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Abstract. Accurate Terminal Aerodrome Forecasts (TAFs) are essential for aviation safety and operational ef-
ficiency worldwide. This study develops an Al framework for automated TAF generation, including data pre-
processing, model development, and evaluation. Using GFS and ECMWF datasets from 2020-2023 and real
TAF forecasts from Brno International Airport the study explores the effectiveness of ML approaches for wind
speed and visibility prediction. Principal Component Analysis (PCA) efficiently reduced dimensionality for wind
speed predictors but proved less effective for visibility, highlighting its complex nature. Feature importance
analysis identified initial observations and seasonal patterns as dominant predictors, underscoring the influ-
ence of data quality. Regression models for wind speed met ICAO standards. While Gradient Boosting (GB)
classification outperformed human forecasts in raw accuracy, it suffered from poor probability calibration due
to dataset imbalance. A critical evaluation of accuracy metrics — such as log-loss and F1-score — revealed their
advantages and limitations, particularly in handling imbalanced datasets and probabilistic forecasting. Beyond
its empirical findings, the study provides a theoretical foundation for integrating machine learning (ML) into
TAF generation, discussing methodological considerations and the interaction between model performance
and forecast interpretability. Future research is recommended to focus on the local models, explore advanced
models, and expand the framework to diverse climatic conditions.
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1. Introduction

Terminal Aerodrome Forecasts (TAFs) are standardized
aviation forecasts issued globally under ICAO regulations,
detailed in Annex 3 (International Civil Aviation Organiza-
tion [ICAQO], 2016). These forecasts, typically valid for 24
to 30 hours (Long TAF) or shorter periods like 9 hours,
provide critical predictions on wind speed and direction,
visibility, weather phenomena, cloud base and coverage,
significant convective clouds, wind gusts, and temperature
extremes. Structured into groups — including a main group
for prevailing conditions and change groups for significant
weather changes (Table 1) — TAFs adhere to ICAO Annex
3's specifications, which define the TEMPO group and cri-
teria for group inclusion.

The complex nature of TAFs, encompassing probabilis-
tic, deterministic, categorical, and continuous data, poses
ongoing challenges in quality assessment. This assessment
involves evaluating individual TAF accuracy, forecasting
skill, and regulatory compliance, as well as comparing TAF
performance across locations within regions like a Flight
Information Region (FIR).

Previous research has explored how numerical weather
prediction (NWP) models contribute to weather forecast
issuance. Wong et al. (2013) examined the implementation

Table 1. Sample TAF groups with explanation

| Group | Code Meaning

Header TAF LKTB
0206/0306

TAF from Brno-Tufany Airport
valid from Day 2, 6:00 UTC to
Day 3, 6:00 UTC

Main 23008KT 3000 RA | Wind: 230 deg., 8 knots,
group BKNO10 visibility: 3000 m, rain, broken
clouds at 1000 ft

Change | TEMPO 0212/0218 | Temporarily between 12 and 18
group 23018G38KT 1200 | UTC, wind: 18 with gusts of 38
SHSN SCTO15TCU | knots, visibility: 1200 m, snow
showers, scattered towering
cumulus clouds at 1500 feet

of a fine-scale NWP system at Hong Kong International
Airport, which generates hourly updated forecasts. While
their study focused primarily on wind shear within a 9-hour
validity period, such high-resolution models demonstrate
the potential to enhance TAF accuracy. Similarly, Jacobs
and Maat (2005) highlighted how TAFs can be improved
through a combination of NWP models and statistical or
physical post-processing techniques, allowing for greater
accuracy in aviation-related meteorological parameters.
This approach facilitates the automatic generation of TAFs
and reduces the need for manual adjustments.
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Several commercial products have been developed
to support TAF issuance, including the guidance systems
provided by the German Weather Service (Deutscher
Wetterdienst, DWD). The DWD AUTO TAF system applies
Model Output Statistics (MOS) to refine numerical weath-
er predictions from the European Centre for Medium-
Range Weather Forecasts (ECMWF), incorporating addi-
tional inputs such as METAR, SYNOP, lightning observa-
tions, and radar measurements. By implementing statisti-
cal corrections based on observational data, this system
adapts global model outputs to specific aerodromes,
with a particular emphasis on airports that maintain a
continuous and reliable observational dataset. Users of
this product can access either tabular data with multiple
guiding parameters or a familiar TAF-coded output. Simi-
larly, airports without a dedicated TAF issuance can utilize
the Localized Aviation MOS Program (LAMP), which pro-
vides accurate forecasts for both visual and instrument
flight rules (Boyd & Guinn, 2021). The use of first-guess
TAFs, which leverage NWP model data to generate sim-
ple and readable forecasts, further enhances efficiency
by minimizing the need for meteorologist intervention
and allowing experts to focus on refining model outputs
(Lanyon et al., 2020).

Expert systems offer an automated approach to assess
the accuracy and reliability of Terminal Aerodrome Fore-
casts (TAFs), ensuring adherence to ICAO standards and
identifying discrepancies to improve forecast quality. For
instance, expert systems are integral to decision-support
frameworks like the Automated Decision Tool for Opera-
tions Support (ADTOS). ADTOS leverages a data warehouse
of aviation information, including TAFs and METARSs, to aid
traffic flow specialists in optimizing arrival and departure
strategies (Ayhan et al.,, 2013). Furthermore, advancements
in machine learning enhance TAF-based predictions. Alti-
nok et al. (2018) demonstrated this by modelling weather
and traffic demand data to predict runway configurations,
enabling real-time forecast adjustments.

