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Article History:  Abstract. Efficient and environmentally responsible pesticide application is a major challenge in precision ag-
riculture. Excessive pesticide use in conventional farming increases costs, harms the environment, and poses 
health risks. Recent advancements in unmanned aerial vehicles (UAVs) or drones have enabled targeted spray-
ing, yet optimizing multiple-drone route planning and task allocation remains complex due to dynamic field 
conditions and limited drone capacity. To address this gap, this study proposes a hybrid optimization ap-
proach that integrates Ant Colony Optimization (ACO), Genetic Algorithm (GA), and 3Opt to generate efficient 
flight routes for multiple sprayer drones based on plant health levels. In this framework, ACO assigns drones 
to target points, GA automatically tunes key ACO parameters, and 3Opt enhances route efficiency through lo-
cal optimization. Experimental results show that GA effectively automates the tuning of four key ACO param-
eters and that drone capacity significantly affects route length. The integration of GA, ACO and 3Opt further 
reduces total route length, achieving up to 13.6% improvement in efficiency compared to traditional ACO. 
These findings demonstrate the potential of the proposed method to enhance route efficiency, reduce energy 
consumption, shorter mission completion time and offers a practical solution for improving the performance 
and sustainability of multiple-drone spraying operations. 
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1.	Introduction

The use of pesticides can no longer be ruled out and has a 
vital role in agriculture because it can improve plant health 
and increase crop yields. If agriculture did not use pesti-
cides, fruit production would fall by 78%, vegetables would 
drop by 54%, and cereals would fall by 32% (Tudi et al., 
2021). The use of pesticides can cause chemical residues 
that can impact human health through food and have 
the potential to pollute the environment (Liu et al., 2015; 
Scholtz & Bidleman, 2007).

Drone technology may be used in the agriculture in-
dustry to mitigate environmental contamination caused by 
pesticide usage and enhance crop yields. Initially, drones 
might be used to oversee the condition of plants by using 
payloads in the shape of multispectral cameras (Hafeez 
et  al., 2022; Neupane & Baysal-Gurel, 2021; Reinecke & 
Prinsloo, 2017). Cameras installed on drones produce 

more analytical and practical image data compared to 
satellite data (Bollas et al., 2021).

Furthermore, drones may serve the purpose of apply-
ing pesticides by spraying (Hafeez et al., 2022; Sharma & 
Dadheech, 2023). Currently, pesticide spraying is mostly 
carried out manually, with the operator personally carrying 
a tank containing liquid pesticide. According to the World 
Health Organization (WHO), this type of spraying results in 
several adverse effects (Mogili & Deepak, 2018). Apart from 
that, if it is related to environmental pollution, the manual 
spraying method does not pay attention to the dose of 
pesticide given to plants, so if too much pesticide is given, 
it increases the level of environmental pollution.

The use of drones for pesticide application provides 
more benefits when employed over expansive agricultural 
land. Using drones has many advantages, including effi-
ciency in the time used (Priandana et  al., 2023a) and a 
lighter workload for operators. The utilization of multiple 
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drones can further augment this benefit, owing to the 
constrained capacity of battery resources. The operational 
duration of a drone is contingent upon the battery’s ca-
pacity (Boukoberine et  al., 2019; Townsend et  al., 2020), 
thus, pesticide spraying with many drones is more efficient 
and effective.

The use of several drone units in one mission is closely 
related to planning the flight routes of these drones. In the 
field of smart agriculture, the use of Artificial Intelligence 
(AI) is possible to be applied (Ayundyahrini et  al., 2023; 
Sharma & Dadheech, 2023), one of which is to increase 
operational efficiency (Huerta-Soto et  al., 2023) in this 
problem. Planning drone flight routes can be done using 
the Multiple Traveling Salesman Problem (MTSP) concept, 
which is a development of the Traveling Salesman Prob-
lem (TSP) (Nisrina et  al., 2022; Shuai et  al., 2019). Many 
salesmen are involved in visiting several points at once 
(Nisrina et al., 2022), taking into account the distance to 
be as small as possible (Cheikhrouhou & Khoufi, 2021; Pri-
andana et al., 2023b). Several algorithms can be used to 
solve MTSP cases, including Genetic Algorithms (Al-Omeer 
& Ahmed, 2019; Wang et al., 2020; Yuan et al., 2013), Arti-
ficial Bee Colony (Dong et al., 2019; Pandiri & Singh, 2018; 
Venkatesh & Singh, 2015), Particle Swarm Optimization 
(Asma & Sadok, 2019; Wei et al., 2020), and Tabu Search 
(Farizal et al., 2022; Lee et al., 2020; Venkatachalam et al., 
2018). Apart from only using one type of algorithm, sev-
eral methods have also been developed and combined to 
obtain a more optimal solution method, including Hybrid 
PSO-ACO (Elloumi et al., 2014), MOEA/D-ACO (Ke et al., 
2013), Hybrid AC-PGA (Jiang et  al., 2020) and Hybrid 
Memetic-ACO (Decerle et al., 2019).

