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Article History:  Abstract. Accurate Terminal Aerodrome Forecasts (TAFs) are essential for aviation safety and operational ef-
ficiency worldwide. This study develops an AI framework for automated TAF generation, including data pre-
processing, model development, and evaluation. Using GFS and ECMWF datasets from 2020–2023 and real 
TAF forecasts from Brno International Airport the study explores the effectiveness of ML approaches for wind 
speed and visibility prediction. Principal Component Analysis (PCA) efficiently reduced dimensionality for wind 
speed predictors but proved less effective for visibility, highlighting its complex nature. Feature importance 
analysis identified initial observations and seasonal patterns as dominant predictors, underscoring the influ-
ence of data quality. Regression models for wind speed met ICAO standards. While Gradient Boosting (GB) 
classification outperformed human forecasts in raw accuracy, it suffered from poor probability calibration due 
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1.	Introduction 

Terminal Aerodrome Forecasts (TAFs) are standardized 
aviation forecasts issued globally under ICAO regulations, 
detailed in Annex 3 (International Civil Aviation Organiza-
tion [ICAO], 2016). These forecasts, typically valid for 24 
to 30 hours (Long TAF) or shorter periods like 9 hours, 
provide critical predictions on wind speed and direction, 
visibility, weather phenomena, cloud base and coverage, 
significant convective clouds, wind gusts, and temperature 
extremes. Structured into groups – including a main group 
for prevailing conditions and change groups for significant 
weather changes (Table 1) – TAFs adhere to ICAO Annex 
3’s specifications, which define the TEMPO group and cri-
teria for group inclusion. 

The complex nature of TAFs, encompassing probabilis-
tic, deterministic, categorical, and continuous data, poses 
ongoing challenges in quality assessment. This assessment 
involves evaluating individual TAF accuracy, forecasting 
skill, and regulatory compliance, as well as comparing TAF 
performance across locations within regions like a Flight 
Information Region (FIR).

Previous research has explored how numerical weather 
prediction (NWP) models contribute to weather forecast 
issuance. Wong et al. (2013) examined the implementation 

of a fine-scale NWP system at Hong Kong International 
Airport, which generates hourly updated forecasts. While 
their study focused primarily on wind shear within a 9-hour 
validity period, such high-resolution models demonstrate 
the potential to enhance TAF accuracy. Similarly, Jacobs 
and Maat (2005) highlighted how TAFs can be improved 
through a combination of NWP models and statistical or 
physical post-processing techniques, allowing for greater 
accuracy in aviation-related meteorological parameters. 
This approach facilitates the automatic generation of TAFs 
and reduces the need for manual adjustments.

Table 1. Sample TAF groups with explanation 

Group Code Meaning

Header TAF LKTB 
0206/0306

TAF from Brno-Tuřany Airport 
valid from Day 2, 6:00 UTC to 
Day 3, 6:00 UTC

Main 
group

23008KT 3000 RA 
BKN010

Wind: 230 deg., 8 knots, 
visibility: 3000 m, rain, broken 
clouds at 1000 ft

Change 
group

TEMPO 0212/0218 
23018G38KT 1200 
SHSN SCT015TCU

Temporarily between 12 and 18 
UTC, wind: 18 with gusts of 38 
knots, visibility: 1200 m, snow 
showers, scattered towering 
cumulus clouds at 1500 feet
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Several commercial products have been developed 
to support TAF issuance, including the guidance systems 
provided by the German Weather Service (Deutscher 
Wetterdienst, DWD). The DWD AUTO TAF system applies 
Model Output Statistics (MOS) to refine numerical weath-
er predictions from the European Centre for Medium-
Range Weather Forecasts (ECMWF), incorporating addi-
tional inputs such as METAR, SYNOP, lightning observa-
tions, and radar measurements. By implementing statisti-
cal corrections based on observational data, this system 
adapts global model outputs to specific aerodromes, 
with a particular emphasis on airports that maintain a 
continuous and reliable observational dataset. Users of 
this product can access either tabular data with multiple 
guiding parameters or a familiar TAF-coded output. Simi-
larly, airports without a dedicated TAF issuance can utilize 
the Localized Aviation MOS Program (LAMP), which pro-
vides accurate forecasts for both visual and instrument 
flight rules (Boyd & Guinn, 2021). The use of first-guess 
TAFs, which leverage NWP model data to generate sim-
ple and readable forecasts, further enhances efficiency 
by minimizing the need for meteorologist intervention 
and allowing experts to focus on refining model outputs 
(Lanyon et al., 2020).

Expert systems offer an automated approach to assess 
the accuracy and reliability of Terminal Aerodrome Fore-
casts (TAFs), ensuring adherence to ICAO standards and 
identifying discrepancies to improve forecast quality. For 
instance, expert systems are integral to decision-support 
frameworks like the Automated Decision Tool for Opera-
tions Support (ADTOS). ADTOS leverages a data warehouse 
of aviation information, including TAFs and METARs, to aid 
traffic flow specialists in optimizing arrival and departure 
strategies (Ayhan et al., 2013). Furthermore, advancements 
in machine learning enhance TAF-based predictions. Alti-
nok et al. (2018) demonstrated this by modelling weather 
and traffic demand data to predict runway configurations, 
enabling real-time forecast adjustments.

