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1. introduction

The emergence of low cost carriers (hereafter LCCs) has 
become a global phenomenon, with today virtually all 
travel markets containing at least some low cost carriers 
(Vasigh et al. 2008). Following the deregulation of Aus-
tralia’s domestic airline market in 1990, which permitted 
other airlines to compete with the established carriers 
(Forsyth 2003; Nolan 1996), a number of low cost car-
riers (LCCs) have entered the market. The LCCs now 
have around a 35 per cent market share, with the two 
major incumbent LCCs being Jetstar and Tiger Airways 
(Srisaeng et al. 2014).

Forecasting is considered the most critical area of 
airline management. Airlines forecast demand in order 
to plan the supply of services that are necessary to sat-
isfy that demand (Doganis 2009). Forecasting passenger 
transport demand is, therefore, of critical importance 
for airlines as well as for investors, since investment effi-
ciency is greatly influenced by the accuracy and adequacy 
of the estimation performed (Blinova 2007). Air traffic 
forecasts are one of the key inputs into an airline’s fleet 
planning, route network development, and are also used 
in the preparation of the airline’s annual operating plan 
(Ba-Fail et  al. 2000; Doganis 2009). Furthermore, ana-
lysing and forecasting air travel demand may also assist 
an airline in reducing its risk through an objective evalu-
ation of the demand side of the airline business (Ba-Fail 
et al. 2000). Hence, the sustainable success of any firm is 
closely related to the ability of its management or decision 
makers to foresee the future and define and implement 
appropriate strategies (Sivrikaya, Tunç 2013).

Consequently, the forecasting of LCC demand plays 
an important role in decision making and planning for 
both airlines and airports. In the past, regression models 
were generally used to predict air traffic demand (see, for 
example, Abed et al. 2001; Aderamo 2010; Ba-Fail et al. 
2000; Bhadra 2003; Kopsch 2012; Sivrikaya, Tunç 2013). 
While the regression analysis method is supported by 
statistical theories as producing good estimates (accord-
ing to certain statistical properties), for instance, being 
the best linear unbiased estimator, other approaches such 
as artificial neural network (ANN) have been found to 

be very useful in developing predictive models in other 
fields (Alekseev, Seixas 2009; Tso,Yau 2007).

In recent years, the use of artificial neural networks 
has grown rapidly due to its ability of mapping any lin-
ear or non-linear function and having no associated data 
assumption requirements (Claveria, Torra 2014; Kunt 
et al. 2011; Santos et al. 2014). This technique consists of 
training a computer to learn from substantial data based 
on the structure of human brain, using many simple pro-
cessing elements (Haykin 1999). This approach has now 
been applied to a wide range of disciplines, including 
transportation (Jiménez et al. 2014), banking (Venkatesh 
et al. 2014), energy demand prediction (An et al. 2014; 
Jarimillo-Morán et al. 2013), tourism demand forecast-
ing (Claveria, Torra 2014; Palmer et al. 2006), traffic ac-
cident prediction (Akgüngör, Doğan 2009; Kunt et  al. 
2011), and economics (Choudhary, Haider 2012).

The primary advantage of an ANN over other fore-
casting methods is that the network equally well predicts 
the processes whose regular components have any distri-
bution law, whereas most other forecasting methods are 
best suited for processes that possess a regular compon-
ent that belongs to a specific class (clearly, the method of 
polynomial smoothing is best suited for processes with a 
polynomial regular component, the method of smooth-
ing by Fourier series is best suited for processes with a 
periodic regular component and so forth). A further 
advantage of ANNs is their ability to learn (Aizenberg 
2011; Mrugalski 2013; Sineglazov et al. 2013).

This paper proposes and empirically tests for the 
first time classical linear regression and artificial neural 
network (ANN) models that can be used to forecast Aus-
tralia’s low cost carrier (LCC) quarterly passenger de-
mand, as measured by enplaned passengers and revenue 
passenger kilometres performed (RPKs).

2. Forecasting models for estimating air transport 
passenger demand

While the traditional regression forecasting method has 
its own model assumptions and pre-defined underly-
ing relationships between dependent and independent 
variables (explanatory), such as normal data, linear 
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relationships between dependent and independent vari-
ables, low multicollinearity, which may often be violated 
(Garrido et al. 2014), neural network models are con-
sidered a superior forecasting method since there are no 
prior assumptions about the underlying patterns in the 
data in the model development process (Garrido et al. 
2014; Pan et al. 2013). Furthermore, the major concep-
tual limitation of all regression techniques is the fact that 
the researcher is only able to ascertain relationships, but 
may not be sure about underlying causal mechanisms 
in the model (Aparicio, Aparicio-Ruiz 2002; Tso, Yau 
2007).

In the air transport industry, many services pro-
viders and government regulatory agencies follow the In-
ternational Civil Aviation Organization (ICAO) Manual 
on Air Traffic Forecasting. This manual was originally de-
veloped in 1985 using traditional modelling techniques 
(Alekseev, Seixas 2009). There have been few reported 
studies that have used neural networks in air transport 
demand forecasting. Attempts at using neural network 
modelling applications for estimating air transport de-
mand have been reported by Alekseev and Seixas (2002, 
2009), who developed neural network based forecast-
ing models to predict the annual Brazilian air transport 
passenger demand. In a further study, Chen et al. (2012) 
employed a back-propagation neural network (BPN) to 
improve the forecasting accuracy of air passenger and air 
cargo demand from Japan to Taiwan.

