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Abstract. Efficient and environmentally responsible pesticide application is a major challenge in precision ag-
riculture. Excessive pesticide use in conventional farming increases costs, harms the environment, and poses
health risks. Recent advancements in unmanned aerial vehicles (UAVs) or drones have enabled targeted spray-
ing, yet optimizing multiple-drone route planning and task allocation remains complex due to dynamic field
conditions and limited drone capacity. To address this gap, this study proposes a hybrid optimization ap-
proach that integrates Ant Colony Optimization (ACO), Genetic Algorithm (GA), and 30pt to generate efficient
flight routes for multiple sprayer drones based on plant health levels. In this framework, ACO assigns drones
to target points, GA automatically tunes key ACO parameters, and 30pt enhances route efficiency through lo-
cal optimization. Experimental results show that GA effectively automates the tuning of four key ACO param-
eters and that drone capacity significantly affects route length. The integration of GA, ACO and 30pt further
reduces total route length, achieving up to 13.6% improvement in efficiency compared to traditional ACO.
These findings demonstrate the potential of the proposed method to enhance route efficiency, reduce energy
consumption, shorter mission completion time and offers a practical solution for improving the performance

and sustainability of multiple-drone spraying operations.
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1. Introduction

The use of pesticides can no longer be ruled out and has a
vital role in agriculture because it can improve plant health
and increase crop yields. If agriculture did not use pesti-
cides, fruit production would fall by 78%, vegetables would
drop by 54%, and cereals would fall by 32% (Tudi et al,
2021). The use of pesticides can cause chemical residues
that can impact human health through food and have
the potential to pollute the environment (Liu et al,, 2015;
Scholtz & Bidleman, 2007).

Drone technology may be used in the agriculture in-
dustry to mitigate environmental contamination caused by
pesticide usage and enhance crop yields. Initially, drones
might be used to oversee the condition of plants by using
payloads in the shape of multispectral cameras (Hafeez
et al., 2022; Neupane & Baysal-Gurel, 2021; Reinecke &
Prinsloo, 2017). Cameras installed on drones produce

more analytical and practical image data compared to
satellite data (Bollas et al., 2021).

Furthermore, drones may serve the purpose of apply-
ing pesticides by spraying (Hafeez et al., 2022; Sharma &
Dadheech, 2023). Currently, pesticide spraying is mostly
carried out manually, with the operator personally carrying
a tank containing liquid pesticide. According to the World
Health Organization (WHO), this type of spraying results in
several adverse effects (Mogili & Deepak, 2018). Apart from
that, if it is related to environmental pollution, the manual
spraying method does not pay attention to the dose of
pesticide given to plants, so if too much pesticide is given,
it increases the level of environmental pollution.

The use of drones for pesticide application provides
more benefits when employed over expansive agricultural
land. Using drones has many advantages, including effi-
ciency in the time used (Priandana et al., 2023a) and a
lighter workload for operators. The utilization of multiple

Copyright © 2026 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http.//creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/aviation.2026.25337
mailto:wardanakusumatry@gmail.com
mailto:wardanakusumatry@gmail.com

drones can further augment this benefit, owing to the
constrained capacity of battery resources. The operational
duration of a drone is contingent upon the battery’s ca-
pacity (Boukoberine et al., 2019; Townsend et al., 2020),
thus, pesticide spraying with many drones is more efficient
and effective.

The use of several drone units in one mission is closely
related to planning the flight routes of these drones. In the
field of smart agriculture, the use of Atrtificial Intelligence
(Al) is possible to be applied (Ayundyahrini et al., 2023;
Sharma & Dadheech, 2023), one of which is to increase
operational efficiency (Huerta-Soto et al., 2023) in this
problem. Planning drone flight routes can be done using
the Multiple Traveling Salesman Problem (MTSP) concept,
which is a development of the Traveling Salesman Prob-
lem (TSP) (Nisrina et al., 2022; Shuai et al., 2019). Many
salesmen are involved in visiting several points at once
(Nisrina et al., 2022), taking into account the distance to
be as small as possible (Cheikhrouhou & Khoufi, 2021; Pri-
andana et al, 2023b). Several algorithms can be used to
solve MTSP cases, including Genetic Algorithms (Al-Omeer
& Ahmed, 2019; Wang et al., 2020; Yuan et al., 2013), Arti-
ficial Bee Colony (Dong et al.,, 2019; Pandiri & Singh, 2018;
Venkatesh & Singh, 2015), Particle Swarm Optimization
(Asma & Sadok, 2019; Wei et al., 2020), and Tabu Search
(Farizal et al., 2022; Lee et al., 2020; Venkatachalam et al.,
2018). Apart from only using one type of algorithm, sev-
eral methods have also been developed and combined to
obtain a more optimal solution method, including Hybrid
PSO-ACO (Elloumi et al., 2014), MOEA/D-ACO (Ke et al.,
2013), Hybrid AC-PGA (Jiang et al., 2020) and Hybrid
Memetic-ACO (Decerle et al., 2019).