Given the mandatory and continuous nature of TAF is-
suance, it generates substantial amounts of data that can 
be leveraged for performance-based evaluations aligned 
with ICAO standards. Simone et al. (2022) noted that tra-
ditional forecast verification approaches rely on accuracy 
indicators to assess forecast reliability, assisting decision-
makers in evaluating past performance. More recent meth-
odologies incorporate machine learning techniques to en-
hance anomaly detection in historical weather data, utiliz-
ing past bulletins and previous forecasts to identify poten-
tial inaccuracies (Patriarca et al., 2023). Techniques such as 
anomaly detection and hierarchical clustering facilitate the 
calculation of an error propensity metric, offering insights 
into the likelihood of forecasting errors. These advance-
ments contribute to improved decision-making processes 
in aerodrome weather management by identifying critical 
areas of forecast inaccuracy.

Enhancing TAF reliability hinges on robust forecast 
verification. Novotný et al. (2021) investigated verification 

methods designed for consistent application across di-
verse airports. Similarly, Anggoro et al. (2019) highlighted 
the necessity of systematic verification procedures to mini-
mize forecasting errors and improve operational prepar-
edness. While direct TAF prediction is crucial, related pre-
diction systems can also enhance airport operations. For 
example, Buxi and Hansen (2013) and Kicinger et al. (2016) 
demonstrated the use of historical and real-time weather 
data to create probabilistic airport capacity scenarios, ena-
bling better strategic planning. Machine learning further 
strengthens these predictive capabilities. Dhal et al. (2013) 
utilized multinomial logistic regression to forecast airport 
arrival rates. Ultimately, automating processes from TAF 
generation to runway configuration or airport capacity can 
improve objectivity of airport management.

Unlike previous meteorological studies that often focus 
on general forecasting, this research specifically examines 
the technical and regulatory thresholds of wind speed 
and visibility within Terminal Aerodrome Forecasts (TAFs). 
It further investigates the impact of probabilistic change 
groups on forecast accuracy and skill, and compares the 
performance of machine learning (ML) models against 
human forecasters. In contrast to the DWD product, this 
study conducts a detailed analysis of accuracy metrics, 
evaluating their suitability for assessing TAF performance. 
This research aims to provide a comprehensive compari-
son of methodologies, preprocessing strategies, and a di-
agnostic evaluation of the entire TAF generation process. 
The central research question is: 

Developing an objective, global automated prediction 
framework that establishes a baseline for accuracy and skill 
in TAF generation, serving as a reference for evaluating hu-
man forecasters and comparing forecast complexity across 
airports.

The inherent complexity of TAFs motivates the need 
to establish a baseline for forecasting accuracy and skill. 
Previous studies (Novotný et al., 2021; Sládek et al., 2024) 
have demonstrated this inherent complexity. 

Theoretical anticipation of this study is that human 
forecasters demonstrate the highest prediction skill due 
to their ability to integrate expert knowledge and contex-
tual understanding, surpassing ML-based outputs. Global 
models are expected to perform less accurately than local 
models, with accuracy varying based on model configu-
ration and data quality. ML model accuracy is expected 
to decrease with longer lead times. However, initially, all 
models should exhibit similar performance due to their 
reliance on nowcasting and persistence. While accuracy 
may be comparable especially for rare phenomena, skill 
differences are likely to be more pronounced.

The framework proposed in this study aims to serve 
as a reference standard for forecast evaluation, support-
ing and, in the future, outperforming human forecasters 
consistently. The steps involved in creating an automated 
TAF forecast are outlined in Figure 1.

Figure 1 presents a schematic overview of the auto-
matic TAF forecasting framework, highlighting that at each 
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of its four stages – predictors selection, modelling, cross-
validation and TAF merging  – different methods can be 
chosen. These results vary in both accuracy and formal 
correctness. Formal correctness, which refers to adherence 
to ICAO TAF coding standards, is primarily influenced by 
the “TAF Merging” method, as it dictates how predicted 
values are transformed into the TAF code. However, the 
first three stages of the framework directly influence the 
model’s performance metrics. These metrics, such as ac-
curacy and skill scores, are dependent on both the quality 
of the input data and the chosen model architecture:

	■ The goal of this study is to establish a framework that 
can help achieve the following objectives:

	■ Develop a tool for generating first-guess TAFs or sup-
porting products.

	■ Define the lower bound of human forecasters’ per-
formance.

	■ Identify the most suitable accuracy metrics based on 
the specific nature of TAFs.

To achieve these goals, an experiment has been de-
signed that follows the selected steps in Figure  1. This 
experiment presents the effects of each step on real data 
through a case study.

2.	Methods

According to the Figure 1, this chapter expands on each 
selected method in detail. Specifically, the process was 
tested using GFS and ECMWF data from 2020–2023 
(National Centers for Environmental Prediction/National 
Weather Service/NOAA/U.S. Department of Commerce 
NCEP, 2015) and real TAF forecasts from Brno-Tuřany in-
ternational airport (ICAO indicator: LKTB) 2021, which were 
then compared against METAR reports. A demonstrative 
application is presented in the case study section.

2.1. Predictors selection
The first step is predictor selection. Forecasters may rely 
on expert judgment, but to objectify the process, this 
study comments on the advantages and disadvantages of 
the four options from the first column of Table 2.

The selection of appropriate predictors is critical for 
the development of an effective automated TAF genera-
tion framework. Given the high dimensionality of Nu-
merical Weather Prediction (NWP) data and the complex 
interactions between meteorological variables, this study 
employed a two-step approach utilizing Principal Com-
ponent Analysis (PCA) and Permutation Importance. The 
selected methods are compared to assess their effective-
ness.