2.1. Classical modelling approach
The standard approach used in air transport modelling 
and forecasting is to define it as a process in which two 
vectors from different domains (a vector built from so-
cio-economic variables and a further vector built from 
air transport system variables) can be combined through 
mapping, so that the target demand forecasting can be 
accomplished (Alekseev, Seixas 2009; Rengaraju, Arasan 
1992).

Multiple linear regression (MLR) is a linear statist-
ical technique that is very useful for predicting the best 
relationship between a dependent variable and several 
independent variables. MLR is based on least squares: 
the model is fit so that the sum of squares of differences 
of observed and predicted values is minimized (Tiryaki, 
Aydın 2014).

A general MLR model can be formulated as per the 
following equation:

0 1 1      i iY X X=β +β +…+β + ε ,  (1)
where Y indicates the dependent variable, Xi represents 
independent variables, βi represents predicted coeffi-
cients, and ε is the error term (Tiryaki, Aydın 2014).

The basic econometric model tested in this study 
uses six inputs: the GDP (Australia’s real Gross Do-
mestic Product per capita), yield (airline yields are used 

as a proxy of average airline fares and are based on Aus-
tralia’s real best discount economy air fares), Australia’s 
unemployment numbers, recorded bed capacities at 
Australia’s tourist accommodation establishments1, and 
two dummy variables. The first dummy variable ex-
plained the impact of the evolving Virgin Australia busi-
ness model from a low cost carrier model to a full service 
network carrier2 (FSNC) on Australia’s low cost carrier 
traffic. Australia’s low cost carriers’ traffic in Australia 
has decreased significantly since 2011 primarily due 
to this transition in Virgin Australia’s business model 
evolution. Thus, the dummy variable reflecting the Vir-
gin Australia changing business model (DUMMY 1) is 
then introduced as a zero for the period from Quarter 1 
(2002) to Quarter 4 (2010) and one from Quarter 1 
(2011) to Quarter 2 (2012).

The second dummy variable accounted for the loss 
of capacity following the collapse of Ansett Australia. At 
the time of its collapse in 2001, Ansett Australia’s do-
mestic Australian market share was 35 per cent (Virgin 
Blue held around 10 per cent and Qantas had a 55 per 
cent market share) (Prideaux 2003). Ansett Australia 
experienced financial problems and was placed into 
receivership on September 14, 2001 (Easdown, Wilms 
2002). The collapse of Ansett Australia had a major im-
pact on the tourism industry, especially in regional areas 
where Ansett’s subsidiaries provided substantial capa-
city. Whilst the other incumbent airlines increased seat-
ing capacity, the demand for seats exceeded supply for 
several months (Prideaux 2003). Australia’s GDP and air 
fares are expressed in real terms to remove the effect of 
inflation (Abed et al. 2001; Ba-Fail et al. 2000). Figure 1 
presents the study’s target time series, and shows Aus-
tralia’s annual low cost carrier enplaned passengers and 
RPKs.

Multiple regression analysis was carried out using 
the Statistical Package for Social Science (SPSS) Version 
22 program.

The two models, PAX and RPKs, offering the best 
fit for Australia’s low cost carrier traffic demand are: (1):

1 2
3 4 5 6

ln  64.09 0.40 1.42
0.48 4.80 0.72 0.14

PAX lnx lnx
lnx lnx x x

= − − + −
+ − −  

(Adj.R2 = 0.969, S.E. = 0.065), and (2):

1 2
3 4 5 6

ln  81.60 0.40 1.58
0.61 6.05 0.65 0.29

RPK lnx lnx
lnx lnx x x

= − − + −
+ − −

(Adj.R2 = 0.956, S.E. = 0.091).

1 Based on Australian tourist accommodation establishments 
with 15 rooms or more.

2 A “full service network carrier” (FSNC) (or “legacy carrier”) 
is an airline that focuses on providing an extensive range of 
both pre-flight and on-board services, including different 
service classes, and connecting flights (Ehmer et al. 2008).
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to perform a particular function by adjusting the values 
of connections (weights) between elements (Kunt et al. 
2011). During the training process, the ANN is able to 
detect complex relationships between the input and out-
put data and perform synthesis (Sineglazov et al. 2013). 
Once the ANN has been trained on the sample of the 
given data-set, it can make estimations through the de-
tection of similar patterns in future data (BaFail 2004).

