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Abstract. The aviation industry is experiencing significant growth due to the growing global demand for air
travel. The International Civil Aviation Organization predicts that air passenger volumes will quadruple by
2040, putting pressure on airport infrastructure and airspace capacity. This growth is causing environmental
challenges, particularly concerning emissions from aircraft operations and airport activities. These emissions
contribute to local air pollution and global climate change. Airports are complex operational hubs, requiring
sophisticated planning and efficient operations management to mitigate emissions and maximize throughput.
This thesis investigates how airport complexity and air traffic management strategies influence inefficiencies in
fuel use, time, cost, and environmental impact. Traffic scenarios were generated and analysed using MATLAB
code, calculating emissions and fuel consumption across all phases of the landing and take-off (LTO) cycle.
The results show significant differences in operational efficiency and environmental impact, offering insights

into the effectiveness of modern traffic control methods.
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1. Introduction

The aviation industry is experiencing significant growth due
to global air travel demand, with the International Civil Avia-
tion Organization (ICAQ) predicting a double-digit increase
in flying passengers by 2040. This growth is causing environ-
mental issues, including emissions from airplane operations
and airport activities, contributing to local air pollution and
global climate change. Surface congestion, ineffective taxiing,
and airport delays increase fuel consumption and emissions
(Cereijo, 2024). Contemporary airports are becoming sophis-
ticated operating centers with complex interactions among
stakeholders, such as air traffic control, airline operators,
ground handlers, and regulatory bodies. High-complexity
airports face difficulties in managing arrivals and departures,
requiring sophisticated scheduling, collaborative decision-
making systems, and integrated airport operations manage-
ment to enhance throughput and minimize emissions. Recent
improvements in air traffic control systems aim to improve
flight efficiency and mitigate environmental concerns.

2. Airport traffic complexity

Airport traffic complexity is a significant concern due to
the increasing demand for worldwide air travel. It involves
challenges in managing aviation operations due to traf-

fic density, aircraft interactions, weather unpredictability,
airspace configuration, and human constraints (Delahaye
et al., 2014). Understanding and measuring this complexity
is crucial for improving air traffic control, reducing delays,
maintaining safety (Eleimat & Oszi, 2025), and facilitating
automation in the future air transportation system.

Airport traffic complexity can be categorized as air-
side complexity, which pertains to aircraft in the airspace
around the airport and runways, and groundside complex-
ity, which relates to aircraft taxiing and gate operations.
Factors contributing to traffic congestion at airports in-
clude traffic density and interaction (Wang et al,, 2023),
airport design and runway arrangement (Olive et al., 2025),
meteorological conditions (Dalmau & Attia, 2025), aircraft
composition and wake turbulence, and various aircraft
classifications (Yin et al., 2024).

Metrics to assess air traffic complexity include traffic
density, conflict rate, dynamic density (Laudeman et al.,
1998), and entropy-based metrics (Moreno et al., 2024a).
Recent improvements in machine learning and data-driven
approaches have been used to classify traffic complexity
using radar data, aircraft trajectories, and air traffic control
communications (Moreno et al.,, 2024b). Ground complex-
ity includes gate assignment disputes, taxiway congestion,
pushback time, and runway crossing management. Simula-
tion techniques like the Federal Aviation Administration’s
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Surface Management System (SMS) and EUROCONTROL's
Enhanced METeo Information Translation (EMIT) are used
to simulate and forecast the complexity of surface move-
ment (Yin et al., 2024).

The burden of controllers is both a cause and a re-
sult of traffic complexity. Research has associated elevated
subjective effort with heightened complexity metrics and
an increased likelihood of errors (Hilburn, 2004). Cogni-
tive load theory suggests that exceeding a certain thresh-
old of complexity impairs performance, necessitating the
implementation of support aids or traffic flow limitations
(Delahaye et al., 2014).

Various solutions to alleviate complexity include pre-
tactical planning, dynamic re-sectorization, decision sup-
port systems, and automation and artificial intelligence (Al)
(Moreno et al., 2024a, 2024b). The research in this article
focuses on flight control and traffic management at air-
ports and the sustainable development of air traffic.