2.2. ML models
ML classification models were employed to estimate both 
the probability and frequency of occurrence within a given 
time window, while regression models were used to pre-
dict the exact values reported in the forecast. Additionally, 
simple Multi-layer perceptron neural networks were tested 
for comparison. Apart from other models used solely for 
benchmarking and not included in the Case Study, the pri-
mary models considered are listed in the Table 3.

For training and testing, the data were split into an 
80/20 ratio, while ensuring that no inter-day shuffling can 
occur. This was applied to prevent data from the same 
day from appearing in both the training and testing sets, 
thereby avoiding potential data leakage.

Figure 1. Schematic overview of the automated TAF 
forecasting framework, depicting decision options at each 
step. Any combination of choices, one from each column, is 
permitted

Table 2. Overview of the predictors’ selection methods

Method Pros Cons

Permutation 
Importance 
(Hubbard 
et al., 2005)

Directly related to 
model performance
Easy to understand 
and interpret.

Computationally 
expensive for complex 
models.
May not accurately 
capture feature 
importance in highly 
correlated datasets.

PCA
(Jolliffe, 2005)

Reduces 
dimensionality
Can identify 
underlying patterns

Can be difficult to 
interpret
May not always 
improve model 
performance
Can lead to information 
loss.

Correlation 
(Kenny, 1979)

Simple and easy to 
understand.
Can identify highly 
correlated features 
that may be 
redundant

May miss non-linear 
relationships between 
features.
Can lead to 
oversimplification and 
neglect important 
interactions.

Clustering 
(Everitt et al., 
1974)

Can identify groups 
of similar features.
Can help selecting 
representative 
features from each 
cluster.

Choice of clustering 
algorithm and 
parameters can 
significantly impact 
results.
Interpretation of 
clusters can be 
subjective
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2.3. Evaluation
A consistently selected set of metrics was used to evalu-
ate the performance of the prediction. These metrics were 
divided depending on the nature of the predicted variable, 
i.e., whether it was a categorical or continuous variable 
(Table 4). Thus, both easily interpretable and more com-
plex methods were used to determine prediction accuracy, 
skill, etc.

The selection of appropriate evaluation metrics is 
crucial for a comprehensive assessment of TAF forecast 
performance, categorized by the nature of the predicted 
variable: deterministic continuous, deterministic categori-
cal, and probabilistic categorical. The first two categories, 
using metrics like MAE and Accuracy, focus on the ac-
curacy of point predictions, while probabilistic metrics 
such as RPS, Log-loss, and BSS evaluate the reliability and 
calibration of probability estimates, essential for TAFs. Fi-
nally, “Regulatory Compliance” assess adherence to avia-
tion standards, ensuring that generated TAFs are usable 
and compliant. A high-performance model must balance 
accurate predictions with regulatory requirements for op-

erational viability, although this trade-off is not defined in 
the current directive.

2.4. Formal processing options
Since NWP model outputs are available at three- and 
six-hour intervals, this study opted for a time window 
approach. This discretization allows for the aggregation 
of probabilistic and deterministic information within op-
erationally relevant timeframes, facilitating the generation 
temporally coherent TAFs. Each three-hour time window 
was characterized by three key attributes: 

1.	Change from prevailing conditions, denoting a sig-
nificant deviation from the preceding forecast, es-
sential for determining the need for change group;

2.	Probability of occurrence of a specific category 
within the window. This facilitates assigning of the 
probability of the group (PROB30, PROB40 or main 
group); 

3.	Frequency of occurrence, indicating the proportion 
of time the category is expected to prevail, facilitat-
ing support for TEMPO group involvement;

This method generates a structured table of attributes 
for each time window. A schematic representation of a 
possible scenario is provided in the following Table 5.

Thus, the final TAF code for this time window 
would be:

0106/0109 9999 PROB40 TEMPO 0106/0109 3000=.

Table 3. Classification and regression models used (Chase 
et al., 2022)

Method Name Purpose/ advantages

ML 
Classification

Logistic 
Regression

Simple, interpretable, works well 
with linearly separable data

Decision 
Tree

Handles non-linearity, 
interpretable, prone to overfitting

Random 
Forest

Reduces overfitting, handles 
imbalanced data with class 
weighting

Gradient 
Boosting

Powerful, reduces bias, effective 
with imbalanced data

AdaBoost Focuses on misclassified cases, 
robust to outliers

KNN Non-parametric, works well 
with small datasets, sensitive to 
imbalances

ML  
Regression

Linear 
Regression

Simple, interpretable, works well 
as a reference

Bayesian 
Ridge

Regularized, prevents overfitting, 
robust to multicollinearity

Random 
Forest

Captures non-linearity, robust, 
handles missing values

AdaBoost Boosts weak learners, handles 
complex relationships

Gradient 
Boosting

Highly accurate, handles non-
linear patterns well

Decision 
Tree

Non-linear regression, 
interpretable, risk of overfitting

K-Nearest 
Neighbors

Non-parametric, simple, can 
adapt to data distributions

Polynomial 
Regression

Captures non-linearity, prone to 
overfitting

Deep Learning 
Classification

Multilayer 
perceptron

Captures complex relationships, 
works well with large datasets

Table 4. Selected model performance metrics

Variable Name Advantage

Deterministic 
continuous

MAE Straightforward
Max Error Highlights worst-case errors

Deterministic 
Categorical

Accuracy Straightforward
F1 Objective (Hubbard et al., 2005)
ROC Measures model performance 

across all classification 
thresholds 

AUC Quantifies the ability of the 
model to distinguish between 
classes (Chase et al., 2022) 