Table 1. The determinants of Australia’s LCC air travel demand

Independent Variables PAX RPKs

X1 Air fare –0.40 –0.40
SE
t

(0.10)
(–3.98)

(0.14)
(–2.85)

X2 GDP per capita 1.42 1.58
SE
t

(0.32)
(4.47)

(0.45)
(3.54)

X3Unemployment –0.48 –0.61
SE (0.12) (0.17)
t (–4.09) (–3.64)

X4 Bed spaces 4.80 6.05
SE (0.59) (0.82)
t (8.20) (7.37)

X5 Dummy 1 –0.72 –0.65
SE (0.03) (0.48)
t (–20.86) (–13.40)

X6 Dummy 2 –0.14 –0.29
SE (0.06) (0.78)
t

Constant
Adjusted R2

N
F

Durbin Watson (DW)

(–2.45)
–64.09
0.969

42
215.52

1.49

(–3.69)
–81.60
0.956

42
151.07

1.38

ANNs have the ability to detect similarities in in-
puts, despite a particular input not ever being seen pre-
viously. This property provides ANNs with excellent in-
terpolation capabilities, particularly when the input data 
may not be exact, that is, noisy (BaFail 2004).

The most general form of a neural network used in 
forecasting is shown in the following equation:

Y = F [H1 (x), H2 (x) …., Hn(x)] + u , (2)
where, Y is a dependent variable, X is a set of explanat-
ory variables, F and H’s are network functions, and u is 
a model error term (BaFail 2004: 103).

The artificial neural network model is characterized 
by a network of three layers: input, output and hidden 
layers, which resembles the human body’s neural net-
work (Lahmiri 2011; Mehrotra et al. 2000). Neural net-
works consist of a large number of simple processing 
elements called neurons which are organized into sev-
eral layers and interconnected with each other through 

Here PAX stands for passengers enplaned by Aus-
tralia’s domestic LCCs , RPK stands for revenue passen-
ger kilometres performed by Australia’s domestic LCCs, 
x1 is the airfare, x2 is Australia’s real GDP per capita, x3 is 
Australia’s unemployment size, x4 is the recorded bed ca-
pacities at Australia’s tourist accommodation establish-
ments, x5 is the dummy variable (Dummy 1) reflecting 
Virgin Australia’s changing business model and x6 is the 
dummy variable (Dummy 2) accounting for the loss of 
capacity following the collapse of Ansett Australia.

Fig. 1. Australia’s low cost carriers’ annual enplaned passengers 
and revenue passenger kilometres (RPKs): 2002–2013 (the 
data is derived from the Bureau of Infrastructure, Transport 
and Regional Economics (2014); Qantas Airways (2009, 2013), 
Tiger Airways (various), Virgin Australia (various), Virgin 
Blue (various))

The modelling results are summarised in Table 1 
(least square coefficients with standard errors and ab-
solute t-values in parentheses) and shows a high R2 for 
both models, which indicates that the variations between 
the variables are explained well by the models both of 
which have very small standard errors. High “t” val-
ues for the coefficients indicate that these variables are 
stable. The minimum squared error (MSE) of the estim-
ated PAX and RPKs models with respect to the sample 
over Quarter 1 2002 to Quarter 2 2012 are 0.004 and 
0.007, respectively. Attempts to use additional variables 
failed to improve the models’ fit (Alekseev, Seixas 2009). 
Also, a multicollinearity problem was found when in-
cluding Australia’s real GDP and Australia’s population 
size as independent variables in the same model.

2.2. The artificial neural network modelling
2.2.1. Artificial neural network architecture

Artificial neural networks (ANNs) are a method of us-
ing computer software to learn to recognise patterns in 
given data (BaFail 2004; Omidvar, Elliott 1997). ANNs 
capture the inherent information from a considered set 
of variables and learn from the existing data, even when 
noise is present (Garrido et  al. 2014; Kasabov 1996). 
Hence, no formulation or a priori model is required 
(Watts, Worner 2008). A neural network can be trained 



94 P. Srisaeng et al. Forecasting demand for low cost carriers in Australia using an artificial neural...

synaptic weights. Synaptic weights represent the intens-
ity of the interaction between every pair of neurons, and 
the activation functions calculate the potential of every 
neuron (Garrido et al. 2014; Martin del Bío, Sanz Molina 
2006; Tiryaki, Aydın 2014).

The ANN type most widely used for prediction 
is the Multi-Layer Perceptron (MLP) model (Claveria, 
Torra 2014; Garrido et  al. 2014; Tiryaki, Aydın 2014). 
The MLP is a supervised neural network based on the 
original simple perceptron model. Figure 2 presents the 
study’s 3-layer back propagation network (Lahmiri 2011; 
Mourani et  al. 2006). The first layer is the input layer 
which corresponds to the problem input variables with 
one node for each input variable. The second layer is the 
hidden layer used to capture non-linear relationships 
among variables. The third layer is the output layer used 
to provide predicted values (Lahmiri 2011). The number 
of neurons in the input layer is equal to the number of 
input variables or independent variables, and the num-
ber of output neurons is equal to the number of output 
variable(s) or dependent variable(s). The input layer re-
ceives the initial values of the variables; whereas, the out-
put layer shows the results of the network for the input, 
and the hidden layer carries out the operations designed 
to achieve the output. (Tiryaki, Aydın 2014).