In this research, a drone flight route planning strategy 
was developed using the Ant Colony Optimization (ACO) 
algorithm, which is widely used in swarm intelligence and 
optimization studies (Grace et al., 2023; Hardhienata et al., 
2024; Huang et al., 2020). However, a significant research 
gap remains regarding the automatic determination of 
optimal ACO parameters. Existing studies (Pranaswi et al., 
2024) show that while UAV-based spraying systems en-
hance deposition and efficiency, the planning of flight 
routes and algorithmic parameter optimisation remains 
under-explored. Moreover, comparative work (Hiremath 
et al., 2024) has demonstrated that although drone spray-
ers improve speed and water/labour efficiency over con-
ventional methods, the process still relies on manual 
tuning and route planning, reducing scalability. Finally, 
comprehensive reviews (Meesaragandla et al., 2024) point 
out that while detection and application technologies with 
drones are advancing, the integration of multiple-drone 
route planning, health-based plant variation, and algorith-
mic optimisation (ACO+GA+3Opt) is rarely addressed. To 
address these research gaps, this study proposes a mul-
tiple-drone flight route planning strategy based on plant 
health levels, integrating the ACO algorithm with Genetic 
Algorithm (GA) parameter optimisation and final refine-
ment using the 3Opt algorithm. The GA is employed to 
automatically search for the optimal ACO parameter set, 

thereby enhancing route optimisation efficiency, while 
3Opt further minimises route length. The primary objective 
of this research is to develop an intelligent, adaptive, and 
efficient route-planning framework for agricultural drones 
that reduces processing time, minimises human interven-
tion, and ensures environmentally-responsible pesticide 
application. Ultimately, by implementing this system, pol-
lution and environmental degradation caused by excessive 
pesticide use can be reduced, while improving farmers’ 
productivity and land management efficiency.

2.	Method

In general, the ecosystem from this research can be il-
lustrated in Figure 1, where there is a drone with a multi-
spectral camera load that is used to monitor plant health 
and carry out aerial photography (mapping) of agricultural 
land objects. The image from drone mapping is then sub-
jected to several processing processes to produce points 
containing information on plant health levels. After obtain-
ing this data, several drone spray-flying routes at these 
points were then planned. The spray drone then uses the 
resulting route to carry out spraying missions based on 
the level of plant health and the distance between points.

The flight route planning for several drones is based on 
coordinate point data and plant health levels that already 
exist in the dataset. Flight routes are designed using sev-
eral algorithms, namely:

	■ Ant Colony Optimization (ACO) plays a role in allocat-
ing drones to target points. In this heuristic method, 
the initial solution is initialized randomly and then 
updated as the iteration progresses (Sharma et  al., 
2023). This optimization technique repeatedly applies 
new information obtained to create an optimal solu-
tion (Nayyar et al., 2019). Setting initial parameters is 
very important for the success of the search process 
in this method (Vashishtha et al., 2013).

	■ Genetic Algorithm (GA) is used to optimize the pa-
rameters of the ACO algorithm (for hyper-parameter 
tuning). Several factors influence the performance of 

Note: It starts with collecting agricultural land imagery, analyzing plant he-
alth levels, planning flight routes, and ends with spraying operations using 
multiple spraying drones.

Figure 1. General description of the research ecosystem
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GA, including population size, crossover probability, 
mutation probability (Zhang et al., 2008, 2010), and 
number of iterations (Younas et al., 2011). The popu-
lation size in GA also affects the accuracy and speed 
of finding the optimal solution (Roeva et al., 2015).

	■ 3Opt, used to optimize routes generated by the 
ACO+GA algorithm (local optimization). The working 
principle of this algorithm is to delete 3 connections 
in a network and connect them in another way, to 
find the most optimal results (Dorigo et al., 2006).

The parameter values influence the performance & 
convergence rate of the ACO algorithm. The optimal pa-
rameters of ACO are often different for each problem; 
there is no general value of a parameter that can be used 
to solve different problems. The mathematical formulation 
of the ACO algorithm is shown in the Equations below:
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with: k
ijp  – probability of ant k choosing path from node 

i to node j; tij – pheromone concentration at path ij; 
kijη  – 

heuristic function of path ij for ant k (1/distance from i 
to j); a  – importance of pheromone; b  – importance of 
heuristic value; Dtij – the change of pheromone concen-
tration in path ij; r – pheromone evaporation coefficient; 
Q – pheromones coefficient; Lk – the total of distance for 
ant k in one tour; Allowedk = set of cities that has not been 
visited by ant k.