Given the mandatory and continuous nature of TAF is-
suance, it generates substantial amounts of data that can
be leveraged for performance-based evaluations aligned
with ICAO standards. Simone et al. (2022) noted that tra-
ditional forecast verification approaches rely on accuracy
indicators to assess forecast reliability, assisting decision-
makers in evaluating past performance. More recent meth-
odologies incorporate machine learning techniques to en-
hance anomaly detection in historical weather data, utiliz-
ing past bulletins and previous forecasts to identify poten-
tial inaccuracies (Patriarca et al., 2023). Techniques such as
anomaly detection and hierarchical clustering facilitate the
calculation of an error propensity metric, offering insights
into the likelihood of forecasting errors. These advance-
ments contribute to improved decision-making processes
in aerodrome weather management by identifying critical
areas of forecast inaccuracy.

Enhancing TAF reliability hinges on robust forecast
verification. Novotny et al. (2021) investigated verification

methods designed for consistent application across di-
verse airports. Similarly, Anggoro et al. (2019) highlighted
the necessity of systematic verification procedures to mini-
mize forecasting errors and improve operational prepar-
edness. While direct TAF prediction is crucial, related pre-
diction systems can also enhance airport operations. For
example, Buxi and Hansen (2013) and Kicinger et al. (2016)
demonstrated the use of historical and real-time weather
data to create probabilistic airport capacity scenarios, ena-
bling better strategic planning. Machine learning further
strengthens these predictive capabilities. Dhal et al. (2013)
utilized multinomial logistic regression to forecast airport
arrival rates. Ultimately, automating processes from TAF
generation to runway configuration or airport capacity can
improve objectivity of airport management.

Unlike previous meteorological studies that often focus
on general forecasting, this research specifically examines
the technical and regulatory thresholds of wind speed
and visibility within Terminal Aerodrome Forecasts (TAFs).
It further investigates the impact of probabilistic change
groups on forecast accuracy and skill, and compares the
performance of machine learning (ML) models against
human forecasters. In contrast to the DWD product, this
study conducts a detailed analysis of accuracy metrics,
evaluating their suitability for assessing TAF performance.
This research aims to provide a comprehensive compari-
son of methodologies, preprocessing strategies, and a di-
agnostic evaluation of the entire TAF generation process.
The central research question is:

Developing an objective, global automated prediction
framework that establishes a baseline for accuracy and skill
in TAF generation, serving as a reference for evaluating hu-
man forecasters and comparing forecast complexity across
airports.

The inherent complexity of TAFs motivates the need
to establish a baseline for forecasting accuracy and skill.
Previous studies (Novotny et al., 2021; Sladek et al., 2024)
have demonstrated this inherent complexity.

Theoretical anticipation of this study is that human
forecasters demonstrate the highest prediction skill due
to their ability to integrate expert knowledge and contex-
tual understanding, surpassing ML-based outputs. Global
models are expected to perform less accurately than local
models, with accuracy varying based on model configu-
ration and data quality. ML model accuracy is expected
to decrease with longer lead times. However, initially, all
models should exhibit similar performance due to their
reliance on nowcasting and persistence. While accuracy
may be comparable especially for rare phenomena, skill
differences are likely to be more pronounced.

The framework proposed in this study aims to serve
as a reference standard for forecast evaluation, support-
ing and, in the future, outperforming human forecasters
consistently. The steps involved in creating an automated
TAF forecast are outlined in Figure 1.

Figure 1 presents a schematic overview of the auto-
matic TAF forecasting framework, highlighting that at each



Figure 1. Schematic overview of the automated TAF
forecasting framework, depicting decision options at each
step. Any combination of choices, one from each column, is
permitted

of its four stages — predictors selection, modelling, cross-
validation and TAF merging — different methods can be
chosen. These results vary in both accuracy and formal
correctness. Formal correctness, which refers to adherence
to ICAO TAF coding standards, is primarily influenced by
the “TAF Merging” method, as it dictates how predicted
values are transformed into the TAF code. However, the
first three stages of the framework directly influence the
model’s performance metrics. These metrics, such as ac-
curacy and skill scores, are dependent on both the quality
of the input data and the chosen model architecture:

= The goal of this study is to establish a framework that

can help achieve the following objectives:

= Develop a tool for generating first-guess TAFs or sup-

porting products.

= Define the lower bound of human forecasters’ per-

formance.

= |dentify the most suitable accuracy metrics based on

the specific nature of TAFs.

To achieve these goals, an experiment has been de-
signed that follows the selected steps in Figure 1. This
experiment presents the effects of each step on real data
through a case study.

2. Methods

According to the Figure 1, this chapter expands on each
selected method in detail. Specifically, the process was
tested using GFS and ECMWF data from 2020-2023
(National Centers for Environmental Prediction/National
Weather Service/NOAA/U.S. Department of Commerce
NCEP, 2015) and real TAF forecasts from Brno-Turany in-
ternational airport (ICAO indicator: LKTB) 2021, which were
then compared against METAR reports. A demonstrative
application is presented in the case study section.