Probabilistic 
categorical

Ranked 
Probability 
Score

Suitable for probabilistic 
multicategory (Ferri et al., 2008)

Log-loss Proper for probability, penalizes 
confident wrong predictions

Brier Skill 
Score

Proper for probabilistic 
multicategory (Mason, 2004)

Expected 
calibration 
error

Measures how well forecast 
probabilities match observed 
frequencies (Famiglini et al., 
2023)

Regulatory 
Compliance

TEMPO 
usage

Evaluates adherence to formal 
prediction standards and 
guidelines

Groups 
usage

Evaluates compliance with 
regulations for the use of 
change groups
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By its very nature, TAF involves categorical values and 
identifies the most likely value (ICAO, 2016). Additionally, 
the process must balance probabilistic, deterministic, and 
formal requirements, which is made in accordance to na-
tional regulations (Sládek et  al., 2024). The Table  6 pre-
sents the modules that process raw model values into final 
forecasts, or, in the case of raw outputs, how the system 
directly delivers predictions to the user. Colors indicate at-
tribute quality: green for desirable, orange for neutral, and 
red for low quality.

Table 6. Formal modules for translating raw values into 
coded forecasts. 

Ra
w

 o
ut

pu
ts

Description Acc. Redundancy Formal 

All values in all 
categories and 

changes
Max High Low

All predicted 
categories and 
probabilities

Max High Low

Most likely or most 
frequent value in the 

time window
Med Low Med

All values with 
probability higher 

than 35%
Med Med Med

All values with 
probability higher 

than 45%
Low Low Med

Re
gu

la
to

ry
 C

om
pl

ia
nt Only Annex 3 

changes Low Low Max

Color codes changes 
only Low Low Max

Sp
ec

ia
l

Dangerous values or 
phenomena only Low Very Low Low

VMC changes only Low Very Low Low
Warning thresholds 

only Low Very Low Low

Table 6 outlines the various processing modules that 
determine how the ML model’s predictions are presented 
to the user. For instance, the version with complete prob-
abilities and range of cases is visualized in Table 7. 

Table 7. Example table output of the ML visibility 
classification refined by the regression within the category

Category Value Probability Regression value

0 0–800 m 1% 750
1 800–1500 m 30% 1200
2 1500–3000 m 17% 2100
3 3000–5000 m 1% 4000
4 More than 

5000 m
51% 9999

Due to ICAO Annex 3 (ICAO, 2016) regulations, which 
mandate a minimum probability threshold of 30% for in-
clusion of probabilistic information (PROB groups) in TAFs, 
the refined visibility forecast from Table 7 is constrained. 
Consequently, the ICAO_strict module outputs a simplified 
TAF code: 

DDHH 9999 PROB30 1200=.
This highlights the regulatory impact on the presenta-

tion of probabilistic forecasts, where detailed model out-
puts are condensed to meet operational requirements.

Formal processing is the final step, where significant 
compromises in the determined values may occur due to 
coding requirements and constraints on the intervals at 
which changes can be included. Given that historical data 
indicate low frequency of short term changes crossing 
the regulatory threshold values, the inclusion of TEMPO 
groups was deemed less critical for the presented case 
studies. However, it is acknowledged that TEMPO groups 
play a vital role in capturing temporary weather phenom-
ena, and their incorporation is considered in future exten-
sions of this research.

3.	Case study

For the case study, we used data from Brno-Tuřany Inter-
national Airport in the Czech Republic. Observations were 
taken from METAR reports, while predictors came from 
GFS in 3 hours step and ECMWF in 6 hour step spanning 
four years (2020–2023).

Following Figure 1, a procedure for wind speed and 
visibility prediction was designed, consisting of the fol-
lowing steps:

1.	Predictor Selection: PCA was applied to reduce the 
data from surrounding points, with PCA Loadings 
used to track with important features. Additionally, 
Permutation Importance and Feature Importance 
were compared as alternative approaches.

2.	Model Comparison: Different regression models 
were evaluated for wind speed prediction (accu-
racy), and classification models were assessed for 
visibility categories.

3.	Cross-Validation: Various cross-validation metrics 
were analyzed to evaluate model performance, 
highlighting their strengths and weaknesses.

4.	TAF Comparison: Finally, the model’s accuracy was 
compared with real TAF forecasts from professional 
distributions.

Table 5. Schematic representation of the ML model output 
for the categorical variable Visibility

Time

Visibility conditions for time window DD06/DD09

Conditions 1 
(9999)

Conditions 2 
(3000)

Conditions 3 
(0600)

Chan. Prob. Freq. Chan. Prob. Freq. Chan Prob. Freq.

06-09 0 80 4/6 1 42 2/6 1 10 5/6

Note: ‘D’ denotes day.
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3.1. Predictors selection
Following the procedural framework outlined in Figure 1 
the initial step in this case study involved the task of pre-
dictor selection. Given the high dimensionality of NWP 
data and the complex nature of visibility prediction, a 
combination of dimensionality reduction and feature im-
portance analysis was employed. In this section, the ap-
plication of PCA for dimensionality reduction is presented, 
specifically for the surrounding four points in case of the 
GFS model (Figure 2) and the model ECMWF (Figure 3). 
PCA was then followed by the calculation of the feature 
importance.