Referring to the mathematical equation used in ACO, 
four (4) parameters are used as control variables (the val-
ues of which are optimized using GA). These parameters 
were chosen because they have a very large influence on 
the final value produced. These four parameters are:

	■ α, pheromone weight;
	■ β, heuristic value weight;

	■ ρ, pheromone evaporation coefficient;
	■ τ0, initial pheromone concentration.
In the developed strategy, the solution produced by 

ACO functions as a fitness function for GA, which creates 
new candidate solutions for ACO in each generation. The 
relationship between GA and ACO can be seen in Figure 2.

In solving TSP, not only by carrying out pure ACO 
mathematical operations but also by adding the drone 
capacity factor (C) to carry pesticides and the need for 
pesticides (d) at each target point. As a case example in 
this experiment, the capacity of each drone is set to 1 litre; 
however, in practical applications, this capacity may vary 
depending on the capabilities of the drone used. The need 
for pesticides is based on the health level of the plant 
at that point, where healthy conditions require 0.05 litre, 
unwell conditions require 0.075 litre and unhealthy condi-
tions require 0.1 litre. The required value is a case example; 
in practical applications, the pesticide requirement greatly 
depends on the type of crop and the pesticide concentra-
tion. A representation of pesticide needs can be seen in 
Figure 3.

Figure 3. The dose of pesticide given at each level of plant 
health

The strategy developed consists of several interrelated 
algorithms. Figure 4 explains that there are several stages 
in this task allocation strategy, namely:

	■ GA Parameter Initialization
1.	Determine the values of several parameters, in-

cluding the number of chromosomes, number of 
generations, Pc, Pm, and Er, as well as the range of 
values for the four optimized ACO parameters. This 
value range serves to limit the selection of permitted 
values. The four parameters have their range values 
(upper limit and lower limit) determined separately.

2.	The initial population contains 4  values which are 
the values of the four optimized ACO parameters. 
This value is generated randomly within a predeter-
mined range.

	■ ACO Process Details
3.	In the ACO algorithm, determine the values of sev-

eral parameters, including the number of ants, num-
ber of iterations, drone capacity, and depot (starting 
point). Apart from that, the distribution (matrix) of 
distances from the dataset used and the distribution 
of heuristic functions for each path are also gener-
ated.

Note: ACO is used to solve the TSP problem. The fitness value of the shor-
test route is then optimized using GA, resulting in candidate solutions for 
four parameters that are used to repeat the iteration process of finding the 
shortest route in the TSP problem.

Figure 2. The relationship between ACO and GA in 
completing TSP on the strategy being developed



4 T. K. Wardana et al. Enhancing ant colony optimization with genetic algorithm and 3-Opt for multiple drone spraying path planning...

4.	Create a distribution of initial pheromone values for 
each path.

5.	The probability of each path is calculated. The points 
are visited by ants once per iteration. Before mov-
ing, check the remaining fluid first. By paying atten-
tion to the fluid requirements at the next point, if 
fluid > 0 then the next point is selected according 
to the Roulette Wheel, whereas if fluid = 0 then the 
next point is the depot. The probability of selecting 
a point is based on the distance between points, the 
remaining fluid carried by the ants, and the fluid re-
quirements at each point. Mathematically, the con-
cept of the relationship between drone capacity and 
the opportunity to choose the next route is below:

0     0k
ijC then p< = .	 (4)

6.	After the routes have been created, continue by 
calculating the total distance (fitness value) of the 
routes that have been created. The optimal value 
is the route length with the lowest/smallest value. 
Equation (5) is the fitness function used in this re-
search:

( ) ( )2 2
1 2 1 2Fitness X X Y Y= − + − .	 (5)

7.	Update the pheromone on each path by paying at-
tention to the evaporation coefficient value.

8.	If the iteration has not ended, the process is re-
peated from the starting point until the liquid runs 
out. The ACO processing process is repeated up to 
a predetermined maximum iteration.

	■ Integration of ACO and GA
9.	If all iterations have been carried out, the optimal 

route length is determined. In the database, apart 
from the route length value, there is also data on 
the combination of parameters that produce this 

value. The values of the four ACO parameters that 
produce the shortest route length are used as the 
fitness function in the GA process.