Fig. 2. The study’s artificial neural network structure

The output of the MLP can be expressed in math-
ematical form as the following equation:

( )
1 1

   
m n

j ij i j
j i

Y g v f W X
= =

  
= θ + + + β  

    
∑ ∑ . (3)

In Equation (3), Y is the prediction value of depen-
dent variable; Xi is the input value of ith independent 
variable; Wij is the weight of the connection between the 
ith input neuron and jth hidden neuron; βj is the bias 

value of the jth hidden neuron; vj is the weight of the 
connection between the jth hidden neuron and output 
neuron; θ is the bias value of the output neuron; g (.) and 
f (.)are the activation functions of the output and hidden 
neurons respectively (Tiryaki, Aydın 2014) .

2.2.2. Data

Airline passenger traffic can be measured in two ways: 
as the number of passengers carried or according to the 
revenue passenger kilometres performed (RPKs) (Be-
lobaba 2009; Holloway 2008). This study uses Australia’s 
domestic quarterly low cost carrier enplaned passengers 
and revenue passenger kilometres performed (RPKs) 
and develops two artificial neural network (ANN) mod-
els to predict Australia’s domestic low cost carrier de-
mand based on these airline traffic measurements.

The factors that influence air travel demand are 
complex (Doganis 2009; Vasigh et al. 2008). Each factor 
is composed of elements that can stimulate or reduce air 
travel growth. For passenger air traffic demand forecast-
ing purposes, these factors are more conveniently cat-
egorised into two broad groups: those external to the air-
line industry and those within the airline industry itself 
(Ba-Fail et al. 2000). Real GDP and real GDP per capita 
were used to measure the effect of income on Australia’s 
domestic LCC air travel demand.

The impact of Australia’s demographic changes 
was considered through Australia’s population and the 
number of unemployed persons (Tsekeris 2009; Young, 
Wells 2011). Population has a direct effect on the size 
of an air travel market and may cause a bias in the es-
timates if omitted. For instance, a large increase in air 
traffic may reflect a sudden increase in population rather 
than other effects (International Air Transport Associ-
ation 2008). Unemployment rates have also been repor-
ted as being a determinant of air travel demand (Clark 
et al. 2009; Wensveen 2011). Ceteris Paribas, increasing 
levels of employment tend to increase air travel demand. 
Conversely, unemployment tends to depress air travel 
demand (McKnight 2010).

A decrease in the real cost of air travel also posit-
ively influences air traffic growth (Hanlon 2007; Hollo-
way 2008). However, the measurement of the price of air 
travel is normally complicated by the presence of differ-
ent air fare classes offered by airlines (International Civil 
Aviation Organization 2006). Hence, airline passenger 
yields are often used as a proxy for air fares, which can be 
difficult to obtain given the wide use of a variety of, and 
fluctuating number of, discount fares. In the absence of 
changes in other factors influencing air travel demand, 
falling yields will tend to increase traffic. Conversely, 
rising yields will tend to reduce traffic volumes, subject 
to demand elasticities (Doganis 2009).

The growing demand for air travel, associated with 
the rapid growth of LCCs, has assisted tourism growth 
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(Davidson, Ryley 2010). The majority of the demand 
for LCC services is from leisure travellers (Graham 
2006), although Mason (2005) has observed that there 
is an increasing number of business travellers who view 
LCC flights as providing good value, flexible ticket op-
tions, particularly on specific routes where frequency is 
tailored to satisfy business demand. Low-cost carriers 
are significant for the development of weekend, city or 
short-break tourism and are influencing the expansion 
of potential destinations (Graham, Shaw 2008). Visiting 
friends and relatives (VFR) traffic have also fed the LCCs 
(Bieger, Wittmer 2006). The LCCs are, therefore, extend-
ing the range of motivations and frequency of travel for 
private leisure reasons also by the use of their highly ef-
ficient websites, where customers can purchase not only 
a flight ticket, but also book a hotel, hire a car, and buy 
travel insurance (Olipra 2012). Thus, another explanat-
ory variable included in the study relates to tourism at-
tractiveness, which is expressed in terms of the tourist 
accommodation infrastructure, that is the reported bed 
capacity (Tsekeris 2009).

There are also a variety of other factors that may 
influence air travel demand, for example, jet fuel prices 
(Gesell 1993). Sharp increases in world oil prices have 
had important impacts on world air travel demand. In 
addition to the adverse impact on the global economy, 
airlines are often forced to increase air fares to cover the 
higher fuel costs, which often have a detrimental impact 
on air travel demand. This is because increases in oil 
prices result in higher air fares and therefore make leis-
ure travel more expensive (Li 2010).

Furthermore, interest rates influence the balance 
between expenditure and saving (Cook 2007). High in-
terest rates will inhibit economic activity, which can have 
a dampening effect on airline traffic (Wensveen 2011).

Four dummy variables were included in the model-
ling to control for the influence of the change in the busi-
ness model of Virgin Australia from an LCC to a full ser-
vice network carrier (FSNC), the Global Financial Crisis 
(GFC) during the period 2007 to 2009, the collapse of 
Ansett Australia in September 2001 which led to a tem-
porary supply shortage until the second quarter of 2002, 
and the Commonwealth Games held in Melbourne from 
15 to 26 of March 2006.