In this research, a drone flight route planning strategy
was developed using the Ant Colony Optimization (ACO)
algorithm, which is widely used in swarm intelligence and
optimization studies (Grace et al., 2023; Hardhienata et al.,
2024; Huang et al.,, 2020). However, a significant research
gap remains regarding the automatic determination of
optimal ACO parameters. Existing studies (Pranaswi et al,,
2024) show that while UAV-based spraying systems en-
hance deposition and efficiency, the planning of flight
routes and algorithmic parameter optimisation remains
under-explored. Moreover, comparative work (Hiremath
et al., 2024) has demonstrated that although drone spray-
ers improve speed and water/labour efficiency over con-
ventional methods, the process still relies on manual
tuning and route planning, reducing scalability. Finally,
comprehensive reviews (Meesaragandla et al., 2024) point
out that while detection and application technologies with
drones are advancing, the integration of multiple-drone
route planning, health-based plant variation, and algorith-
mic optimisation (ACO+GA+30pt) is rarely addressed. To
address these research gaps, this study proposes a mul-
tiple-drone flight route planning strategy based on plant
health levels, integrating the ACO algorithm with Genetic
Algorithm (GA) parameter optimisation and final refine-
ment using the 30pt algorithm. The GA is employed to
automatically search for the optimal ACO parameter set,
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thereby enhancing route optimisation efficiency, while
30pt further minimises route length. The primary objective
of this research is to develop an intelligent, adaptive, and
efficient route-planning framework for agricultural drones
that reduces processing time, minimises human interven-
tion, and ensures environmentally-responsible pesticide
application. Ultimately, by implementing this system, pol-
lution and environmental degradation caused by excessive
pesticide use can be reduced, while improving farmers’
productivity and land management efficiency.

2. Method

In general, the ecosystem from this research can be il-
lustrated in Figure 1, where there is a drone with a multi-
spectral camera load that is used to monitor plant health
and carry out aerial photography (mapping) of agricultural
land objects. The image from drone mapping is then sub-
jected to several processing processes to produce points
containing information on plant health levels. After obtain-
ing this data, several drone spray-flying routes at these
points were then planned. The spray drone then uses the
resulting route to carry out spraying missions based on
the level of plant health and the distance between points.
The flight route planning for several drones is based on
coordinate point data and plant health levels that already
exist in the dataset. Flight routes are designed using sev-
eral algorithms, namely:
= Ant Colony Optimization (ACO) plays a role in allocat-
ing drones to target points. In this heuristic method,
the initial solution is initialized randomly and then
updated as the iteration progresses (Sharma et al.,
2023). This optimization technique repeatedly applies
new information obtained to create an optimal solu-
tion (Nayyar et al., 2019). Setting initial parameters is
very important for the success of the search process
in this method (Vashishtha et al., 2013).
= Genetic Algorithm (GA) is used to optimize the pa-
rameters of the ACO algorithm (for hyper-parameter
tuning). Several factors influence the performance of

Note: It starts with collecting agricultural land imagery, analyzing plant he-
alth levels, planning flight routes, and ends with spraying operations using
multiple spraying drones.

Figure 1. General description of the research ecosystem
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GA, including population size, crossover probability,
mutation probability (Zhang et al., 2008, 2010), and
number of iterations (Younas et al., 2011). The popu-
lation size in GA also affects the accuracy and speed

of finding the optimal solution (Roeva et al., 2015).
= 30pt, used to optimize routes generated by the
ACO+GA algorithm (local optimization). The working
principle of this algorithm is to delete 3 connections
in a network and connect them in another way, to

find the most optimal results (Dorigo et al., 2006).
The parameter values influence the performance &
convergence rate of the ACO algorithm. The optimal pa-
rameters of ACO are often different for each problem;
there is no general value of a parameter that can be used
to solve different problems. The mathematical formulation

of the ACO algorithm is shown in the Equations below:
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with: p{j — probability of ant k choosing path from node
{ to node j; t; — pheromone concentration at path i ng, =
heuristic function of path ij for ant k (1/distance from i
to j); o — importance of pheromone; B — importance of
heuristic value; At; — the change of pheromone concen-
tration in path ij; p — pheromone evaporation coefficient;
Q - pheromones coefficient; L, — the total of distance for
ant k in one tour; Allowed, = set of cities that has not been
visited by ant k.