From the figures (Figure 2, Figure 3), it is evident that 
PCA effectively reduced data dimensionality from sur-
rounding points near the airport, retaining 99% of the 
variance. However, instability and precipitation predictors 
exhibited higher local variability. Furthermore, it can be 
inferred that higher-resolution models, capturing finer 
spatial details, may require fewer principal components to 
explain the same variance, as they provide a more detailed 
representation of the atmosphere. Nevertheless, with in-
creased resolution, the number of surrounding points used 
probably needs to be increased. Caution should be exer-
cised when applying PCA to binary or categorical data, 
such as visibility categories, as its suitability depends on 
the nature of the features. For example, one hot encod-
ing of categorical predictors before PCA may improve re-
sults. Therefore, categorical predictors should ideally be 
treated separately to ensure a more robust dimensionality 
reduction. To further understand the contribution of each 
original predictor to the derived principal components, 
the loadings – representing the coefficients of the original 
variables in the principal component space –were visual-
ized (Figure 3).

Based on the results from Figure 2, Figure 3, and Fig-
ure 4, PCA can be applied to reduce the dimensionality 
of surrounding points. The resulting principal components 
that correspond to the initial predictors are then used as 
model features. This approach is particularly relevant for 
visibility prediction, where at least eight principal compo-
nents are required to explain 99% of the variance. A key 
drawback of applying PCA twice is the increased diffi-
culty in interpreting the results. Specifically, tracing the 
influence of individual parameters on the final prediction 
would become challenging.

An alternative and more intuitive approach involves 
utilizing Feature Importance, which is inherently available 
in tree-based methods. This technique directly quantifies 
the contribution of each predictor to the model’s accu-
racy. However, it is important to distinguish between the 
built-in Scikit-learn method, which quantifies the Mean 
Decrease in Impurity, and the more general Permutation 
Importance, which provides a broader, model-agnostic 
evaluation (Figure 5).

Figure 2. Principal Component Analysis (PCA) applied 
to GFS visibility predictors, explaining 99% of variance 
from four surrounding points. Predictors: U and V wind 
components, precipitable water, relative humidity, planetary 
boundary layer height, visibility, and best 4-layer lifted index

Figure 3. PCA for potential ECMWF visibility predictors 
explaining 99% of variance from four surrounding points

Figure 4. PCA Loadings of first two principal components 
of ECMWF predictors applied on visibility, explaining 99% 
variance
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When evaluating the importance of predictors across 
lead times, three key considerations can be identified:

1.	Decrease in the importance of the initial observa-
tion. Due to the persistence of atmospheric condi-
tions, the initially observed visibility class remains 
the most influential predictor for approximately 6 to 
9 hours. This may indicate a significant persistence 
effect and, consequently, the inherent “complexity” 
of the weather system.

2.	Periodicity of temporal parameters. Features derived 
from the time of year exhibit a high contribution in 
cases where data quality is lower. This suggests that 
when direct forecasts from the model lack sufficient 
information, the model relies more heavily on tem-
poral patterns as the most relevant source of predic-
tive power rather than solely GFS values.

3.	Increasing importance of GFS visibility. Visibility pre-
dictions from the GFS model have minimal impact 
on forecast accuracy until a lead time of approxi-
mately 24 hours is reached.

From the comparison of feature importance metrics, 
two key observations can be made:

1.	Consistent feature importance scores between Mean 
Decrease in Impurity (MDI) and permutation impor-
tance suggest that the feature is genuinely influen-
tial in the prediction.

2.	Higher MDI importance with lower permutation im-
portance may indicate the presence of high-cardi-

nality features or class imbalance, which can skew 
impurity-based importance measures.

3.	Higher permutation importance with lower MDI 
importance may highlight complex, non-linear re-
lationships between the feature and the target vari-
able, which are not fully captured by impurity-based 
methods.

A scenario with higher Mean Decrease Impurity (MDI) 
and lower permutation importance was frequently ob-
served. This suggests that a significant imbalance in the 
visibility classes likely hinders modelling performance. 
Consequently, the predictor selection process yielded 
three key conclusions: 

1.	Principal Component Analysis (PCA) effectively re-
duces the dimensionality of Numerical Weather 
Prediction (NWP) data source points, including wind 
speed predictors. However, applying PCA to visibility 
classes results in information loss. 

2.	Given the anticipated complexity of predicting vis-
ibility, Random Forest feature importance was vis-
ualized. For the initial 6–9 hours, the model relies 
heavily on the initial observations. The importance 
of the time of year, which emerged as the most 
significant feature, underscores the influence of the 
data quality. 

3.	Comparing feature importances reveals significant 
class imbalance. In this context, the model relies on 
combined features, such as the Planetary Bound-
ary Layer (PBL), which is predominantly determined 
by wind speed and temperature (Nielsen-Gammon 
et al., 2010), while underutilizing parameters like vis-
ibility or relative humidity.

A sensitivity analysis, performed using the Spearman 
Rank Correlation (ρ) between Mean Decrease in Impuri-
ty (MDI) and Permutation Importance (PI), confirms that 
the framework’s limitations stem primarily from predictor 
quality during specific meteorological regimes and lead 
times. For stable conditions, the model’s feature impor-
tance demonstrated an unusual alternating pattern of 
consistency, achieving high agreement (0.93–0.96) at lead 
times of 6, 12, 18, and 24 hours, but severely diverging 
(ρ  ≈ 0.40) at hours with a lower data quality (3, 9, 15, 
and 21 hours). Conversely, analysis restricted to windy 
conditions (Ws > 15 KT) revealed a breakdown in model 
interpretability, with ranging from a perfect 1 down to a 
critical negative correlation of ρ ≈ –0.5 at the 18-hour lead 
time. This negative correlation quantitatively demonstrates 
that the features the model was internally prioritizing (high 
MDI) actively harmed predictive performance (low PI).