2.1. Flight control and traffic management at
airports

Airport air traffic control is divided into tower control,
approach/departure control, and en-route control. Tower
controllers oversee aircraft on runways and taxiways, while
approach/departure controllers manage aircraft entering
and departing the terminal manoeuvring area (Interna-
tional Civil Aviation Organization [ICAO], 2025). The airport
air traffic control service provides information to pilots,
including engine start times, meteorological and airport
information, local traffic, unauthorized departures, turbu-
lence dangers, incorrect aircraft configurations, and airport
status information (Netjasov & Babi¢, 2020; Poskuviené
et al., 2022). Airports use various methods to organize and
manage traffic, particularly during peak periods. Arrival
and departure management (AMAN/DMAN) regulates
aircraft entry into optimum time slots to mitigate conges-
tion and fuel use. Time-Based Flow Management (TBFM)
is used in the United States (Federal Aviation Administra-
tion, 2022), while Extended Arrival Management (XMAN)
is used in Europe (Eurocontrol, 2021). Optimal runway
use is essential for maximizing throughput (Memarzadeh
et al, 2023). Ground controllers monitor taxiway systems
using surveillance technologies like ASDE-X or A SMGCS.
Airport Collaborative Decision Making (A-CDM) combines
airlines, airport operators, ground handlers, and air traffic
control to make real-time decisions on turnaround times
(Wei et al., 2024), slot utilization, and delays (ICAQO, 2015).
Automation is used in aviation and airport traffic manage-
ment, with Decision Support Systems (DSS) (Jung et al.,
2016), and machine learning and Al forecasting runway oc-
cupancy durations, surface congestion, and conflict zones
(Nguyen et al., 2022).

At the strategic level, Airport Collaborative Decision-
Making entails collaboration between airlines, airport op-
erators, ground handlers, and air traffic control to make
real-time decisions on turnaround times, slot utilization,
and delays. The Network Manager Operations Centre
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(NMOC) in Europe oversees and regulates traffic flow at
the network level, allocating Air Traffic Flow Management
(ATFM) slots when demand exceeds capacity. Automation
is used in aviation and airport traffic management, with
Decision Support Systems (DSS) guiding controllers in se-
quencing, dispute resolution, and ideal taxi routes.

3. Emissions from the aviation sector

The aviation industry is a significant contributor to global
climate change, accounting for over 2.5% of global carbon
dioxide (CO,) emissions and contributing approximately
3.5% to global warming when including non-CO, impacts
such as nitrogen oxides (NO,), contrails, and cirrus cloud
production (Our World in Data, 2020). Despite improve-
ments in aviation fuel efficiency, overall emissions from the
industry have persistently increased due to the exponential
expansion of air travel. In 2018, commercial aviation pro-
duced over 918 million tonnes of CO,, ranking it as the
sixth-largest emitter worldwide (Overton, 2019).

In addition to CO,, airplane engines release NO, at
high altitudes, facilitating ozone production and dimin-
ishing atmospheric methane (Transport & Environment,
2021). Additionally, airplanes’ condensation trails may
evolve into cirrus clouds, which retain heat in the Earth's
atmosphere and exacerbate warming effects. The non-CO,
impacts may constitute two-thirds of aviation's overall cli-
mate impact (Lee et al., 2021).

Subsonic aircraft influence climate through radiative
forcing mechanisms, such as CO, emissions resulting in
positive Radiative Forcing (RF) (warming), NO, emissions
forming tropospheric O3 via atmospheric chemistry, NO,
emissions destroying ambient methane (CH,) via atmos-
pheric chemistry, sulphate particles arising from sulphur
in the fuel resulting in negative RF (cooling), soot parti-
cles resulting in a negative RF (warming), persistent linear
contrails forming in the wake of an aircraft, contrail-cirrus
cloud formation from spreading contrails, and a sub-com-
ponent of aviation-induced cirrus initiated by soot parti-
cles initiating cirrus clouds (Lee et al., 2009; Bagdi et al,
2023).