2.1. Predictors selection

The first step is predictor selection. Forecasters may rely
on expert judgment, but to objectify the process, this
study comments on the advantages and disadvantages of
the four options from the first column of Table 2.
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Table 2. Overview of the predictors’ selection methods

Method Pros Cons

Permutation | Directly related to Computationally

Importance model performance |expensive for complex

(Hubbard Easy to understand | models.

et al.,, 2005) and interpret. May not accurately
capture feature
importance in highly
correlated datasets.

PCA Reduces Can be difficult to

(Jolliffe, 2005) | dimensionality
Can identify

underlying patterns

interpret

May not always
improve model
performance

Can lead to information
loss.

Correlation Simple and easy to | May miss non-linear
(Kenny, 1979) |understand. relationships between
Can identify highly | features.
correlated features | Can lead to

that may be
redundant

oversimplification and
neglect important
interactions.

Clustering Can identify groups | Choice of clustering
(Everitt et al., | of similar features. algorithm and
1974) Can help selecting parameters can
representative significantly impact
features from each |results.
cluster. Interpretation of

clusters can be
subjective

The selection of appropriate predictors is critical for
the development of an effective automated TAF genera-
tion framework. Given the high dimensionality of Nu-
merical Weather Prediction (NWP) data and the complex
interactions between meteorological variables, this study
employed a two-step approach utilizing Principal Com-
ponent Analysis (PCA) and Permutation Importance. The
selected methods are compared to assess their effective-
ness.

2.2. ML models

ML classification models were employed to estimate both
the probability and frequency of occurrence within a given
time window, while regression models were used to pre-
dict the exact values reported in the forecast. Additionally,
simple Multi-layer perceptron neural networks were tested
for comparison. Apart from other models used solely for
benchmarking and not included in the Case Study, the pri-
mary models considered are listed in the Table 3.

For training and testing, the data were split into an
80/20 ratio, while ensuring that no inter-day shuffling can
occur. This was applied to prevent data from the same
day from appearing in both the training and testing sets,
thereby avoiding potential data leakage.
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Table 3. Classification and regression models used (Chase
et al,, 2022)

Method

ML Logistic Simple, interpretable, works well
Classification | Regression | with linearly separable data

Name Purpose/ advantages |

Decision Handles non-linearity,

Tree interpretable, prone to overfitting

Random Reduces overfitting, handles

Forest imbalanced data with class
weighting

Gradient Powerful, reduces bias, effective

Boosting | with imbalanced data

AdaBoost | Focuses on misclassified cases,
robust to outliers

KNN Non-parametric, works well
with small datasets, sensitive to
imbalances

ML Linear Simple, interpretable, works well

Regression Regression | as a reference
Bayesian Regularized, prevents overfitting,
Ridge robust to multicollinearity
Random Captures non-linearity, robust,
Forest handles missing values
AdaBoost | Boosts weak learners, handles

complex relationships

Gradient Highly accurate, handles non-
Boosting linear patterns well
Decision Non-linear regression,
Tree interpretable, risk of overfitting
K-Nearest | Non-parametric, simple, can

Neighbors |adapt to data distributions

Polynomial | Captures non-linearity, prone to
Regression | overfitting

Deep Learning | Multilayer | Captures complex relationships,
Classification | perceptron | works well with large datasets

2.3. Evaluation

A consistently selected set of metrics was used to evalu-
ate the performance of the prediction. These metrics were
divided depending on the nature of the predicted variable,
i.e., whether it was a categorical or continuous variable
(Table 4). Thus, both easily interpretable and more com-
plex methods were used to determine prediction accuracy,
skill, etc.

The selection of appropriate evaluation metrics is
crucial for a comprehensive assessment of TAF forecast
performance, categorized by the nature of the predicted
variable: deterministic continuous, deterministic categori-
cal, and probabilistic categorical. The first two categories,
using metrics like MAE and Accuracy, focus on the ac-
curacy of point predictions, while probabilistic metrics
such as RPS, Log-loss, and BSS evaluate the reliability and
calibration of probability estimates, essential for TAFs. Fi-
nally, “Regulatory Compliance” assess adherence to avia-
tion standards, ensuring that generated TAFs are usable
and compliant. A high-performance model must balance
accurate predictions with regulatory requirements for op-

Table 4. Selected model performance metrics

| Variable Name Advantage |
Deterministic | MAE Straightforward
continuous Max Error | Highlights worst-case errors
Deterministic | Accuracy Straightforward
Categorical [y Objective (Hubbard et al., 2005)
ROC Measures model performance
across all classification
thresholds
AUC Quantifies the ability of the
model to distinguish between
classes (Chase et al.,, 2022)
Probabilistic Ranked Suitable for probabilistic
categorical Probability | multicategory (Ferri et al., 2008)
Score
Log-loss Proper for probability, penalizes
confident wrong predictions
Brier Skill Proper for probabilistic
Score multicategory (Mason, 2004)
Expected Measures how well forecast
calibration | probabilities match observed
error frequencies (Famiglini et al.,
2023)
Regulatory TEMPO Evaluates adherence to formal
Compliance usage prediction standards and
guidelines
Groups Evaluates compliance with

usage regulations for the use of
change groups

erational viability, although this trade-off is not defined in
the current directive.