10.	The individual selection process at GA is carried out 
using the Roulette Wheel method.

11.	The crossover process uses the arithmetic crosso-
ver method. Mathematically, Equation (6) is used to 
calculate the 1st child, while Equation (7) is used to 
calculate the 2nd child.

( )1 1 1 2child r parent r parent     = × + − ×      ;	 (6)

( )2 2 1 1 .child r parent r parent     = × + − ×      	 (7)

12.	The GA process loop stops when it reaches its maxi-
mum generation. This method was chosen because 
the optimal route length value can change after 
reaching convergence in many repetitions without 
knowing the number of repetitions.

13.	If several route length values and a combination of 
4 parameter values have been obtained for each GA 
generation, then we search for the shortest route 
length for all GA generations. This value is used as 
the final value.

	■ 3Opt Application
14.	The final results of processing using ACO and GA are 

then optimized using the 3Opt algorithm. This algo-
rithm performs local optimization by reconnecting 3 
routes to obtain more optimal results.

After the concept of the strategy being developed has 
been designed, an analysis is then carried out to find out 
whether the resulting multiple drones flight route pat-
tern tends to form a particular pattern or spreads evenly 
to all points. In the strategy developed, several analyses 
were carried out on several parameters used. The analysis 
is carried out by focusing on the length of the resulting 

Figure 4. Flowchart of the developed route planning strategy
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route and the computing time required. The algorithm pa-
rameters tested include:

	■ Number of generations of the GA algorithm;
	■ Upper & lower limits of optimized parameter values;
	■ Drone capacity;
	■ Number of chromosomes.
Apart from the parameters above, testing was also car-

ried out by comparing the resulting route length when 
using the ACO+GA algorithm alone and when adding the 
3Opt algorithm. The length of the resulting drone flight 
route has a higher priority than the required computing 
time; this is because the route length is a variable that 
has a real influence on its implementation (in this case, 
the spraying mission), while the computing time can be 
referred to as a process carried out at the ground station. 
And requires less effort.

3.	Results and discussion

3.1. Spray drone target point dataset
The dataset used is the result of multispectral image pro-
cessing from drone mapping. The resulting drone image 
consists of Red, Green, Blue, Near Infrared (NIR), and Red 
Edge (RE) bands. From this image, the level of plant health 
is processed using the Normalized Difference Vegetation 
Index (NDVI) approach, which uses the NIR and RE bands 
in its calculations. A classification process was carried out 
using the Random Forest algorithm to obtain results with 
reasonable accuracy. From this process, an accuracy of 96% 
was obtained, which means that the health level resulting 
from the NDVI process is in excellent agreement when com-
pared with visual data in the field. Plant health levels are 
divided into three types: healthy, less-healthy & unhealthy.

From the image processing results above, a majority 
filter process is then carried out, which aims to general-
ize a reference pixel to match specified pixel area. Several 
factors influence this process, including the flying height 
of the spraying drone and the ability of the nozzle to carry 
out spraying (Wardana et al., 2023). Referring to the ex-
perience that has been carried out, the image pixel size 
is determined to be 2 x 2 meters, where this value is the 
same as the distance between points in the dataset.

A total of 63 target points were used in this research. 
As shown in Figure 5, the points are spread equally with 
the distance between the points (X-axis and Y-axis) be-
ing 2 meters. Figure 5 is an overlay of target points on 
NDVI data. This research uses 2 dataset scenarios: a sce-
nario with one health level category and a scenario with a 
combination of health levels. Differences in the number of 
categories in one dataset area result in differences in the 
amount of pesticide required at each point. The number 
of target points in each dataset is in Table 1. The healthy 
category is called a high level of health, less healthy is 
called a medium level of health, and unhealthy is called a 
low level of health.

Table 1. Type of dataset used and number of points

Datasets Category Variations Number of points

1 All categories are low 15
2 All categories are medium 21
3 All categories are high 27
4 All categories (high, medium, 

and low) – clustered
63

5 All categories (high, medium, 
and low) – distributed randomly

63

In a single health level category, the locations of the 
points tend to cluster in one area. It is necessary to analyze 
if the dataset points with a combination of health levels 
are in randomly distributed locations. The distribution of 
points with one health level category are in Figure 6, while 
points with a combination of health levels are in Figure 7.

Figure 5. Representation of target points in the land object area

Figure 6. Point dataset with one health level category: (a) – high (healthy), (b) – medium (less healthy), (c) – low (unhealthy)

a) b) c)
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3.2. Testing the pattern of the developed 
strategy
Before conducting a more in-depth analysis of perfor-
mance and results, the strategy developed is tested to 
determine its characteristics. The tendency to form a dis-
tribution pattern of multiple drones flight routes is the 
characteristic being tested. Testing was carried out using 
a homogeneous drone (same liquid capacity, namely 1 li-
tre), a dataset with the same health category at all points 
(requiring the same pesticide dose, namely 0.1 litre/point) 
and each point was only visited once. The dataset used 
must have the same health category, because if they are 
different then there are varying pesticide needs at each 
point, resulting in the choice of the next point to be vis-
ited being influenced by pesticide needs. The position of 

the spraying drone depot is varied into 4 locations as in 
Figure 8.