The availability of a consistent data set allows the 
use of quarterly data for the period 2002 to 2012. The 
data used in the ANN models were sourced from a vari-
ety of sources. Data on Australia’s real GDP and real GDP 
per capita, Australia’s unemployment numbers, popula-
tion size and recorded bed capacities at Australia’s tourist 
accommodation establishments are from the Australia 
Bureau of Statistics (ABS). Australia’s interest rates are 
from the Reserve Bank of Australia (RBA). The airfare 
data are from the Bureau of Infrastructure, Transport and 
Regional Economics (BITRE). The data on Australia’s 

LCC domestic enplaned passengers and revenue passen-
ger kilometres performed (RPKs) are from the Bureau 
of Infrastructure, Transport and Regional Economics 
(BITRE), Qantas Group (Qantas Airways 2009, 2013), 
Tiger Airways (Tiger Airways 2012a–2013g), Virgin 
Australia (Virgin Australia 2011, 2012, 2013) and Vir-
gin Blue (Virgin Blue 2004–2009; Virgin Blue Holdings 
2010) annual reports, and websites. World jet fuel prices 
(expressed in Australian dollars) were sourced from the 
US Energy Information Administration (EIA). To con-
vert collected data from current prices to real or constant 
prices, the consumer price index at 2011 constant prices 
was used (Ba-Fail et al. 2000).

Twelve variables were considered as input variables 
in the two neural network models: Australia’s real GDP, 
Australia’s real GDP per capita, real best discount eco-
nomy air fares, population size, unemployment num-
bers, Australia’s tourist accommodation establishment 
recorded bed capacities, world jet fuel prices, real in-
terest rate, and four dummy variables controlling for 
the influence of the evolving Virgin Australia business 
model from an LCC to a FSNC, the GFC, Ansett Aus-
tralia’s collapse and the Commonwealth Games in Mel-
bourne in March 2006.

2.2.3. Model evaluation

Goodness-of-fit (GOF) statistics are useful when com-
paring results across multiple studies, for examining 
competing models in a single study, and also for provid-
ing feedback on the level of knowledge about the un-
certainty involved in the phenomenon of interest. Five 
measures were used in the present study: mean square 
error (MSE), the root mean square error (RMSE), mean 
absolute error (MAE), mean absolute percentage error 
(MAPE), and correlation coefficient (R) (Kunt et  al. 
2011; Ruiz-Aguilar et al. 2014; Tiryaki, Aydın 2014).

( )2

1

1 
N

i i
i

MSE t td
N =

= −∑ ; (4)

( )2

1

1  
N

i i
i

RMSE t td
N =

= −∑ ; (5)

1

1  
N

i i

ii

t td
MAE

N t=

 −
=  

  
∑ ; (6)

1

1 100
N

i i

ii

t td
MAPE

N t=

  −
= ×  

   
∑ ; (7)

R = 
( )( )

( ) ( )
1

22
1 1

.

N
i ii

N N
i ii i

t t td td

t t td td

=

= =

− −

− −

∑

∑ ∑
, (8)

where ti is the measured values, tdi is the predicted val-
ues, N is the total number of data, and td  is the average 
of the predicted values (Tiryaki, Aydın 2014: 104).
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2.2.4. Training and testing of artificial neural networks

Training is the algorithmic process in the hidden neuron 
where parameter weights can be adjusted appropri-
ately to forecast accurately. Among various training 
algorithms, the back-propagation is the most popular 
algorithm used (Ba-Fail 2004; Claveria, Torra 2014; 
Faraway, Chatfield 1998; Zhang 2004). The basic way of 
using it is to propagate a gradient of the transfer func-
tion back and compare the actual output from output 
units with a target output, then re-adjust weights back-
wards in the network. Weights are adjusted and repeated 
until the mean squared error (MSE) between network 
prediction and actual data is close to the target (Jung, 
Wang 2007; Tiryaki, Aydın 2014; Zhang 2004).

For the purpose of the training process, neural net-
works are separated into three data sets: training is used 
for model fitting and selection, testing is used for evalu-
ating the model’s forecasting ability and validation data 
sets to determine the end point for the training process 
to avoid model over fitting (Alekseev, Seixas 2009; Gar-
rido et al. 2014; Tiryaki, Aydın 2014; Zhang et al. 1998). 
Indeed, over-fitting is a major concern with neural net-
work model building (Remus, O’Connor 2001; Smith, 
Ragsdale 2010), as it can lead to predictions that are bey-
ond the range of the training data (Jeon 2007). In order 
to avoid over-fitting the study’s models, the study’s neural 
network design was carried out using three data sets: 
training, validation, and testing, which were randomly 
divided into a 70:15:15 ratio (Garrido et al. 2014; Kunt 
et  al. 2011; Tiryaki, Aydın 2014). Importantly, a cross 
validation process has to be carried out during the train-
ing phase to avoid over-fitting (Efendigil et al. 2009).

The objective of training is to minimize the global 
error, such as root mean square error (RMSE), mean 
average error (MAE), mean square error (MSE), and 
mean absolute percent error (MAPE). ANNs usually 
commence with randomized weights for all their neur-
ons. This means that they do not know everything and, 
therefore, require training to solve a particular problem 
for which they are intended. When a satisfactory level of 
performance is reached, training is concluded and the 
network uses these weights to decide (Akgüngör, Doğan 
2009).