2.4. Formal processing options

Since NWP model outputs are available at three- and
six-hour intervals, this study opted for a time window
approach. This discretization allows for the aggregation
of probabilistic and deterministic information within op-
erationally relevant timeframes, facilitating the generation
temporally coherent TAFs. Each three-hour time window
was characterized by three key attributes:

1. Change from prevailing conditions, denoting a sig-
nificant deviation from the preceding forecast, es-
sential for determining the need for change group;

2. Probability of occurrence of a specific category
within the window. This facilitates assigning of the
probability of the group (PROB30, PROB40 or main
group);

3. Frequency of occurrence, indicating the proportion
of time the category is expected to prevail, facilitat-
ing support for TEMPO group involvement;

This method generates a structured table of attributes
for each time window. A schematic representation of a
possible scenario is provided in the following Table 5.

Thus, the final TAF code for this time window
would be:

0706/0709 9999 PROB40 TEMPO 0706/0709 3000=.



Table 5. Schematic representation of the ML model output
for the categorical variable Visibility
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Table 7. Example table output of the ML visibility
classification refined by the regression within the category

Visibility conditions for time window DD06/DD09 Category Value Probability | Regression value
Time Conditions 1 Conditions 2 Conditions 3 0 0-800 m 1% 750
(9999) (3000) (0600) 1 800-1500 m 30% 1200
Chan.|Prob.| Freg. [Chan.|Prob.| Freq. Chan|Prob.| Freq. 2 1500-3000 m 17% 2100
06-09| 0 |80 |46 | 1 |42 |2/66| 1 | 10] 56 3 3000-5000 m 1% 4000
9
Note: ‘D' denotes day. 4 Msoggotl::n 51% 9999

By its very nature, TAF involves categorical values and
identifies the most likely value (ICAO, 2016). Additionally,
the process must balance probabilistic, deterministic, and
formal requirements, which is made in accordance to na-
tional regulations (Sladek et al., 2024). The Table 6 pre-
sents the modules that process raw model values into final
forecasts, or, in the case of raw outputs, how the system

directly delivers predictions to the user. Colors indicate at-
tribute quality: green for desirable, orange for neutral, and

red for low quality.

Table 6. Formal modules for translating raw values into
coded forecasts.

(e}

Description Acc.

Redundancy| Formal |

All values in all
categories and Max
changes
All predicted
categories and Max
probabilities

Most likely or most
frequent value in the Med Low Med
time window

Raw outputs

All values with
probability higher Med Med Med
than 35%

All values with
probability higher
than 45%

Only Annex 3
changes

Color codes changes
only

Regulatory Compliant

Dangerous values or
phenomena only

VMC changes only

Warning thresholds
only

Special

Table 6 outlines the various processing modules that
determine how the ML model’s predictions are presented
to the user. For instance, the version with complete prob-
abilities and range of cases is visualized in Table 7.

Due to ICAO Annex 3 (ICAO, 2016) regulations, which
mandate a minimum probability threshold of 30% for in-
clusion of probabilistic information (PROB groups) in TAFs,
the refined visibility forecast from Table 7 is constrained.
Consequently, the ICAO_strict module outputs a simplified
TAF code:

DDHH 9999 PROB30 1200=.

This highlights the regulatory impact on the presenta-
tion of probabilistic forecasts, where detailed model out-
puts are condensed to meet operational requirements.

Formal processing is the final step, where significant
compromises in the determined values may occur due to
coding requirements and constraints on the intervals at
which changes can be included. Given that historical data
indicate low frequency of short term changes crossing
the regulatory threshold values, the inclusion of TEMPO
groups was deemed less critical for the presented case
studies. However, it is acknowledged that TEMPO groups
play a vital role in capturing temporary weather phenom-
ena, and their incorporation is considered in future exten-
sions of this research.

3. Case study

For the case study, we used data from Brno-Turany Inter-
national Airport in the Czech Republic. Observations were
taken from METAR reports, while predictors came from
GFS in 3 hours step and ECMWF in 6 hour step spanning
four years (2020-2023).

Following Figure 1, a procedure for wind speed and
visibility prediction was designed, consisting of the fol-
lowing steps:

1. Predictor Selection: PCA was applied to reduce the
data from surrounding points, with PCA Loadings
used to track with important features. Additionally,
Permutation Importance and Feature Importance
were compared as alternative approaches.

2. Model Comparison: Different regression models
were evaluated for wind speed prediction (accu-
racy), and classification models were assessed for
visibility categories.

3. Cross-Validation: Various cross-validation metrics
were analyzed to evaluate model performance,
highlighting their strengths and weaknesses.

4. TAF Comparison: Finally, the model's accuracy was
compared with real TAF forecasts from professional
distributions.
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3.1. Predictors selection

Following the procedural framework outlined in Figure 1
the initial step in this case study involved the task of pre-
dictor selection. Given the high dimensionality of NWP
data and the complex nature of visibility prediction, a
combination of dimensionality reduction and feature im-
portance analysis was employed. In this section, the ap-
plication of PCA for dimensionality reduction is presented,
specifically for the surrounding four points in case of the
GFS model (Figure 2) and the model ECMWF (Figure 3).
PCA was then followed by the calculation of the feature
importance.