Referring to the mathematical equation used in ACO,
four (4) parameters are used as control variables (the val-
ues of which are optimized using GA). These parameters
were chosen because they have a very large influence on
the final value produced. These four parameters are:

= o, pheromone weight;

= B, heuristic value weight;

ACO TSP
To
/

Fitness Value
(Shortest Path)

Candidate Solutions
(Variable for ACO)

b GA .

Note: ACO is used to solve the TSP problem. The fitness value of the shor-
test route is then optimized using GA, resulting in candidate solutions for
four parameters that are used to repeat the iteration process of finding the
shortest route in the TSP problem.

Figure 2. The relationship between ACO and GA in
completing TSP on the strategy being developed

= p, pheromone evaporation coefficient;

= 1, initial pheromone concentration.

In the developed strategy, the solution produced by
ACO functions as a fitness function for GA, which creates
new candidate solutions for ACO in each generation. The
relationship between GA and ACO can be seen in Figure 2.

In solving TSP, not only by carrying out pure ACO
mathematical operations but also by adding the drone
capacity factor (C) to carry pesticides and the need for
pesticides (d) at each target point. As a case example in
this experiment, the capacity of each drone is set to 1 litre;
however, in practical applications, this capacity may vary
depending on the capabilities of the drone used. The need
for pesticides is based on the health level of the plant
at that point, where healthy conditions require 0.05 litre,
unwell conditions require 0.075 litre and unhealthy condi-
tions require 0.1 litre. The required value is a case example;
in practical applications, the pesticide requirement greatly
depends on the type of crop and the pesticide concentra-
tion. A representation of pesticide needs can be seen in
Figure 3.

Healthy UnWell  UnHealthy
|~_ —1
B
0.051 0.075 | 0.11

Figure 3. The dose of pesticide given at each level of plant
health

The strategy developed consists of several interrelated
algorithms. Figure 4 explains that there are several stages
in this task allocation strategy, namely:
= GA Parameter Initialization
1. Determine the values of several parameters, in-
cluding the number of chromosomes, number of
generations, Pc, Pm, and Er, as well as the range of
values for the four optimized ACO parameters. This
value range serves to limit the selection of permitted
values. The four parameters have their range values
(upper limit and lower limit) determined separately.

2. The initial population contains 4 values which are
the values of the four optimized ACO parameters.
This value is generated randomly within a predeter-
mined range.

= ACO Process Details

3. In the ACO algorithm, determine the values of sev-

eral parameters, including the number of ants, num-
ber of iterations, drone capacity, and depot (starting
point). Apart from that, the distribution (matrix) of
distances from the dataset used and the distribution
of heuristic functions for each path are also gener-
ated.
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4. Create a distribution of initial pheromone values for
each path.

5. The probability of each path is calculated. The points
are visited by ants once per iteration. Before mov-
ing, check the remaining fluid first. By paying atten-
tion to the fluid requirements at the next point, if
fluid > O then the next point is selected according
to the Roulette Wheel, whereas if fluid = 0 then the
next point is the depot. The probability of selecting
a point is based on the distance between points, the
remaining fluid carried by the ants, and the fluid re-
quirements at each point. Mathematically, the con-
cept of the relationship between drone capacity and
the opportunity to choose the next route is below:

C <0Othen p{; =0. 4)

6. After the routes have been created, continue by
calculating the total distance (fitness value) of the
routes that have been created. The optimal value
is the route length with the lowest/smallest value.
Equation (5) is the fitness function used in this re-
search:

Fitness = \/(X1 —XZ)2 +(Y1 —Y2)2 . (5)

7. Update the pheromone on each path by paying at-
tention to the evaporation coefficient value.

8. If the iteration has not ended, the process is re-
peated from the starting point until the liquid runs
out. The ACO processing process is repeated up to
a predetermined maximum iteration.

= Integration of ACO and GA

9. If all iterations have been carried out, the optimal
route length is determined. In the database, apart
from the route length value, there is also data on
the combination of parameters that produce this

Genetic Algorithm 1

| ( S )

value. The values of the four ACO parameters that
produce the shortest route length are used as the
fitness function in the GA process.

10. The individual selection process at GA is carried out
using the Roulette Wheel method.

11. The crossover process uses the arithmetic crosso-
ver method. Mathematically, Equation (6) is used to
calculate the 1st child, while Equation (7) is used to
calculate the 2nd child.

child [1] =rx parent[ﬂ + (1 - r) x parent[Z] ; (6)
child [2] =rx parent[ZJ + (1 - r) x parent [1} (7)

12. The GA process loop stops when it reaches its maxi-
mum generation. This method was chosen because
the optimal route length value can change after
reaching convergence in many repetitions without
knowing the number of repetitions.