The training set was used to adapt the synaptic 
weights of the multilayer network, utilising the back 
propagation of estimation errors (Haykin 1999). All 
inputs were inserted into the model and the networks 
trained. During the supervised learning process, an er-
ror function is defined. The synaptic weight values are 
iteratively updated until the provided output is as de-
sired, and the error function descends along the surface 
towards a local minimum. In this study the training pro-
cess stopped when it reached 1,000 epochs or 0.01 error 
tolerance (Efendigil et al. 2009).

To conclude the training phase, a validation data set 
was used. The stopping criterion was the mean square 
error (MSE) of the estimated demand with respect to 
the samples belonging to the validation set. The valid-
ation set was not used in adapting the weight vectors of 
the neural estimator, and was therefore able to detect 
over-fitting in the training phase (Alekseev, Seixas 2009).

For estimating the generalization capacity of the 
ANN forecasting model, a testing set was also used 
(Alekseev, Seixas 2009). Thus, after the training process 
was completed, a testing process was applied to ensure the 
model accuracy was sufficiently reliable. Once the values 
of the training set were determined, a data testing set was 
fed into the model and the output compared to the tar-
get value. The model was accepted if the difference was 
low enough (Garrido et al. 2014). The testing set simulates 
the forecasting of the samples (Alekseev, Seixas 2009). The 
neural network process is summarized in Figure 3.

Fig. 3. The study’s artificial neural network modelling process 
(adapted from Jiang et al. 2004)

2.2.5. Transfer function

The transfer function plays an important role in ANNs 
as it produces the output of the network. The transfer 
function or the activation in the hidden layer combines 
the inputs and weight values to deliver a signal to the 
output (Terzic et al. 2012). This is usually a nonlinear 
function determining neuron output (Garrido et  al. 
2014; Tiryaki, Aydın 2014; Zhang 2003). The transfer or 
activation function typically falls into one of the three 
categories:

 – Linear (or ramp);
 – Threshold;
 – Sigmoid (Terzic et al. 2012).
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The most frequently used transfer function is the 
sigmoid or logistic function as it possesses favourable 
mathematical properties such as montonicity, continu-
ity, and differentiability, which are all important when 
training a neural network with gradient descent (Priddy, 
Keller 2005). An activation function is used as a bound-
ary of output. These boundaries normally change from 
zero to one [0, 1] or from minus one to plus one [–1, +1] 
according to the type of activation function used in the 
ANN (Akgüngör, Doğan 2009).

This study used the sigmoid function in the hidden 
layer and the linear transfer function in the output layer. 
The Levenberg–Marquardt back propagation algorithm 
was used as the training algorithm since its convergence 
is stable and fast (Ruiz-Aguilar et al. 2014). The Neural 
Network tool box 8.0 within the framework of MATLAB 
R2012b (The MathWorks, Inc., USA.) software was used 
for modelling and simulation purposes.

2.2.6. Artificial neural modelling results

Two different ANN models were developed to predict 
air travel demand of Australia’s domestic LCCs. The 
MLP model consisted of three layers having weight 
matrix W, bias vector b and output vector pi where i > 1. 
Figure 4 presents the optimum MLP model for predict-
ing enplaned passenger traffic of Australia’s low cost car-
riers and RPKs. The number of each layer is shown as 
a superscript to the variable of interest. Following Kunt 
et al. (2011), superscripts were used for identifying the 
source (second index) and destination (first index) for 
the various weights and other elements of the network.

Fig. 4. The structure of the final Multi-Layer Perceptron neural 
network model (adapted from Kunt et al. 2011: 358)

The weight matrix connected to input vector p1 was 
labelled as input weight matrix (IW1,1). The elements of 
layer 1, such as its bias, net input and output have su-
perscript 1 to indicate that they were associated with the 
first layer (Kunt et al. 2011).

The matrices of layer weight (LW) and input weight 
(IW) were utilised in the MLP model. Data were ran-
domly divided into three parts: training, testing, and 
validation (Alekseev, Seixas 2009; Kunt et al. 2011). The 
MLP model had 11 inputs, 9 neurons in the hidden layers 
and 1 neuron in the output layer. The output layer of the 

MLP model consisted of one neuron representing Aus-
tralia’s LCCs domestic enplaned passengers or RPKs’ val-
ues, respectively. As noted earlier, 70 per cent of the data 
were used in the training phase. Validation and testing 
data sets each contained 15 per cent of the original data.

Constant input 1 was fed to the bias of each neuron. 
The outputs of each intermediate layer were the inputs 
to the subsequent layer. Hence, layer 2 can be analysed 
as one-layer having 9 inputs, 1 neuron and 1 X 9 weight 
matrix W2. The layer can be treated as a single-layer 
network in its own right. The layers of a MLP play dif-
ferent roles in the prediction process (Kunt et al. 2011). 
The back propagation algorithm was applied to determ-
ine errors and modification for the weight of the hidden 
layer neurons (Akgüngör, Doğan 2009). In this study, p3 
was the network output of interest and has been labelled 
as y (Rumelhart et al. 1986).