Figure 2. Principal Component Analysis (PCA) applied

to GFS visibility predictors, explaining 99% of variance

from four surrounding points. Predictors: U and V wind
components, precipitable water, relative humidity, planetary
boundary layer height, visibility, and best 4-layer lifted index

Figure 3. PCA for potential ECMWEF visibility predictors
explaining 99% of variance from four surrounding points

From the figures (Figure 2, Figure 3), it is evident that
PCA effectively reduced data dimensionality from sur-
rounding points near the airport, retaining 99% of the
variance. However, instability and precipitation predictors
exhibited higher local variability. Furthermore, it can be
inferred that higher-resolution models, capturing finer
spatial details, may require fewer principal components to
explain the same variance, as they provide a more detailed
representation of the atmosphere. Nevertheless, with in-
creased resolution, the number of surrounding points used
probably needs to be increased. Caution should be exer-
cised when applying PCA to binary or categorical data,
such as visibility categories, as its suitability depends on
the nature of the features. For example, one hot encod-
ing of categorical predictors before PCA may improve re-
sults. Therefore, categorical predictors should ideally be
treated separately to ensure a more robust dimensionality
reduction. To further understand the contribution of each
original predictor to the derived principal components,
the loadings — representing the coefficients of the original
variables in the principal component space —were visual-
ized (Figure 3).

Based on the results from Figure 2, Figure 3, and Fig-
ure 4, PCA can be applied to reduce the dimensionality
of surrounding points. The resulting principal components
that correspond to the initial predictors are then used as
model features. This approach is particularly relevant for
visibility prediction, where at least eight principal compo-
nents are required to explain 99% of the variance. A key
drawback of applying PCA twice is the increased diffi-
culty in interpreting the results. Specifically, tracing the
influence of individual parameters on the final prediction
would become challenging.

An alternative and more intuitive approach involves
utilizing Feature Importance, which is inherently available
in tree-based methods. This technique directly quantifies
the contribution of each predictor to the model’'s accu-
racy. However, it is important to distinguish between the
built-in Scikit-learn method, which quantifies the Mean
Decrease in Impurity, and the more general Permutation
Importance, which provides a broader, model-agnostic
evaluation (Figure 5).

Figure 4. PCA Loadings of first two principal components
of ECMWF predictors applied on visibility, explaining 99%
variance



a)

b)

Figure 5. Comparison of: (a) — Mean Decrease in Impurity
and (b) — Permutation Importance for Random Forest
features predicting visibility categories. Low importance
predictors are shown in gray

When evaluating the importance of predictors across

lead times, three key considerations can be identified:

1. Decrease in the importance of the initial observa-
tion. Due to the persistence of atmospheric condi-
tions, the initially observed visibility class remains
the most influential predictor for approximately 6 to
9 hours. This may indicate a significant persistence
effect and, consequently, the inherent “complexity”
of the weather system.

2. Periodicity of temporal parameters. Features derived
from the time of year exhibit a high contribution in
cases where data quality is lower. This suggests that
when direct forecasts from the model lack sufficient
information, the model relies more heavily on tem-
poral patterns as the most relevant source of predic-
tive power rather than solely GFS values.

3. Increasing importance of GFS visibility. Visibility pre-
dictions from the GFS model have minimal impact
on forecast accuracy until a lead time of approxi-
mately 24 hours is reached.

From the comparison of feature importance metrics,

two key observations can be made:

1. Consistent feature importance scores between Mean
Decrease in Impurity (MDI) and permutation impor-
tance suggest that the feature is genuinely influen-
tial in the prediction.

2. Higher MDI importance with lower permutation im-
portance may indicate the presence of high-cardi-
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nality features or class imbalance, which can skew
impurity-based importance measures.

3. Higher permutation importance with lower MDI
importance may highlight complex, non-linear re-
lationships between the feature and the target vari-
able, which are not fully captured by impurity-based
methods.

A scenario with higher Mean Decrease Impurity (MDI)
and lower permutation importance was frequently ob-
served. This suggests that a significant imbalance in the
visibility classes likely hinders modelling performance.
Consequently, the predictor selection process yielded
three key conclusions:

1. Principal Component Analysis (PCA) effectively re-
duces the dimensionality of Numerical Weather
Prediction (NWP) data source points, including wind
speed predictors. However, applying PCA to visibility
classes results in information loss.

2. Given the anticipated complexity of predicting vis-
ibility, Random Forest feature importance was vis-
ualized. For the initial 69 hours, the model relies
heavily on the initial observations. The importance
of the time of year, which emerged as the most
significant feature, underscores the influence of the
data quality.

3. Comparing feature importances reveals significant
class imbalance. In this context, the model relies on
combined features, such as the Planetary Bound-
ary Layer (PBL), which is predominantly determined
by wind speed and temperature (Nielsen-Gammon
et al., 2010), while underutilizing parameters like vis-
ibility or relative humidity.