13. If several route length values and a combination of
4 parameter values have been obtained for each GA
generation, then we search for the shortest route
length for all GA generations. This value is used as
the final value.

= 30pt Application

14. The final results of processing using ACO and GA are
then optimized using the 30pt algorithm. This algo-
rithm performs local optimization by reconnecting 3
routes to obtain more optimal results.

After the concept of the strategy being developed has
been designed, an analysis is then carried out to find out
whether the resulting multiple drones flight route pat-
tern tends to form a particular pattern or spreads evenly
to all points. In the strategy developed, several analyses
were carried out on several parameters used. The analysis
is carried out by focusing on the length of the resulting

Ant Colony Optimization E 3-Opt Algorithm

ACO initialization '

l Specify the parameter range ‘ : | Initialize the pheromone distribution |

i ‘ Generate the initial population randomly ‘ 1

Select and move to the next point according !

to the Roulette Wheel

Choose an individual with the Roulette
Wheel according to the fitness

New populations are generated through :
! crossover, mutation & elitism !

T~

— . ~~ |
_—— Evolutionary T N !

- '
T~ reached? _—
T~
Y

Optimal path output and
parameter combinations

1
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// -\\
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Y
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Figure 4. Flowchart of the developed route planning strategy
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route and the computing time required. The algorithm pa-
rameters tested include:

= Number of generations of the GA algorithm;

= Upper & lower limits of optimized parameter values;

= Drone capacity;

= Number of chromosomes.

Apart from the parameters above, testing was also car-
ried out by comparing the resulting route length when
using the ACO+GA algorithm alone and when adding the
30pt algorithm. The length of the resulting drone flight
route has a higher priority than the required computing
time; this is because the route length is a variable that
has a real influence on its implementation (in this case,
the spraying mission), while the computing time can be
referred to as a process carried out at the ground station.
And requires less effort.

3. Results and discussion

3.1. Spray drone target point dataset

The dataset used is the result of multispectral image pro-
cessing from drone mapping. The resulting drone image
consists of Red, Green, Blue, Near Infrared (NIR), and Red
Edge (RE) bands. From this image, the level of plant health
is processed using the Normalized Difference Vegetation
Index (NDVI) approach, which uses the NIR and RE bands
in its calculations. A classification process was carried out
using the Random Forest algorithm to obtain results with
reasonable accuracy. From this process, an accuracy of 96%
was obtained, which means that the health level resulting
from the NDVI process is in excellent agreement when com-
pared with visual data in the field. Plant health levels are
divided into three types: healthy, less-healthy & unhealthy.
From the image processing results above, a majority
filter process is then carried out, which aims to general-
ize a reference pixel to match specified pixel area. Several
factors influence this process, including the flying height
of the spraying drone and the ability of the nozzle to carry
out spraying (Wardana et al., 2023). Referring to the ex-
perience that has been carried out, the image pixel size
is determined to be 2 x 2 meters, where this value is the
same as the distance between points in the dataset.

High Level of Health Dataset
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Figure 5. Representation of target points in the land object area

A total of 63 target points were used in this research.
As shown in Figure 5, the points are spread equally with
the distance between the points (X-axis and Y-axis) be-
ing 2 meters. Figure 5 is an overlay of target points on
NDVI data. This research uses 2 dataset scenarios: a sce-
nario with one health level category and a scenario with a
combination of health levels. Differences in the number of
categories in one dataset area result in differences in the
amount of pesticide required at each point. The number
of target points in each dataset is in Table 1. The healthy
category is called a high level of health, less healthy is
called a medium level of health, and unhealthy is called a
low level of health.

Table 1. Type of dataset used and number of points

Datasets Category Variations Number of points
1 All categories are low 15
2 All categories are medium 21
3 All categories are high 27
4 All categories (high, medium, 63
and low) — clustered
5 All categories (high, medium, 63
and low) — distributed randomly

In a single health level category, the locations of the
points tend to cluster in one area. It is necessary to analyze
if the dataset points with a combination of health levels
are in randomly distributed locations. The distribution of
points with one health level category are in Figure 6, while
points with a combination of health levels are in Figure 7.
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Figure 6. Point dataset with one health level category: (a) — high (healthy), (b) — medium (less healthy), (c) — low (unhealthy)
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All Categories (Distributed) Dataset
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Figure 7. Point dataset with a combination of health levels: (a) — all categories (clustered),