3.2. Models’ performance
For wind speed prediction, all models exhibited similar 
performance trends, albeit with varying accuracy levels 
(Figure  6). The maximum error fluctuated based on data 
availability, with lower errors coinciding with ECMWF model 
output times (0, 6, 12, 18 UTC). Across all models, the Mean 
Absolute Error (MAE) remained consistently below 2.5 knots.

a)

b)

Figure 5. Comparison of: (a) – Mean Decrease in Impurity 
and (b) – Permutation Importance for Random Forest 
features predicting visibility categories. Low importance 
predictors are shown in gray
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Furthermore, it is significant that all models maintained 
wind speed accuracy within 5 knots in over 80% of predic-
tions across all lead times, with some exceeding 90%. This 
performance aligns with ICAO’s long-term desirable ac-
curacy criteria for wind forecasts. For subsequent machine 
learning modelling, Gradient Boosting (GB) was selected 
due to its superior baseline performance, ability to man-
age data imbalances through iterative refinement, provi-
sion of probabilistic outputs, and suitability for multiclass 
predictions (Figure 8). 

To explore the potential for further performance en-
hancements, a Multilayer Perceptron (MLP) neural network 
was optimized. The MLP architecture, a fully connected 
feedforward network designed for regression, incorpo-
rated multiple dense layers with ReLU activation, Batch 
Normalization, Dropout regularization, and L2 kernel regu-
larization to mitigate overfitting. Training was conducted 
using the Adam optimizer and Mean Squared Error (MSE) 
loss, with Mean Absolute Error (MAE) monitored. Early 
stopping, based on validation loss, was implemented to 
prevent overfitting and ensure optimal weight retention. 
For comparative purposes, Gradient Boosting with grid 
search calibrated hyperparameters was also evaluated, 
demonstrating very similar performance in wind speed 
modelling (Figure 7).

We can observe the lowest levels of errors in the 3 hours 
lead time, where the contribution of the observation is the 

highest. Then in the 6h lead time, and 12 h, high quality 
of the forecast results into low errors, whereas in 9 and 21 
hour lead times, both MAE and Max Error are the high-
est due to the usage of solely GFS data. In the Max error 
curve, the increasing trend is also observable, confirming 
assumption of the lead time dependence.

In summary, the choice of model appears to have a 
limited impact on the results, with data quality being the 
primary driver of fluctuations. This is supported by the 
comparable performance of Neural Network and Gradient 
Boosting models with calibrated hyperparameters. While 
improvements are most evident when incorporating the 
initial observation from the forecast release time, the larg-
est deteriorations occur during periods with limited data-
set or model availability. Conversely, technical preproc-
essing aspects, such as the use of scalers or variations in 
model architecture, have a comparatively minor influence. 

3.3. Performance comparison
To evaluate visibility prediction, we categorized visibility 
according to ICAO standards (0, 800, 1500, 3000, 5000 m 
or more) and compared Gradient Boosting classification 
results with professional TAF forecasts. Gradient Boosting 
was chosen for its suitability in probabilistic forecasting of 
multicategory variables, as supported by previous research 
(Natekin & Knoll, 2013).

Superficially, the classifier’s accuracy suggests strong 
performance. However, a closer examination reveals dis-
crepancies in the F1-score and log-loss, indicating poten-
tial issues with the classifier’s reliability. The exceptionally 
high Expected Calibration Error (ECE), exceeding 0.9, sig-
nifies a severe lack of calibration. These patterns can be 
attributed to: 

1.	substantial dataset imbalance, where the 5–10 km 
category constitutes approximately 92% of obser-
vations, challenging algorithmic performance and 
smoothing metric application in multicategory prob-
abilistic predictions and

2.	ECE curve’s indication of low data quality, which is 
worsened during runs with limited data availability.

Figure 6. Accuracy metrics (Mean Absolute Error and 
Maximum Error) of tested regression models (uncalibrated 
hyperparameters) across 3- to 24-hour lead times for wind 
speed forecasting

Figure 7. Performance comparison of the Multilayer 
Perceptron (MLP) neural network and Gradient Boosting 
(grid search calibrated hyperparameters) for wind speed 
prediction, including initial observed wind speed

Figure 8. Performance metrics (Accuracy, F1-score, log-loss, 
Brier Score, Brier Skill Score, Expected Calibration Error) of 
the Gradient Boosting classification algorithm predicting 
visibility categories
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For the professional TAF forecasts, the same evaluation 
was performed and visualized in the Figure 9.

Values in the Figure 9 demonstrate that the TAF accu-
racy is comparable to Gradient Boosting. Higher expertise 
is reflected in a slightly lower, though still elevated, Ex-
pected Calibration Error (ECE). The Brier Score compared 
to the visibility class distribution is slightly higher by TAF 
(where 0 represents perfect skill). Evaluating human-issued 
predictions with log-loss presents challenges due to its 
sensitivity to probabilities of 0 and 1, common in Termi-
nal Aerodrome Forecasts (TAFs) when a class is absent. To 
mitigate this, an epsilon parameter (0.01) was introduced, 
though a lower epsilon value would increase log-loss. Nor-
malization of probabilities to sum to 1 (or 100%) is also 
necessary for objective evaluation, despite potentially al-
tering the original intent of the prediction.