A sensitivity analysis, performed using the Spearman
Rank Correlation (p) between Mean Decrease in Impuri-
ty (MDI) and Permutation Importance (Pl), confirms that
the framework’s limitations stem primarily from predictor
quality during specific meteorological regimes and lead
times. For stable conditions, the model's feature impor-
tance demonstrated an unusual alternating pattern of
consistency, achieving high agreement (0.93-0.96) at lead
times of 6, 12, 18, and 24 hours, but severely diverging
(p = 0.40) at hours with a lower data quality (3, 9, 15,
and 21 hours). Conversely, analysis restricted to windy
conditions (Ws > 15 KT) revealed a breakdown in model
interpretability, with ranging from a perfect 1 down to a
critical negative correlation of p = -0.5 at the 18-hour lead
time. This negative correlation quantitatively demonstrates
that the features the model was internally prioritizing (high
MDI) actively harmed predictive performance (low PI).

3.2. Models’ performance

For wind speed prediction, all models exhibited similar
performance trends, albeit with varying accuracy levels
(Figure 6). The maximum error fluctuated based on data
availability, with lower errors coinciding with ECMWF model
output times (0, 6, 12, 18 UTC). Across all models, the Mean
Absolute Error (MAE) remained consistently below 2.5 knots.



Aviation, 2025, 29(4), 210-221

Figure 6. Accuracy metrics (Mean Absolute Error and
Maximum Error) of tested regression models (uncalibrated
hyperparameters) across 3- to 24-hour lead times for wind
speed forecasting

Furthermore, it is significant that all models maintained
wind speed accuracy within 5 knots in over 80% of predic-
tions across all lead times, with some exceeding 90%. This
performance aligns with ICAO’s long-term desirable ac-
curacy criteria for wind forecasts. For subsequent machine
learning modelling, Gradient Boosting (GB) was selected
due to its superior baseline performance, ability to man-
age data imbalances through iterative refinement, provi-
sion of probabilistic outputs, and suitability for multiclass
predictions (Figure 8).

To explore the potential for further performance en-
hancements, a Multilayer Perceptron (MLP) neural network
was optimized. The MLP architecture, a fully connected
feedforward network designed for regression, incorpo-
rated multiple dense layers with RelLU activation, Batch
Normalization, Dropout regularization, and L2 kernel regu-
larization to mitigate overfitting. Training was conducted
using the Adam optimizer and Mean Squared Error (MSE)
loss, with Mean Absolute Error (MAE) monitored. Early
stopping, based on validation loss, was implemented to
prevent overfitting and ensure optimal weight retention.
For comparative purposes, Gradient Boosting with grid
search calibrated hyperparameters was also evaluated,
demonstrating very similar performance in wind speed
modelling (Figure 7).

We can observe the lowest levels of errors in the 3 hours
lead time, where the contribution of the observation is the

Figure 7. Performance comparison of the Multilayer
Perceptron (MLP) neural network and Gradient Boosting
(grid search calibrated hyperparameters) for wind speed
prediction, including initial observed wind speed
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highest. Then in the 6h lead time, and 12 h, high quality
of the forecast results into low errors, whereas in 9 and 21
hour lead times, both MAE and Max Error are the high-
est due to the usage of solely GFS data. In the Max error
curve, the increasing trend is also observable, confirming
assumption of the lead time dependence.

In summary, the choice of model appears to have a
limited impact on the results, with data quality being the
primary driver of fluctuations. This is supported by the
comparable performance of Neural Network and Gradient
Boosting models with calibrated hyperparameters. While
improvements are most evident when incorporating the
initial observation from the forecast release time, the larg-
est deteriorations occur during periods with limited data-
set or model availability. Conversely, technical preproc-
essing aspects, such as the use of scalers or variations in
model architecture, have a comparatively minor influence.

3.3. Performance comparison

To evaluate visibility prediction, we categorized visibility
according to ICAO standards (0, 800, 1500, 3000, 5000 m
or more) and compared Gradient Boosting classification
results with professional TAF forecasts. Gradient Boosting
was chosen for its suitability in probabilistic forecasting of
multicategory variables, as supported by previous research
(Natekin & Knoll, 2013).

Superficially, the classifier's accuracy suggests strong
performance. However, a closer examination reveals dis-
crepancies in the F1-score and log-loss, indicating poten-
tial issues with the classifier's reliability. The exceptionally
high Expected Calibration Error (ECE), exceeding 0.9, sig-
nifies a severe lack of calibration. These patterns can be
attributed to:

1. substantial dataset imbalance, where the 5-10 km
category constitutes approximately 92% of obser-
vations, challenging algorithmic performance and
smoothing metric application in multicategory prob-
abilistic predictions and

2. ECE curve's indication of low data quality, which is
worsened during runs with limited data availability.

Figure 8. Performance metrics (Accuracy, F1-score, log-loss,
Brier Score, Brier Skill Score, Expected Calibration Error) of
the Gradient Boosting classification algorithm predicting
visibility categories



Figure 9. Performance metrics (accuracy, F1-score, log-loss,
Brier Score, Expected Calibration Error) of professional TAF
visibility forecasts from Brno-Tufany International Airport

For the professional TAF forecasts, the same evaluation
was performed and visualized in the Figure 9.

Values in the Figure 9 demonstrate that the TAF accu-
racy is comparable to Gradient Boosting. Higher expertise
is reflected in a slightly lower, though still elevated, Ex-
pected Calibration Error (ECE). The Brier Score compared
to the visibility class distribution is slightly higher by TAF
(where 0 represents perfect skill). Evaluating human-issued
predictions with log-loss presents challenges due to its
sensitivity to probabilities of 0 and 1, common in Termi-
nal Aerodrome Forecasts (TAFs) when a class is absent. To
mitigate this, an epsilon parameter (0.01) was introduced,
though a lower epsilon value would increase log-loss. Nor-
malization of probabilities to sum to 1 (or 100%) is also
necessary for objective evaluation, despite potentially al-
tering the original intent of the prediction.