(b) — all categories (distributed)

3.2. Testing the pattern of the developed
strategy

Before conducting a more in-depth analysis of perfor-
mance and results, the strategy developed is tested to
determine its characteristics. The tendency to form a dis-
tribution pattern of multiple drones flight routes is the
characteristic being tested. Testing was carried out using
a homogeneous drone (same liquid capacity, namely 1 li-
tre), a dataset with the same health category at all points
(requiring the same pesticide dose, namely 0.1 litre/point)
and each point was only visited once. The dataset used
must have the same health category, because if they are
different then there are varying pesticide needs at each
point, resulting in the choice of the next point to be vis-
ited being influenced by pesticide needs. The position of

Mutti-drone Flight Path

280,317 - . -
* L] *

9250376
9280318 -
. .
9280314 // H#
£ i
2 g280.38 P P -
3 - ol Y
2 0260312 . -
E // //
4250311 -
////./ L 2 L ] *
828031 7 A -
2
A
280308 v
|
9280.308 . . . .
852 050 8205 602082 82034 562,066
Langitude (km)
a)
o Mutti-drone Flight Path
9280317
o . . .
920,376
4280315 5
o . o .
9260.31¢ #
g o
2 g280.318 :
® L . . .
2 sanosre 2™
® 9260 312 5, -
3 P l \\
4250311 -
L /-/ Y °
528031 r 5
p
9260308 o
9280.308 . . . .
52 050 8205 682082 82.034 562,066
Langitude km)

<)

the spraying drone depot is varied into 4 locations as in
Figure 8.

From the four tests that were carried out using the
adjusted dataset, the results obtained were that there
were no tests that showed the formation of a particular
flight route pattern. The resulting multiple drones flight
pattern tends to spread evenly throughout the area (not
concentrated at one point), taking into account the dis-
tance between target points and the health level of plants
at the target point. The number of drones used depends
on the number of routes formed. In all the depot varia-
tions above, all of them result in 4 routes being formed,
where one route is indicated by a line from the depot and
back to the depot. In one route there are no more than 10
points visited, this is because the drone capacity is 10 litres
and the requirement is 0.1 litres/point.
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Figure 8. Pattern test results at several depot locations: (a) — Depot 13, (b) — Depot 1, (c) — Depot 18, (d) — Depot 9
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3.3. Algorithm parameters testing

This test was carried out to determine the effect of the
value of a parameter on the length of the resulting route
and the required computing time. Several parameters are
used in ACO and GA, but not all were tested in this study.
The default values for these parameters are in Table 2 and
Table 3. The value of a parameter changes when testing
that parameter and becomes the default when testing
other parameters. Testing was carried out on 5 types of
datasets, the same for each type of test.

Table 2. Default values of ACO parameters

Drone Number of | Maximum Upper Lower
capacity ants iterations limit limit
1 10 10 15 0
Table 3. Default values of GA parameters
Prob- Prob- Maxi- Num-
abilities | abilities | Elitism mum ber of
Genes
of cross- | of muta- rate genera- chromo-
over tion tions somes
0.95 0.05 0.2 100 4 4

This test is aimed at finding out whether the op-
timal route length produced gets smaller as genera-
tions increase. The test was not carried out to know the

Shortest Route per-Generation

Do s N
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Figure 9. Test results on the same dataset with repetition
6 times
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convergence of the processing, because there are random
number factors which result in the convergence being at
an unknown number of generations. Figure 9 shows the
test results on the same dataset with repetition 6 times.
Testing was carried out by determining 1000 generations.
It can be seen that there are no similarities or similari-
ties in the occurrence of convergence. The optimal route
length value is also different for each iteration. Both of
these things are due to the presence of random values in
the processing carried out.

First, we tested the influence of the number of gen-
erations of the GA algorithm. The number of generations
varied at several values, namely 50, 75, 100, 125, 150, and
175. In Figure 10, all scenarios show that the number of
generations does not significantly affect the resulting op-
timal route length, because the number of generations
plays a role in providing additional value combination op-
tions. However, increasing the number of generations pro-
vides more opportunities for solution exploration, which
can improve the robustness of the search process even if
it does not always yield shorter routes. This finding indi-
cates that, beyond a certain point, the search space may
already be sufficiently explored, and additional genera-
tions contribute more to computational cost than to solu-
tion improvement. Therefore, there is a trade-off between
computational efficiency and exploration depth.