The objective of this network is to reduce error e, 
which is the difference between t and pi in which i > 1 
and t is the target vector. The perceptron learning rule 
calculates desired changes (target output) in the weights 
and biases of the perceptron, given input vector p1 and 
the associated error e. Accordingly, the Least Mean 
Square Error (LMS) algorithm adjusts the weights and 
biases of the linear network so as to minimize this mean 
square error (Kunt et al. 2011).

The error at output neuron j at iteration t can be 
calculated by the difference between the desired output 
(target output) and the corresponding real output, ej(t) = 
dj(t) – yj(t) So, Eq. (9) is the total error energy of all out-
put neurons.
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Referring to Figure 4, the output of the k-th neuron 
in the l-th layer can be calculated by Eq. (10) in which 
f2 = log sig and f3 = purelin:

1

1

1
.

ln
l l l

k jk jk
j

y f w y
−

−

=

 
=  

  
∑ , (10)

where 1 ≤ l ≤ 3, nl refers to the number of neurons in 
layer l. For the input layer the following holds l =1, 

1
j jy x= , as for the output layer l = 3, 3

jjy y= .
The mean square error (MSE) of the output can be 

computed by:
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The steepest descent of MSE can be used to update 
weights by Eq. (12) (Yeung et al. 2010):

( ) ( )3 3
31ij ij
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Ew t w t
w
∂+ = − η

∂
. (12)

The MSE performance index for the ANN is a quad-
ratic function as shown in Eq. (11). Hence, the performance 
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index will either have one global minimum, a weak min-
imum or no minimum, depending upon the character-
istics of input vectors (Kunt et al. 2011). Specifically, the 
characteristics of input vectors determine whether or not 
a unique solution exists (Hagan et al. 1996).

The performance of the ANN can be increased if 
relevant information is extracted for feeding the net-
work. Here, the ANN can evaluate correlations of such 
intelligent variables in the original input data space. 
Considering all the information that was available and 
following the extensive review of the literature on the 
determinants of air transport demand, additional input 
variables that were previously identified but not used in 
the econometric analysis due to statistical insignificance 
were considered for feeding the input nodes of the neural 
estimator in conjunction with the existing variables 
(Alekseev, Seixas 2009). Additional vector components 
included: world jet fuel prices, Australia’s interest rates, 
plus 2 dummy variables, reflecting the Commonwealth 
Games in 2006, and the effects of the GFC.

The results of the PAX and RPKs MLP models are 
presented in Table 2 in the form of a prediction table. 
Table 2 shows the prediction level of Australia’s LCCs de-
mand (as measured by RPKs and enplaned passengers, re-
spectively) during training, testing, and validation phases.

Table 2. Prediction of the MLP models

R Model 1 (PAX) Model 2 (RPKs)

Training 0.999 0.999
Validation 0.990 0.998

Test
All

0.992
0.996

0.991
0.998

Figure 5 shows regression plots of the PAX model 
output with respect to training, validation and test-
ing data. The value of the correlation coefficient (R) for 
each phase was also calculated (Kunt et al. 2011). The R 
value was around 0.996 for the total response in the MLP 
model. The solid lines in Figure 5 show a perfect linear fit 
between actual values and estimated values of passengers 
enplaned by Australia’s domestic LCCs. The correlation 
coefficient (R) between actual values and estimated val-
ues is another important indicator to check the validity 
of the model. Importantly, when the R value is close to 
1, forecasting accuracy increases (Tiryaki, Aydın 2014).

The relationship between actual values and estim-
ated values obtained in the RPKs model is shown in 
Figure 6. The R value was around 0.998 for the total re-
sponse in the MLP model.

Training errors, validation errors and testing errors 
were plotted to determine validation errors in the train-
ing phase for both the PAX and RPKs models (Fig. 7). 
The best validation performance in the PAX model oc-
curred at epoch 6 with MSE at 0.0036 (Fig. 7). The plot 

Fig. 5. Regression plots for training, testing and validation 
phases and the total response in the PAX MLP model

Fig. 6. Regression plots for training, testing and validation 
phases and the total response in the RPKs MLP model

in Figure 7 shows the mean squared error commencing 
at a large value and decreasing to a smaller value, which 
indicates that network learning is improving. The plot in 
Figure 7 has three lines, because 42 input and target vec-
tors were randomly divided into three sets (Garrido et al. 
2014; Kunt et al. 2011). 70 per cent of the vectors were 
used for training the network. 15 per cent of the vectors 
were used for validating how well the network model 
was generalised. The training of vectors continues for as 
long as it takes for training to reduce the network error 
on validation vectors. After the network has memorized 
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the training set, training concludes. This technique 
automatically avoids the problem of over-fitting the 
model, which plagues many optimization and learning 
algorithms (Kunt et al. 2011). As previously noted, the 
training process stopped when it reached 1,000 epochs 
or 0.01 error tolerance (Efendigil et al. 2009).

In order to estimate the generalization capacity of 
the neural PAX and RPKs forecasting models, a testing 
set compromising the remaining 15 per cent of the vec-
tors was used. This set was only presented to the neural 
estimator following conclusion of the training; hence, 
it did not participate in the training phase (Alekseev, 
Seixas 2009).