3.4. Case Study: January 2nd 2020
A specific case study is the production of a TAF forecast for 
a situation with a ridge of higher pressure over the Czech 
Republic, with reduced visibility in Brno on January 2, 2020. 

TAF in Brno (LKTB):
202001012300 TAF AMD LKTB 020303Z
0203/0306 VRB02KT 7000 SCT003
TEMPO 0203/0209 2000 BR BKN003
PROB30 TEMPO 0203/0209 0600 FZFG OVC002
BECMG 0209/0212 CAVOK=
A Gradient Boosting model, trained on independent 

data to predict visibility multiclass categories, was eval-
uated on unseen data from a specific day. The model’s 
predicted probabilities for each visibility class effectively 
captured the observed trend (Figure 10).

Following the evaluation of the Gradient Boosting 
model on unseen data, it was proceeded to a detailed 
comparison with the professional TAF forecast for January 
2nd, 2020. Table 8 presents the accuracy metrics calculated 
for both the Gradient Boosting model and the human-
issued TAF, evaluated at 3-hour and 30-minute intervals.

From the Figure 11 combined with Table 8, several ob-
servations can be drawn regarding the forecasting perfor-
mance at both 3-hour intervals and 30-minute intervals.

Figure 9. Performance metrics (accuracy, F1-score, log-loss, 
Brier Score, Expected Calibration Error) of professional TAF 
visibility forecasts from Brno-Tuřany International Airport Figure 10. Predicted probabilities of visibility categories 

from the Gradient Boosting model for January 2nd, 2020, 
demonstrating potential TAF support product

Figure 11. Visibility categories as forecast by the 
professional TAF for January 2nd, 2020, with clearly 
separated classes and probabilities leading to better 
illustrativeness in comparison to GB output

Table 8. Comparison of accuracy metrics of GB issued TAF 
supporting table for 2nd January 2020 and professional TAF 
forecast

GB 3h Human 3h GB 30‘ Human 30’

Accuracy 0.50 0.25 0.4 0.35
F1-score 0.40 0.18 0.43 0.38
Log-loss 3.50 4.06 3.04 2.40
Brier Score 0.49 0.62 0.45 0.41
Brier Skill Score 0.23 0.06 0.45 0.51
ECE 0.05 0.09 0.15 0.15

In the three hour step, Gradient Boosting (GB) out-
performs the human forecast in accuracy, F1-score, and 
probabilistic calibration, as reflected in a better Brier Score 
and lower log-loss. The GB model provides more reliable 
probability estimates and captures fluctuating afternoon 
visibility trends more effectively. However, it struggles with 
middle-range categories, likely due to sharp boundary 
conditions during low visibility periods.
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The Brier Skill Score (BSS) suggests that the human 
forecast is less skilful relative to a baseline, whereas GB 
shows an improvement. However, human forecasts still of-
fer room for improvement in explanation, particularly in 
handling the TEMPO group, which affects the users’ un-
derstanding of the conditions.

For finer time resolutions, key observations include:
1.	Accuracy: GB (0.40) performs slightly better than the 

human model (0.35), though both remain well below 
0.5, highlighting the difficulty of predicting visibility 
categories at this scale.

2.	F1 Score: GB (0.43) outperforms the human model 
(0.38), demonstrating better handling of imbalanced 
classes.

3.	Log Loss: GB (3.05) is higher than the human model 
(2.40), indicating that GB produces less confident 
probability estimates, even if it classifies categories 
more accurately.

4.	Brier Score: GB (0.45) is higher than the human 
model (0.41), meaning the human model has better-
calibrated probability estimates.

5.	Brier Skill Score (BSS): The human model (0.51) 
achieves a higher skill score than GB (0.45), sug-
gesting that while GB is more accurate overall, the 
human forecast provides more skillful probability 
estimates relative to a baseline model.

6.	Expected Calibration Error (ECE): Both models show 
relatively low calibration errors (GB: 0.16, Human: 
0.15), with human forecasts having a slight edge.

Gradient Boosting provides better raw classification 
performance in line with what it was trained for, which 
is reflected in higher accuracy and F1 scores. However, 
human forecasts demonstrate better probability calibra-
tion, leading to a lower Brier Score and higher BSS. This 
suggests that while GB is more consistent in categorical 
prediction, the human product offers more reliable proba-
bilistic assessments. 

4.	Discussion and conclusions 

This study investigated the feasibility of developing an au-
tomated framework for generating and evaluating Termi-
nal Aerodrome Forecasts (TAFs), focusing on wind speed 
and visibility predictions at Brno-Tuřany International Air-
port. Key findings include: 

1.	Principal Component Analysis (PCA) effectively re-
duced dimensionality for wind speed predictors but 
not for visibility categories. In most predictors, one 
component explained more than 99% of the vari-
ance within four neighbouring points. However, PCA 
was less effective for precipitation (convective and 
rate) and Convective Inhibition (CIN), partially for 
Convective Available Potential Energy (CAPE). 

2.	Random Forest feature importance highlighted the 
dominance of initial observations and seasonal pat-
terns in visibility prediction, revealing significant 
class imbalance. 

3.	Regression models for wind speed showed com-
parable performance, with data quality being the 
primary driver of accuracy. Notably, 100% of wind 
speed forecasts had a margin of error of 5 KT, in-
dicating that even using a global model, the ICAO-
required accuracy can be met. 