In Figure 11, all scenarios show that all datasets have
something in common: the greater the number of genera-
tions, the more computing time increases. This is because
the number of combinations of parameter values tested
increases with the increasing number of generations. In
Figure 11a it can be seen that the difference in the number
of points in the dataset al.o affects the computing time
required, where the greater the number of points, the
greater the computing time. This is because the greater
the number of points, the more points must be visited,
so the route search process takes longer. This rule applies
in Figure 11b, where if the number of points is the same
then the computing time tends to be the same regardless
of the presence of the points. This is because the time
required to calculate the distance is the same wherever
the points are located.
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Second, tests were carried out on the value ranges of
several optimized ACO parameters. There are two param-
eter value limit tests: upper limit and lower limit. Variations
in the upper and lower limit values are used to limit the
values of o, B, and 1y only, while the limit value of p is set
in the range 0-1. The upper limit test is carried out by set-
ting the lower limit value at 0 in all test variations, while
the variations in the upper limit value are in Table 4. The
lower limit test is carried out by setting the upper limit
value at 15 in all test variations, while the variations in the
lower limit value are in Table 5.

Table 4. The upper limit variations of parameter values
(fixed lower limit value)

Test
Parameter
1 2 3 4 5 6
Upper limit 2.5 5 7.5 10 12.5 15
Lower limit 0 0 0 0 0 0

Table 5. The lower limit variations of parameter values (fixed
upper limit value)

Test
Parameter
1 2 3 4 5 6
Upper limit 15 15 15 15 15 15
Lower limit 0 2.5 5 7.5 10 12.5
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It can be seen in Figure 12 and Figure 13 that the up-
per limit and lower limit values do not affect the resulting
route length in both scenarios, because the limit value only
limits the range of values of the four ACO parameters that
are allowed but does not guarantee that the combination
of given parameter values can produce the optimal route
length. This finding suggests that the algorithm'’s perfor-
mance is relatively robust to parameter range variations.
The limited sensitivity indicates that the algorithm effec-
tively searches within the feasible space, and that most of
the parameter combinations already produce near-optimal
solutions. From an optimization perspective, this implies
that the problem’s search space may not be highly de-
pendent on extreme parameter values, and therefore the
tuning process can prioritize computational efficiency over
exhaustive parameter exploration. In practical terms, this
stability is beneficial because it reduces the need for ex-
tensive manual tuning, allowing for faster adaptation of
the algorithm to different datasets with minimal loss of
performance.

In Figure 14 and Figure 15, it can be seen that the limit
value does not affect the required computing time. This is
because the limit value only limits the range of values of
the four ACO parameters allowed, so the number of com-
binations of parameter values tested remains the same
and not depend on the range of values.

From all tests related to this value range limit, the re-
sults were also obtained that the optimal parameter values
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Figure 12. Test results of the influence of variations in the upper limit of parameter values on route length: (a) — Scenario 1,

(b) — Scenario 2
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were within the predetermined range, and the selected
parameter values would not be outside the predetermined
range. Table 6 shows the values of the four parameters
optimized using GA by providing variations in the value
range, where the upper and lower limits are determined.
From this table, it is also known that the standard devia-
tion value of the resulting route length is 0.000817, which
means that all optimal routes have a substantial level of
similarity. It shows that the strategy implemented has tried
to find the optimal value of the existing problems.

Third, testing was carried out on the influence of
drone capacity parameters. The capacity in question is

the amount or volume of liquid the spraying drone car-
ries during the spraying mission. In this test, the drone
capacity was varied at several values, namely 0.5, 1, 1.5, 2,
2.5, and 3 liters. Figure 16 shows the test result of varying
the drone capacity. It can be seen that the length of the
drone flight route has decreased significantly along with
the increase in drone capacity of up to 1.5 liters, which is
almost the same for several capacities after that. This is
because the drone’s with very small capacity results in the
drone often returning to the depot (starting point) to refill
fluids. Calculating the route, length also includes the dis-
tance between the depot and the first point and between
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Table 6. Optimized values of the four parameters with variations in the upper and lower limits

Lower limit | Upper limit T P a B P
0 25 0.36870369 0.313819971 1440121817 2.142662923 0.17961
0 5 3.040266516 0.325078425 2.321777941 3.971156124 0.17196
0 7.5 1.240659437 0.437093518 2.689767562 3.824083364 0.1743
0 10 7.970141034 0.955600333 1.709938365 6.856770226 0.17068
0 125 6.424538014 0.763116957 1.806466078 10.33628833 0.17024
0 15 11.18175915 0.18688572 10.40893785 9.770689417 0.17267
0 15 9.230502567 0.635461959 3.316818196 14.68773977 0.17238
2.5 15 9.853279301 0.454054595 3.107615924 13.37161479 0.17019
5 15 10.26715285 0.651117728 8.885343841 9.156234232 0.17301
7.5 15 10.2828367 0.387444233 12.42935663 9.650476237 0.17507
10 15 14.18232023 0.176870092 12.04693873 10.09250858 0.17051
12.5 15 13.12817475 0.381538866 14.9759603 13.72481318 0.17677
Average 0.17312
Max 0.17961
Min 0.17019
Standard Deviation 0.000817
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Figure 16. Test results of the effect of varying drone capacity on route length: (a) — Scenario 1, (b) — Scenario 2
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Figure 17. Test results of the effect of varying drone capacity on computing time: (a) — Scenario 1, (b) — Scenario 2

