the error introduced 
by fuselage multipath is not going to be huge. Indeed, the 
fuselage multipath we have implemented is modeled as a 
fixed offset of 0.45 m with an attenuation of 14.2 dB and 
a random phase. This multipath is furthermore added 
on each satellite’s signal. Due to the double difference, 
the total added bias can reach a maximum of 4 × 0.45 m 
on a receiver. The phase of the multipath is Gaussian, so 
if during the single difference the multipath received by 
the two planes are in phase, they will cancel themselves 
out. However, if their phases are opposite, multipath will 
add up and create a 0.90 m range bias. After the double 
difference the added bias could then be 1.80 m at most 
for the model we plan to use. 

Figure 7 depicts the impact of the multipath that 
we have implemented. First, we can notice that, as ex-
pected, protection levels are not influenced by the mul-
tipath. Also, as expected, the baseline has no influence 
on the errors. Secondly, fuselage multipath do not add 
a much higher than a one meter error on the baseline. 
Figure 7(b) illustrates the distance error between the two 
planes (the error is computed as the euclidean distance 
of the three dimensional errors). We can see that the er-
ror added on the distance is within 1.2–1.6 meters, in our 
worst-case scenario. 

6. Conclusions

Firstly, the double difference method in the case of a 
single constellation (GPS), and a single frequency (L1) 
and its application to aviation were analysed. We chose 
to use only the L1 frequency because for the moment it 
is the only one available within the aeronautical naviga-
tion band. We also chose to use the code measurements 
instead of the carrier phase; indeed, even if the code is 
less precise than the phase, it is more robust and thus 
more suitable to the derivation of protection levels. For 
this reason, it is more accepted in civil aviation. We have 
seen that for one vehicle to compute the baseline to an-
other vehicle, it needs to send to it its GNSS observables. 
For this one of the future datalink concepts like LDACS 
can be used. 

The double difference method is very suitable to 
such an application since differencing removes all errors 
that are common to the receiver and satellite. However, 
care must be taken if errors that are not common to both 
receivers occur. For example, a correlator malfunction in 
one of the receivers could lead to a deformation of the 
autocorrelation peak and a multipath like bias on one 
recever-satellite link. This event can be covered by a re-
ceiver fault hypothesis protection level, similar to the H1 
hypothesis in GBAS. For the exact determination of such 
a bias, detailed investigations of receiver malfunctions 
and their causes are required, which would exceed the 
scope of the investigation presented here. 

We have shown that the protected baseline method 
using the double difference could be suitable for safe 
baseline estimation between datalinked vehicles. Espe-
cially, when combined with concepts like Advanced Re-
ceiver Autonomous Integrity Monitoring (Rippl et al. 
2011), it could contribute to a reduction of separation 
between aircraft in enroute and approach phases without 
requiring an additional costly infrastructure. 
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