3.4. Case Study: January 2" 2020

A specific case study is the production of a TAF forecast for
a situation with a ridge of higher pressure over the Czech
Republic, with reduced visibility in Brno on January 2, 2020.

TAF in Brno (LKTB):

202001012300 TAF AMD LKTB 020303Z

0203/0306 VRBO2KT 7000 SCT003

TEMPO 0203/0209 2000 BR BKN003

PROB30 TEMPO 0203/0209 0600 FZFG OVC002

BECMG 0209/0212 CAVOK=

A Gradient Boosting model, trained on independent
data to predict visibility multiclass categories, was eval-
uated on unseen data from a specific day. The model's
predicted probabilities for each visibility class effectively
captured the observed trend (Figure 10).

Following the evaluation of the Gradient Boosting
model on unseen data, it was proceeded to a detailed
comparison with the professional TAF forecast for January
2nd, 2020. Table 8 presents the accuracy metrics calculated
for both the Gradient Boosting model and the human-
issued TAF, evaluated at 3-hour and 30-minute intervals.

From the Figure 11 combined with Table 8, several ob-
servations can be drawn regarding the forecasting perfor-
mance at both 3-hour intervals and 30-minute intervals.
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Figure 10. Predicted probabilities of visibility categories
from the Gradient Boosting model for January 2nd, 2020,
demonstrating potential TAF support product

Figure 11. Visibility categories as forecast by the
professional TAF for January 2nd, 2020, with clearly
separated classes and probabilities leading to better
illustrativeness in comparison to GB output

Table 8. Comparison of accuracy metrics of GB issued TAF
supporting table for 2nd January 2020 and professional TAF
forecast

| GB 3h | Human 3h | GB 30’ | Human 30"

Accuracy 0.50 0.25 04 0.35
F1-score 0.40 0.18 043 0.38
Log-loss 3.50 4.06 3.04 240
Brier Score 0.49 0.62 0.45 0.41
Brier Skill Score 0.23 0.06 0.45 0.51
ECE 0.05 0.09 0.15 0.15

In the three hour step, Gradient Boosting (GB) out-
performs the human forecast in accuracy, F1-score, and
probabilistic calibration, as reflected in a better Brier Score
and lower log-loss. The GB model provides more reliable
probability estimates and captures fluctuating afternoon
visibility trends more effectively. However, it struggles with
middle-range categories, likely due to sharp boundary
conditions during low visibility periods.
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The Brier Skill Score (BSS) suggests that the human
forecast is less skilful relative to a baseline, whereas GB
shows an improvement. However, human forecasts still of-
fer room for improvement in explanation, particularly in
handling the TEMPO group, which affects the users’ un-
derstanding of the conditions.

For finer time resolutions, key observations include:

1. Accuracy: GB (0.40) performs slightly better than the

human model (0.35), though both remain well below
0.5, highlighting the difficulty of predicting visibility
categories at this scale.

2. F1 Score: GB (0.43) outperforms the human model
(0.38), demonstrating better handling of imbalanced
classes.

3. Log Loss: GB (3.05) is higher than the human model
(2.40), indicating that GB produces less confident
probability estimates, even if it classifies categories
more accurately.

4. Brier Score: GB (0.45) is higher than the human
model (0.41), meaning the human model has better-
calibrated probability estimates.

5. Brier Skill Score (BSS): The human model (0.51)
achieves a higher skill score than GB (0.45), sug-
gesting that while GB is more accurate overall, the
human forecast provides more skillful probability
estimates relative to a baseline model.

6. Expected Calibration Error (ECE): Both models show
relatively low calibration errors (GB: 0.16, Human:
0.15), with human forecasts having a slight edge.

Gradient Boosting provides better raw classification
performance in line with what it was trained for, which
is reflected in higher accuracy and F1 scores. However,
human forecasts demonstrate better probability calibra-
tion, leading to a lower Brier Score and higher BSS. This
suggests that while GB is more consistent in categorical
prediction, the human product offers more reliable proba-
bilistic assessments.

4. Discussion and conclusions

This study investigated the feasibility of developing an au-
tomated framework for generating and evaluating Termi-
nal Aerodrome Forecasts (TAFs), focusing on wind speed
and visibility predictions at Brno-Turany International Air-
port. Key findings include:

1. Principal Component Analysis (PCA) effectively re-
duced dimensionality for wind speed predictors but
not for visibility categories. In most predictors, one
component explained more than 99% of the vari-
ance within four neighbouring points. However, PCA
was less effective for precipitation (convective and
rate) and Convective Inhibition (CIN), partially for
Convective Available Potential Energy (CAPE).

2. Random Forest feature importance highlighted the
dominance of initial observations and seasonal pat-
terns in visibility prediction, revealing significant
class imbalance.

3. Regression models for wind speed showed com-
parable performance, with data quality being the
primary driver of accuracy. Notably, 100% of wind
speed forecasts had a margin of error of 5 KT, in-
dicating that even using a global model, the ICAO-
required accuracy can be met.