the last and the depot. Therefore, the route also increases
as the drone returns to the depot more often.
Computing time tends to decrease as drone capacity
increases, as in Figure 17. This is because the greater the
drone capacity, the program iterations resulting from the
drone’s frequent return to the depot can be reduced.

Fourth, the influence of chromosome number were
tested. The test was carried out by varying the number
of chromosomes to several values, namely 4, 6, 8, 10,
12, and 14. Figure 18 shows the effect of the number of
chromosomes on the route length. In both scenarios, the
number of chromosomes does not significantly influence
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Figure 18. Test results of the effect of variations in chromosome number on route length: (a) — Scenario 1,
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Figure 19. Test results of the effect of variations in chromosome number on computing time: (a) — Scenario 1, (b) — Scenario 2
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Figure 20. The effect of GA on the shortest route for each generation in several parameter variations: (a) — lower limit
parameters, (b) — drone capacity parameters, (c) — chromosome number parameters

the length of the resulting route, because the number of
chromosomes does not influence the determination of the
optimal test parameter values.

Figure 19, shows that the number of chromosomes
greatly influences the computing time required, where
the greater the number of chromosomes, the greater the
time required for data processing. This is because the
more chromosomes there are, the more combinations of
parameter values are tested.

From all test results related to route length (Figures 10,
12, 13, 16, and 18) in scenario 1 (All Figures (a)), it can be
seen that the route length of the less healthy category is

generally greater than the healthy category even though
the number of points is less, this is because the location
of points in the less healthy category tends to be spread
out, several points are located very far from the location
of points in general. On the other hand, in the healthy
category, dots tend to gather in close locations. The un-
healthy category has the smallest route length because the
number of points is the smallest and are located close to
each other. Meanwhile, scenario 2 (All Figures (b)) shows
that having the same number of points does not guaran-
tee that the length of the resulting route is also the same.
This is because the dataset used has three health level



categories whose distribution of points differs. The length
of the route is not only determined based on the distance
between points but is also determined based on the need
for pesticides at each point and the drone’s capacity to
carry pesticide.

Analysis was also carried out on several ACO and GA
parameters. The results showed that increasing genera-
tions of the GA algorithm would result in the drone flight
route length being the same or getting smaller. For exam-
ple, in Figure 20a, where the upper limit variation test was
carried out, Figure 20b carried out drone capacity testing,
and Figure 20c tested the number of chromosomes. All
these tests were done in the same dataset category and
the number of generations was determined to be 100. All
the variations in parameter values show that the optimal
route length produced in the first generation is longer
than in the 100th generation. Some values get smaller in
the second generation but are also found in subsequent
generations. This shows that the process of selecting the
combination of the four ACO parameters is running op-
timally.

3.4. Implementation of the genetic algorithm

Tests were conducted to compare the resulting route
length and the computing time required if the ACO al-
gorithm was used alone and if GA was added. Both test
scenarios were carried out with the same ACO parameter
values: the number of ants was 10, the ACO iteration was
100, and the drone capacity was 1 litre. Testing was car-
ried out on 4 different datasets: all categories (clustered),
all categories (spread), healthy-unhealthy categories and
healthy categories.

The ACO algorithm is tested by manually provid-
ing parameter values which are determined randomly.
Meanwhile, ACO+GA testing is carried out by providing
parameter values automatically according to the strategy
developed.