Fig. 7. The validation error in the PAX model

The RPKs model’s training errors, validation errors 
and testing errors were also plotted to find the valida-
tion error in the training phase. The best validation per-
formance in the model occurred at epoch 12 with MSE 
at 0.0013 (Fig. 8). Similar to Figure 7 (PAX model), the 
plot shows a decrease in the MSE of the network which 
indicates that network learning is improving.

Fig. 8. The validation error in the RPKs model

Australia’s actual LCC and estimated enplaned pas-
sengers during Quarter 1 (2002) to Quarter 2 (2012) are 
plotted and shown in Figure 9.

Fig. 9. A comparison of Australia’s actual and estimated LCCs 
enplaned passengers

Australia’s LCCs actual domestic revenue passenger 
kilometres (RPKs) and estimated RPKs from Quarter 1 
(2002) to Quarter 2 (2012) are plotted and shown in Fig-
ure 10, indicating the accuracy of the estimations.

Fig. 10. A comparison of Australia’s LCCs actual and estimated 
RPKs

3. comparison of classical and neural network 
models

This study used a classical linear regression model and 
an artificial neural network (ANN) to predict Australia’s 
LCCs domestic air travel demand. The final results 
showed that the ANN offered improved estimation over 
the linear regression models. Table 3 and Table 4 present 
root mean square error (RMSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE) of 
the estimated models. These results suggest that the con-
structed ANNs are promising for modelling Australia’s 
LCCs air travel demand.

Table 3. The final results of the objective function in Australia’s 
LCC PAX models

Error Classical model ANN

MAE
MSE

0.049
0.004

0.018
0.001

MAPE 0.60% 0.21%
RMSE 0.062 0.034
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Table 4. The final results of the objective function in Australia’s 
LCC RPKs models

Error Classical model ANN

MAE
MSE

0.067
0.007

0.016
0.001

MAPE 0.80% 0.19%
RMSE 0.086 0.024

Figures 11 and 12 compare the actual output val-
ues of Australia’s LCC domestic enplaned passengers and 
revenue passenger kilometres performed (RPKs) with 
the predicted values of the models tested in the study. 
This graphical presentation highlights a considerable 
overlap between the real and predicted outputs from the 
MLR and ANN models, indicating that the models suc-
cessfully predict Australia’s LCC domestic demand with 
a high level of accuracy.

Fig. 11. A comparison of Australia’s MLR and ANN LCCs 
actual and estimated PAX models

Fig. 12. A comparison of MLR and ANN of Australia’s LCCs 
actual and estimated RPKs

4. conclusions

Forecasting is regarded as one of the most critical areas 
of airline management. This study developed models for 
predicting Australia’s low cost carriers’ domestic passenger 
demand, using enplaned passengers and revenue passen-
ger kilometres (RPKs), as the measures of airline traffic 
demand. Two approaches were compared; classical regres-
sion modelling and artificial neural network modelling.

Classical linear regression econometric models 
were developed and the statistical relationship between 
key demand-influencing factors and the corresponding 
level of Australia’s low cost carrier passenger traffic were 
tested. The statistical measures for evaluating the models 
show that the following models are found to be the most 
appropriate models to predict Australia’s domestic LCCs 
air travel demand:

Domestic air travel demand (PAX)

1 1 2 3
4 5 6

  64.09 0.40 1.42 0.48
4.80 0.72 0.14
Y lnx lnx lnx

lnx x x
= − − + − +

− −

Domestic air travel demand (RPKs)

= − − + − +
− −

2 1 2 3
4 5 6

Y  81.60 0.40lnx 1.58lnx 0.61lnx
6.05lnx 0.65x 0.29x ,

where:
 – Y1 is the number of Australia’s LCC passengers;
 – Y2 is Australia’s LCC RPKs;
 – x1 is Australia’s real best economy discount airfare;
 – x2 is Australia’s real GDP per capita;
 – x3 is Australia’s unemployment size;
 – X4 is recorded bed capacities at Australia’s tourist 

accommodation establishments;
 – x5 is the dummy variable (Dummy 1) reflecting 
Virgin Australia’s changing business model;

 – x6 is the dummy variable (Dummy 2) accounting 
for the loss of capacity following the collapse of 
Ansett Australia.

Both models are good in terms of goodness of fit 
measures and MAE, MSE, MAPE and RMSE.

The ANN was applied for training, testing and val-
idation and contained eleven inputs and nine neurons 
in the hidden layer and one neuron in the output layer. 
70% of the data was used in the training phase with the 
remaining data divided into validation (15%) and testing 
(15%). The R-value of Model 1 (PAX) was around 0.996 
and Model 2 (RPKs) was 0.998, respectively.

The comparison of the modelling results shows that 
the performance of the ANNs was superior and offers 
improved estimation over the classical MLR models. 
The use of multiple modelling approaches in this study 
provided a greater understanding of the determinants 
of Australia’s LCCs passenger demand and allowed for 
higher prediction accuracy (ANN) than in the tradi-
tional MLR approach.
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