4. Gradient Boosting (GB) classification for visibility
demonstrated high accuracy but suffered from poor
calibration and dataset imbalance.

5. A case study on January 2, 2020, revealed that
GB outperformed human forecasts in raw classifica-
tion metrics, while human forecasts exhibited better
probability calibration.

4.1. Interpretations

The successful application of PCA for wind speed predic-
tion underscores the predictability of wind fields through
dimensionality reduction. However, the ineffectiveness of
PCA for visibility value suggests that visibility is a more
complex phenomenon, requiring alternative feature selec-
tion methods. The dominance of initial observations and
seasonal patterns in visibility prediction highlights the
persistence of atmospheric conditions and the influence
of data quality on model reliance. The comparable perfor-
mance of various regression models for wind speed, with
data quality as the primary driver, indicates that model
selection is less critical than data preprocessing and avail-
ability.

The high accuracy of the GB classification for visibility,
contrasted with low calibration and dataset imbalance, un-
derscores the challenges of predicting multicategory vari-
ables with skewed distributions. The case study on Janu-
ary 2, 2020, reveals a trade-off between raw classification
performance (GB) and probability calibration (human fore-
casts), suggesting that human expertise still plays a crucial
role in refining probabilistic predictions. The discrepancies
between 3-hour and 30-minute interval forecasts highlight
the scale-dependent challenges in visibility prediction. Fur-
thermore, the formal characteristics of the TEMPO group
were not explicitly incorporated in the evaluation, despite
their operational importance. Since TEMPO conditions are
expected to be reached in less than half of the cases and
only temporarily, their omission may have led to biases in
assessing forecast accuracy. Consequently, this study must
emphasize that the goal of the proposed framework is not
to replace human forecasters by simply slightly outper-
forming them. A direct comparison that dismisses human
expertise is highly undesirable, as regulatory compliance,
operational necessity, and the structured format of the
coded forecast introduce constraints that a purely Machine
Learning system does not have to deal with.

The findings have main implications for the develop-
ment of comprehensive TAF generation systems. The study
demonstrates the potential of machine learning models
to provide accurate first-guess TAFs, particularly for wind
speed and visibility prediction. However, it also highlights
the need for robust feature selection techniques and



calibration methods to address the complexities of visibil-
ity forecasting. The observed trade-off between classifica-
tion accuracy and probability calibration suggests that hy-
brid approaches, combining machine learning with human
expertise, may be most effective.

The identification of data quality as a primary driver of
model performance underscores the importance of reli-
able and comprehensive observational data. The observed
influence of seasonal patterns suggests that incorporat-
ing long-term climatological data could further enhance
prediction accuracy. The study also provides a framework
for evaluating TAF performance, revealing the strengths
and weaknesses of different accuracy metrics. Given that
extending the training dataset back to 2016-2024 could
potentially double the training set size, applying under-
sampling or balancing techniques may improve model
performance on minor categories. Specialized models
could also be developed to handle underrepresented con-
ditions effectively.

4.2. Limitations

This study is limited by its focus on a single airport (Brno-
Turany) and a specific set of meteorological variables (wind
speed and visibility). The findings may not be generaliz-
able to other airports or weather phenomena. The use of
historical data from 2020-2023 may not fully capture the
evolving atmospheric dynamics and including more ex-
tensive database could improve the models’ performance.
The study’s reliance on specific models (PCA, Random For-
est, Gradient Boosting) may limit the exploration of alter-
native approaches.

The evaluation of human forecasts is constrained by
the availability and format of TAF data, potentially affect-
ing the objectivity of comparisons. The introduction of
an epsilon parameter to mitigate log-loss sensitivity in-
troduces a degree of subjectivity. The evaluation of the
TEMPO group in human forecasts was limited, and further
investigation into the impacts of these groups on user in-
terpretation is needed. Overall, formal processing of final
code is just introduced, but further it will be investigated
within separate research.

4.3. Recommendations

Future studies should expand the geographical scope
to include a wider range of airports and climatic condi-
tions. Investigating additional meteorological variables,
such as cloud cover and precipitation, would provide a
more comprehensive evaluation of TAF forecasting. Explor-
ing advanced machine learning techniques, such as deep
learning and ensemble methods, could further enhance
prediction accuracy.

To improve the reliability of automated TAF forecasts,
developing robust calibration methods is essential to ad-
dress dataset imbalance and enhance probabilistic predic-
tions. Incorporating real-time observational data and long-
term climatological information can further improve model
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adaptability and accuracy. With sufficiently accurate and
locally adjusted forecasts, such a system could serve as a
benchmark for evaluating the predictability of challeng-
ing weather situations. This benchmark could also facili-
tate comparisons of forecast complexity across airports in
diverse climatic regions, providing comparison metrics of
the local weather patterns’ inherent variability.

Further investigation into the impact of TEMPO groups
and other change groups on forecast interpretation and
user understanding is warranted. Additionally, developing
standardized evaluation metrics for probabilistic TAFs, ac-
counting for both accuracy and calibration, would facilitate
objective comparisons and enhance forecast reliability. Fi-
nally, creating a live, automated TAF framework, incorpo-
rating the findings of this study, would allow for continual
testing and refinement of the system.
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