From the four tests that were carried out using the 
adjusted dataset, the results obtained were that there 
were no tests that showed the formation of a particular 
flight route pattern. The resulting multiple drones flight 
pattern tends to spread evenly throughout the area (not 
concentrated at one point), taking into account the dis-
tance between target points and the health level of plants 
at the target point. The number of drones used depends 
on the number of routes formed. In all the depot varia-
tions above, all of them result in 4 routes being formed, 
where one route is indicated by a line from the depot and 
back to the depot. In one route there are no more than 10 
points visited, this is because the drone capacity is 10 litres 
and the requirement is 0.1 litres/point.

a) b)

Figure 7. Point dataset with a combination of health levels: (a) – all categories (clustered), 
(b) – all categories (distributed)

a) b)

c) d)

Figure 8. Pattern test results at several depot locations: (a) – Depot 13, (b) – Depot 1, (c) – Depot 18, (d) – Depot 9
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3.3. Algorithm parameters testing
This test was carried out to determine the effect of the 
value of a parameter on the length of the resulting route 
and the required computing time. Several parameters are 
used in ACO and GA, but not all were tested in this study. 
The default values for these parameters are in Table 2 and 
Table 3. The value of a parameter changes when testing 
that parameter and becomes the default when testing 
other parameters. Testing was carried out on 5 types of 
datasets, the same for each type of test.

Table 2. Default values of ACO parameters

Drone 
capacity

Number of 
ants

Maximum 
iterations

Upper  
limit

Lower  
limit

1 10 10 15 0

Table 3. Default values of GA parameters

Prob-
abilities 
of cross-

over

Prob-
abilities 

of muta-
tion

Elitism 
rate

Maxi-
mum 

genera-
tions

Genes

Num-
ber of 

chromo-
somes

0.95 0.05 0.2 100 4 4

This test is aimed at finding out whether the op-
timal route length produced gets smaller as genera-
tions increase. The test was not carried out to know the 

convergence of the processing, because there are random 
number factors which result in the convergence being at 
an unknown number of generations. Figure 9 shows the 
test results on the same dataset with repetition 6 times. 
Testing was carried out by determining 1000 generations. 
It can be seen that there are no similarities or similari-
ties in the occurrence of convergence. The optimal route 
length value is also different for each iteration. Both of 
these things are due to the presence of random values in 
the processing carried out.

First, we tested the influence of the number of gen-
erations of the GA algorithm. The number of generations 
varied at several values, namely 50, 75, 100, 125, 150, and 
175. In Figure 10, all scenarios show that the number of 
generations does not significantly affect the resulting op-
timal route length, because the number of generations 
plays a role in providing additional value combination op-
tions. However, increasing the number of generations pro-
vides more opportunities for solution exploration, which 
can improve the robustness of the search process even if 
it does not always yield shorter routes. This finding indi-
cates that, beyond a certain point, the search space may 
already be sufficiently explored, and additional genera-
tions contribute more to computational cost than to solu-
tion improvement. Therefore, there is a trade-off between 
computational efficiency and exploration depth.

In Figure 11, all scenarios show that all datasets have 
something in common: the greater the number of genera-
tions, the more computing time increases. This is because 
the number of combinations of parameter values tested 
increases with the increasing number of generations. In 
Figure 11a it can be seen that the difference in the number 
of points in the dataset al.o affects the computing time 
required, where the greater the number of points, the 
greater the computing time. This is because the greater 
the number of points, the more points must be visited, 
so the route search process takes longer. This rule applies 
in Figure 11b, where if the number of points is the same 
then the computing time tends to be the same regardless 
of the presence of the points. This is because the time 
required to calculate the distance is the same wherever 
the points are located.Figure 9. Test results on the same dataset with repetition 

6 times

a) b)

Figure 10. Test results of the effect of varying the number of GA algorithm generations on route length: (a) – Scenario 1,  
(b) – Scenario 2
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Second, tests were carried out on the value ranges of 
several optimized ACO parameters. There are two param-
eter value limit tests: upper limit and lower limit. Variations 
in the upper and lower limit values are used to limit the 
values of α, β, and τ0 only, while the limit value of ρ is set 
in the range 0–1. The upper limit test is carried out by set-
ting the lower limit value at 0 in all test variations, while 
the variations in the upper limit value are in Table 4. The 
lower limit test is carried out by setting the upper limit 
value at 15 in all test variations, while the variations in the 
lower limit value are in Table 5.