4.	Gradient Boosting (GB) classification for visibility 
demonstrated high accuracy but suffered from poor 
calibration and dataset imbalance. 

5.	A case study on January 2, 2020, revealed that 
GB outperformed human forecasts in raw classifica-
tion metrics, while human forecasts exhibited better 
probability calibration.

4.1. Interpretations 
The successful application of PCA for wind speed predic-
tion underscores the predictability of wind fields through 
dimensionality reduction. However, the ineffectiveness of 
PCA for visibility value suggests that visibility is a more 
complex phenomenon, requiring alternative feature selec-
tion methods. The dominance of initial observations and 
seasonal patterns in visibility prediction highlights the 
persistence of atmospheric conditions and the influence 
of data quality on model reliance. The comparable perfor-
mance of various regression models for wind speed, with 
data quality as the primary driver, indicates that model 
selection is less critical than data preprocessing and avail-
ability.

The high accuracy of the GB classification for visibility, 
contrasted with low calibration and dataset imbalance, un-
derscores the challenges of predicting multicategory vari-
ables with skewed distributions. The case study on Janu-
ary 2, 2020, reveals a trade-off between raw classification 
performance (GB) and probability calibration (human fore-
casts), suggesting that human expertise still plays a crucial 
role in refining probabilistic predictions. The discrepancies 
between 3-hour and 30-minute interval forecasts highlight 
the scale-dependent challenges in visibility prediction. Fur-
thermore, the formal characteristics of the TEMPO group 
were not explicitly incorporated in the evaluation, despite 
their operational importance. Since TEMPO conditions are 
expected to be reached in less than half of the cases and 
only temporarily, their omission may have led to biases in 
assessing forecast accuracy. Consequently, this study must 
emphasize that the goal of the proposed framework is not 
to replace human forecasters by simply slightly outper-
forming them. A direct comparison that dismisses human 
expertise is highly undesirable, as regulatory compliance, 
operational necessity, and the structured format of the 
coded forecast introduce constraints that a purely Machine 
Learning system does not have to deal with. 

The findings have main implications for the develop-
ment of comprehensive TAF generation systems. The study 
demonstrates the potential of machine learning models 
to provide accurate first-guess TAFs, particularly for wind 
speed and visibility prediction. However, it also highlights 
the need for robust feature selection techniques and 
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calibration methods to address the complexities of visibil-
ity forecasting. The observed trade-off between classifica-
tion accuracy and probability calibration suggests that hy-
brid approaches, combining machine learning with human 
expertise, may be most effective.

The identification of data quality as a primary driver of 
model performance underscores the importance of reli-
able and comprehensive observational data. The observed 
influence of seasonal patterns suggests that incorporat-
ing long-term climatological data could further enhance 
prediction accuracy. The study also provides a framework 
for evaluating TAF performance, revealing the strengths 
and weaknesses of different accuracy metrics. Given that 
extending the training dataset back to 2016–2024 could 
potentially double the training set size, applying under-
sampling or balancing techniques may improve model 
performance on minor categories. Specialized models 
could also be developed to handle underrepresented con-
ditions effectively.

4.2. Limitations 
This study is limited by its focus on a single airport (Brno-
Tuřany) and a specific set of meteorological variables (wind 
speed and visibility). The findings may not be generaliz-
able to other airports or weather phenomena. The use of 
historical data from 2020–2023 may not fully capture the 
evolving atmospheric dynamics and including more ex-
tensive database could improve the models’ performance. 
The study’s reliance on specific models (PCA, Random For-
est, Gradient Boosting) may limit the exploration of alter-
native approaches.

The evaluation of human forecasts is constrained by 
the availability and format of TAF data, potentially affect-
ing the objectivity of comparisons. The introduction of 
an epsilon parameter to mitigate log-loss sensitivity in-
troduces a degree of subjectivity. The evaluation of the 
TEMPO group in human forecasts was limited, and further 
investigation into the impacts of these groups on user in-
terpretation is needed. Overall, formal processing of final 
code is just introduced, but further it will be investigated 
within separate research.

4.3. Recommendations
Future studies should expand the geographical scope 
to include a wider range of airports and climatic condi-
tions. Investigating additional meteorological variables, 
such as cloud cover and precipitation, would provide a 
more comprehensive evaluation of TAF forecasting. Explor-
ing advanced machine learning techniques, such as deep 
learning and ensemble methods, could further enhance 
prediction accuracy.

To improve the reliability of automated TAF forecasts, 
developing robust calibration methods is essential to ad-
dress dataset imbalance and enhance probabilistic predic-
tions. Incorporating real-time observational data and long-
term climatological information can further improve model 

adaptability and accuracy. With sufficiently accurate and 
locally adjusted forecasts, such a system could serve as a 
benchmark for evaluating the predictability of challeng-
ing weather situations. This benchmark could also facili-
tate comparisons of forecast complexity across airports in 
diverse climatic regions, providing comparison metrics of 
the local weather patterns’ inherent variability.

Further investigation into the impact of TEMPO groups 
and other change groups on forecast interpretation and 
user understanding is warranted. Additionally, developing 
standardized evaluation metrics for probabilistic TAFs, ac-
counting for both accuracy and calibration, would facilitate 
objective comparisons and enhance forecast reliability. Fi-
nally, creating a live, automated TAF framework, incorpo-
rating the findings of this study, would allow for continual 
testing and refinement of the system.
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