Optimal ACO results depend on the parameter values,
which can differ from one problem to another. In several
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studies, this value was directly determined manually (Ahuja
& Pahwa, 2005; Gite et al., 2023; Xu et al., 2023; Tamura
et al,, 2021; Zouein & Kattan, 2022), even though it is not
guaranteed to produce optimal values. The use of GA to
optimize ACO parameters has a positive impact; namely,
the process of finding optimal ACO parameters is carried
out more quickly because it is done automatically by GA.
From the testing, in Figure 21(a) it was found that the
route length produced by the ACO+GA algorithm was
shorter than using ACO alone with an efficiency of 10%.
This more efficient result is because the values of the four
parameters optimized with GA have values with a level
of accuracy up to 5 digits after decimal point, while the
parameter values with ACO alone are random integers.
The results obtained in this study are superior to previous
similar research, where a Modified Ant Colony Optimiza-
tion (MACO) combined with Genetic Algorithm (GA) was
applied for autonomous vehicle path planning (Heng &
Rahiman, 2025). In that research, the approach — known
as the Modified Ant Colony Optimization and Genetic Al-
gorithm (MACOGA) — was designed for grid-based envi-
ronments and integrated a probabilistic prediction mecha-
nism to enhance node selection by combining heuristic
and probabilistic factors. This hybrid method improved
both path length and computation time, with the shortest
route achieving an efficiency improvement of up to 6%.
Compared to MACOGA, the ACO+GA model developed in
this study produced a higher route optimization efficiency
of 10%, demonstrating better performance in minimizing
path length, although it required longer computational
time due to the extensive parameter optimization process.
In Figure 21b it can be seen that the computing time re-
quired for ACO+GA takes 100% longer than using ACO
alone. This is because to find the most optimal value in
one processing, ACO+GA must carry out 10,000 repeti-
tions, whereas ACO only has one repetition. However, from
the tests that have been carried out it is found that GA
convergence is in different generations. Convergence is
not at 100% of the number of iterations, but is at around
30-50% of the number of iterations.
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3.5. Implementation of the 30pt algorithm

The routes generated by the ACO+GA algorithm are then
processed using the 30pt algorithm. The 30pt algorithm
functions as a local optimization by swapping the three
edges of the previous route. Testing was carried out on
seven types of datasets with different numbers of drone
target points. In Figure 22, it can be seen that the route
length produced by the ACO+GA algorithm is more sig-
nificant than when the 30pt algorithm was added. Ap-
plying the 30pt algorithm provides efficiency regarding
route length, which is around 4%. The proposed hybrid
ACO-GA-30pt achieved a 13.6% shorter total flight route
than standard ACO and a 10% improvement over ACO-GA.
These quantitative improvements demonstrate the effec-
tiveness of combining global search (GA) with local refine-
ment (30pt). This more efficient result would be benefi-
cial if it were implemented in practice in the field because
fewer batteries would be used, and flight time would also
be more efficient.

An example of the results of developing a multiple
drones coordination strategy can be seen in Figure 23,
where route planning is carried out from the spray drone
target points so that several routes are produced, illus-
trated with different colors between routes. In future im-
plementation, one drone will carry out each route simul-
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Figure 22. Comparison of route lengths generated by the
ACO+GA and ACO+GA+30pt algorithms

Multi-drone Flight Path
T T T 5 T T
. [ 3 3 L ) L] ] .

6280.318 ‘
L] o—eo T e—e

©2680.322

L ] L ] L ]
9280.32 - 4

azE_ ©280.316
'] X
E e S e
W §280.314 \
= \
° —e // £
©280.312 - 4
[} o o e o ]
9280 31 4 = i
o—‘ ]'—.—070 L] o
5280.308 - g
€82.06 €82.064 682.068 662.072 682.076
Longituda (km)
a)

taneously and each point will be visited once by one spray
drone. In the case of Figure 23, 3 drones will be used to
carry out pesticide spraying missions.

4. Conclusions

This study presents an intelligent agricultural management
strategy designed to improve crop yields while minimizing
the environmental impact of excessive pesticide use. The
proposed approach enhances time efficiency in field op-
erations and reduces the workload of rice field cultivators
by employing multiple-drones for precision spraying. The
strategy focuses on optimizing multiple-drone flight routes
based on plant health levels using a combination of Ant
Colony Optimization (ACO), Genetic Algorithm (GA), and
3-Opt local search. Since the performance of ACO depends
heavily on parameter settings that vary across problems,
GA is used to automatically tune these parameters, signifi-
cantly accelerating the optimization process compared to
manual tuning. The integration of 3-Opt further improves
route efficiency through local optimization, resulting in
shorter total flight distances. Experimental results indicate
that the combination of GA, ACO, and 3-Opt enhances
route planning efficiency by up to 13.6% compared with
conventional ACO. Route length is a critical factor in real
spraying missions, as it directly influences drone battery
consumption and overall mission completion time. Com-
bined GA-ACO-30pt can reduces flight distance, expedites
mission time, and mitigates environmental impact. The
proposed framework demonstrates strong potential for
improving the sustainability and effectiveness of drone-
based pesticide spraying in precision agriculture.
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