Table 4. The upper limit variations of parameter values 
(fixed lower limit value)

Parameter
Test

1 2 3 4 5 6

Upper limit 2.5 5 7.5 10 12.5 15
Lower limit 0 0 0 0 0 0

Table 5. The lower limit variations of parameter values (fixed 
upper limit value)

Parameter
Test

1 2 3 4 5 6

Upper limit 15 15 15 15 15 15
Lower limit 0 2.5 5 7.5 10 12.5

It can be seen in Figure 12 and Figure 13 that the up-
per limit and lower limit values do not affect the resulting 
route length in both scenarios, because the limit value only 
limits the range of values of the four ACO parameters that 
are allowed but does not guarantee that the combination 
of given parameter values can produce the optimal route 
length. This finding suggests that the algorithm’s perfor-
mance is relatively robust to parameter range variations. 
The limited sensitivity indicates that the algorithm effec-
tively searches within the feasible space, and that most of 
the parameter combinations already produce near-optimal 
solutions. From an optimization perspective, this implies 
that the problem’s search space may not be highly de-
pendent on extreme parameter values, and therefore the 
tuning process can prioritize computational efficiency over 
exhaustive parameter exploration. In practical terms, this 
stability is beneficial because it reduces the need for ex-
tensive manual tuning, allowing for faster adaptation of 
the algorithm to different datasets with minimal loss of 
performance.

In Figure 14 and Figure 15, it can be seen that the limit 
value does not affect the required computing time. This is 
because the limit value only limits the range of values of 
the four ACO parameters allowed, so the number of com-
binations of parameter values tested remains the same 
and not depend on the range of values.

From all tests related to this value range limit, the re-
sults were also obtained that the optimal parameter values 

a) b)

Figure 11. Test results of the effect of varying the number of generations of the GA algorithm on computing time:  
(a) – Scenario 1, (b) – Scenario 2

a) b)

Figure 12. Test results of the influence of variations in the upper limit of parameter values on route length: (a) – Scenario 1, 
(b) – Scenario 2



Aviation, 2026, 30(1), 1–15 9

were within the predetermined range, and the selected 
parameter values would not be outside the predetermined 
range. Table  6 shows the values of the four parameters 
optimized using GA by providing variations in the value 
range, where the upper and lower limits are determined. 
From this table, it is also known that the standard devia-
tion value of the resulting route length is 0.000817, which 
means that all optimal routes have a substantial level of 
similarity. It shows that the strategy implemented has tried 
to find the optimal value of the existing problems.

Third, testing was carried out on the influence of 
drone capacity parameters. The capacity in question is 

the amount or volume of liquid the spraying drone car-
ries during the spraying mission. In this test, the drone 
capacity was varied at several values, namely 0.5, 1, 1.5, 2, 
2.5, and 3 liters. Figure 16 shows the test result of varying 
the drone capacity. It can be seen that the length of the 
drone flight route has decreased significantly along with 
the increase in drone capacity of up to 1.5 liters, which is 
almost the same for several capacities after that. This is 
because the drone’s with very small capacity results in the 
drone often returning to the depot (starting point) to refill 
fluids. Calculating the route, length also includes the dis-
tance between the depot and the first point and between 

a) b)

Figure 13. Test results of the effect of variations in the lower limit of parameter values on route length: (a) – Scenario 1,  
(b) – Scenario 2

a) b)

Figure 14. Test results of the influence of variations in the upper limit of parameter values on computing time,  
(a) – Scenario 1, (b) – Scenario 2

a) b)

Figure 15. Test results of the effect of variations in the lower limit of parameter values on computing time: (a) – Scenario 1, 
(b) – Scenario 2
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Table 6. Optimized values of the four parameters with variations in the upper and lower limits

Lower limit Upper limit τ0 ρ α β P

0 2.5 0.36870369 0.313819971 1.440121817 2.142662923 0.17961
0 5 3.040266516 0.325078425 2.321777941 3.971156124 0.17196
0 7.5 1.240659437 0.437093518 2.689767562 3.824083364 0.1743
0 10 7.970141034 0.955600333 1.709938365 6.856770226 0.17068
0 12.5 6.424538014 0.763116957 1.806466078 10.33628833 0.17024
0 15 11.18175915 0.18688572 10.40893785 9.770689417 0.17267
0 15 9.230502567 0.635461959 3.316818196 14.68773977 0.17238

2.5 15 9.853279301 0.454054595 3.107615924 13.37161479 0.17019
5 15 10.26715285 0.651117728 8.885343841 9.156234232 0.17301

7.5 15 10.2828367 0.387444233 12.42935663 9.650476237 0.17507
10 15 14.18232023 0.176870092 12.04693873 10.09250858 0.17051

12.5 15 13.12817475 0.381538866 14.9759603 13.72481318 0.17677
Average 0.17312
Max 0.17961
Min 0.17019
Standard Deviation 0.000817

a) b)

Figure 16. Test results of the effect of varying drone capacity on route length: (a) – Scenario 1, (b) – Scenario 2

a) b)

Figure 17. Test results of the effect of varying drone capacity on computing time: (a) – Scenario 1, (b) – Scenario 2

the last and the depot. Therefore, the route also increases 
as the drone returns to the depot more often.

Computing time tends to decrease as drone capacity 
increases, as in Figure 17. This is because the greater the 
drone capacity, the program iterations resulting from the 
drone’s frequent return to the depot can be reduced.

Fourth, the influence of chromosome number were 
tested. The test was carried out by varying the number 
of chromosomes to several values, namely 4, 6, 8, 10, 
12, and 14. Figure 18 shows the effect of the number of 
chromosomes on the route length. In both scenarios, the 
number of chromosomes does not significantly influence 
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the length of the resulting route, because the number of 
chromosomes does not influence the determination of the 
optimal test parameter values.

Figure  19, shows that the number of chromosomes 
greatly influences the computing time required, where 
the greater the number of chromosomes, the greater the 
time required for data processing. This is because the 
more chromosomes there are, the more combinations of 
parameter values are tested.

From all test results related to route length (Figures 10, 
12, 13, 16, and 18) in scenario 1 (All Figures (a)), it can be 
seen that the route length of the less healthy category is 

generally greater than the healthy category even though 
the number of points is less, this is because the location 
of points in the less healthy category tends to be spread 
out, several points are located very far from the location 
of points in general. On the other hand, in the healthy 
category, dots tend to gather in close locations. The un-
healthy category has the smallest route length because the 
number of points is the smallest and are located close to 
each other. Meanwhile, scenario 2 (All Figures (b)) shows 
that having the same number of points does not guaran-
tee that the length of the resulting route is also the same. 
This is because the dataset used has three health level 

a) b)

Figure 18. Test results of the effect of variations in chromosome number on route length: (a) – Scenario 1, 
(b) – Scenario 2

a) b)

Figure 19. Test results of the effect of variations in chromosome number on computing time: (a) – Scenario 1, (b) – Scenario 2

a) b) c)

Figure 20. The effect of GA on the shortest route for each generation in several parameter variations: (a) – lower limit 
parameters, (b) – drone capacity parameters, (c) – chromosome number parameters
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categories whose distribution of points differs. The length 
of the route is not only determined based on the distance 
between points but is also determined based on the need 
for pesticides at each point and the drone’s capacity to 
carry pesticide. 

Analysis was also carried out on several ACO and GA 
parameters. The results showed that increasing genera-
tions of the GA algorithm would result in the drone flight 
route length being the same or getting smaller. For exam-
ple, in Figure 20a, where the upper limit variation test was 
carried out, Figure 20b carried out drone capacity testing, 
and Figure  20c tested the number of chromosomes. All 
these tests were done in the same dataset category and 
the number of generations was determined to be 100. All 
the variations in parameter values show that the optimal 
route length produced in the first generation is longer 
than in the 100th generation. Some values get smaller in 
the second generation but are also found in subsequent 
generations. This shows that the process of selecting the 
combination of the four ACO parameters is running op-
timally.

3.4. Implementation of the genetic algorithm
Tests were conducted to compare the resulting route 
length and the computing time required if the ACO al-
gorithm was used alone and if GA was added. Both test 
scenarios were carried out with the same ACO parameter 
values: the number of ants was 10, the ACO iteration was 
100, and the drone capacity was 1 litre. Testing was car-
ried out on 4 different datasets: all categories (clustered), 
all categories (spread), healthy-unhealthy categories and 
healthy categories.

The ACO algorithm is tested by manually provid-
ing parameter values which are determined randomly. 
Meanwhile, ACO+GA testing is carried out by providing 
parameter values automatically according to the strategy 
developed.

Optimal ACO results depend on the parameter values, 
which can differ from one problem to another. In several 

studies, this value was directly determined manually (Ahuja 
& Pahwa, 2005; Gite et al., 2023; Xu et al., 2023; Tamura 
et al., 2021; Zouein & Kattan, 2022), even though it is not 
guaranteed to produce optimal values. The use of GA to 
optimize ACO parameters has a positive impact; namely, 
the process of finding optimal ACO parameters is carried 
out more quickly because it is done automatically by GA. 
From the testing, in Figure  21(a) it was found that the 
route length produced by the ACO+GA algorithm was 
shorter than using ACO alone with an efficiency of 10%. 
This more efficient result is because the values of the four 
parameters optimized with GA have values with a level 
of accuracy up to 5 digits after decimal point, while the 
parameter values with ACO alone are random integers. 
The results obtained in this study are superior to previous 
similar research, where a Modified Ant Colony Optimiza-
tion (MACO) combined with Genetic Algorithm (GA) was 
applied for autonomous vehicle path planning (Heng & 
Rahiman, 2025). In that research, the approach – known 
as the Modified Ant Colony Optimization and Genetic Al-
gorithm (MACOGA) – was designed for grid-based envi-
ronments and integrated a probabilistic prediction mecha-
nism to enhance node selection by combining heuristic 
and probabilistic factors. This hybrid method improved 
both path length and computation time, with the shortest 
route achieving an efficiency improvement of up to 6%. 
Compared to MACOGA, the ACO+GA model developed in 
this study produced a higher route optimization efficiency 
of 10%, demonstrating better performance in minimizing 
path length, although it required longer computational 
time due to the extensive parameter optimization process. 
In Figure 21b it can be seen that the computing time re-
quired for ACO+GA takes 100% longer than using ACO 
alone. This is because to find the most optimal value in 
one processing, ACO+GA must carry out 10,000 repeti-
tions, whereas ACO only has one repetition. However, from 
the tests that have been carried out it is found that GA 
convergence is in different generations. Convergence is 
not at 100% of the number of iterations, but is at around 
30–50% of the number of iterations.

a) b)

Figure 21. Comparison of ACO and ACO+GA algorithms strategy: (a) – route length, (b) – computing time



Aviation, 2026, 30(1), 1–15 13

3.5. Implementation of the 3Opt algorithm
The routes generated by the ACO+GA algorithm are then 
processed using the 3Opt algorithm. The 3Opt algorithm 
functions as a local optimization by swapping the three 
edges of the previous route. Testing was carried out on 
seven types of datasets with different numbers of drone 
target points. In Figure 22, it can be seen that the route 
length produced by the ACO+GA algorithm is more sig-
nificant than when the 3Opt algorithm was added. Ap-
plying the 3Opt algorithm provides efficiency regarding 
route length, which is around 4%. The proposed hybrid 
ACO–GA–3Opt achieved a 13.6% shorter total flight route 
than standard ACO and a 10% improvement over ACO–GA. 
These quantitative improvements demonstrate the effec-
tiveness of combining global search (GA) with local refine-
ment (3Opt). This more efficient result would be benefi-
cial if it were implemented in practice in the field because 
fewer batteries would be used, and flight time would also 
be more efficient.

An example of the results of developing a multiple 
drones coordination strategy can be seen in Figure  23, 
where route planning is carried out from the spray drone 
target points so that several routes are produced, illus-
trated with different colors between routes. In future im-
plementation, one drone will carry out each route simul-

taneously and each point will be visited once by one spray 
drone. In the case of Figure 23, 3 drones will be used to 
carry out pesticide spraying missions.

4.	Conclusions

This study presents an intelligent agricultural management 
strategy designed to improve crop yields while minimizing 
the environmental impact of excessive pesticide use. The 
proposed approach enhances time efficiency in field op-
erations and reduces the workload of rice field cultivators 
by employing multiple-drones for precision spraying. The 
strategy focuses on optimizing multiple-drone flight routes 
based on plant health levels using a combination of Ant 
Colony Optimization (ACO), Genetic Algorithm (GA), and 
3-Opt local search. Since the performance of ACO depends 
heavily on parameter settings that vary across problems, 
GA is used to automatically tune these parameters, signifi-
cantly accelerating the optimization process compared to 
manual tuning. The integration of 3-Opt further improves 
route efficiency through local optimization, resulting in 
shorter total flight distances. Experimental results indicate 
that the combination of GA, ACO, and 3-Opt enhances 
route planning efficiency by up to 13.6% compared with 
conventional ACO. Route length is a critical factor in real 
spraying missions, as it directly influences drone battery 
consumption and overall mission completion time. Com-
bined GA-ACO-3Opt can reduces flight distance, expedites 
mission time, and mitigates environmental impact. The 
proposed framework demonstrates strong potential for 
improving the sustainability and effectiveness of drone-
based pesticide spraying in precision agriculture. 
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