Aviation emissions within the European Union (EU) are
around 3.8% of total greenhouse gas emissions, making
them the second-largest source of transport emissions
behind road transport. In the absence of mitigation, fore-
casts indicate that aviation emissions may quadruple by
2050 relative to 2015 levels, jeopardizing the attainment
of global climate objectives (European Commission, 2022).
Addressing aviation’s environmental impacts requires a
synthesis of technological innovation, regulatory struc-
tures, and behavioral changes.

The landing and take-off (LTO) cycle, defined by the
International Civil Aviation Organization, involves activities
below 3000 feet. Airplane engines release pollutants such
as carbon monoxide, hydrocarbons, nitrogen oxides, and
particulate matter. These emissions are harmful to human
health and contribute to the production of ground-level
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ozone. The emissions vary across flight phases, affecting
environmental and health impacts. Analyzing emissions
during specific flight phases is crucial for understanding
these impacts.

3.1. Emissions from the aviation sector:
detailed pollutant analysis

Hydrocarbons, emitted during inefficient combustion,
contribute to photochemical smog and respiratory health
issues. Engine design improvements have decreased hy-
drocarbon emissions by 8.7% from 2005 to 2011, thanks
to fuel atomization and combustion regulation (Wasiuk
et al.,, 2016).

Carbon monoxide, a colorless gas, is released during
idle and taxi operations in aviation. Despite its brief air
presence, it poses health hazards. CO emissions decreased
by 1.6% between 2005 and 2011 (Wasiuk et al., 2016).

Carbon dioxide is the primary greenhouse gas released
by aircraft, contributing significantly to global warming due
to its prolonged air lifespan and radiative forcing impact.
In 2018, commercial aviation released around 918 million
tons of CO,, constituting 2.4% of total worldwide emis-
sions (Lee et al., 2021). CO, emissions are the most signifi-
cant component of aviation’s total contribution to climate
change, accounting for approximately 2% of all anthro-
pogenic emissions (ICAO, 2025). Improving fuel efficiency
is crucial to minimizing environmental impact. Removing
CO, from the atmosphere requires several processes, with
50% expected to be removed in 30 years and 30% in the
next few centuries (EASA Eco., n.d.).

Hydrocarbon fuel combustion produces water vapor, a
significant portion of airplane exhaust. This vapor can form
condensation trails, cirrus clouds, which retain infrared ra-
diation, causing net warming (Burkhardt & Karcher, 2011).

Aviation gasoline contains sulfur compounds that pro-
duce sulfur dioxide (SO,), which can oxidize into sulfate
aerosols, affecting air quality and human health. Although
the aviation sector contributes less to SO, than ground
transportation or industrial activities, its high-altitude
emissions are significant.

4. Experiment

4.1. Methodology

The methodology involves understanding airport maneu-
vering surfaces, airspace configuration, traffic volume,
aircraft paths, departure and landing distribution, aircraft
share ratio, fuel consumption, emissions, and costs of
emissions and noise. It also considers traffic volume, air-
craft types, fuel consumption, and emissions during flight
phases.

This study evaluates traffic complexity within an air-
port system, considering all aircraft in the system, from
landing to take-off, and analyzing the airport’'s maneuver-
ing regions and surrounding airspace, varying based on
aircraft type.

ATM can mitigate the environmental impacts of air
transportation by measuring performance using flight in-
efficiency measures, which refer to deviations from optimal
4D flight trajectory during any phase.

The Inefficiency Metric (IM) quantifies the disparity be-
tween actual and optimum values of the examined param-
eters, represented in a generic form as follows (Reynolds,
2009):

_ Actual value — Optimal value

/M(%)_ - x100. (1N
Optimal value

The study examines the time, fuel, and gas emissions
of airplanes, focusing on Inefficiency Metrics. Actual and
optimal values represent actual and optimal duration, fuel
use, and emissions, while optimal values represent unob-
structed flight and taxiing.

Inefficiency measurements are crucial for sustainability,
and analyzing performance indicators and metrics related
to economic, social, and environmental concerns at an air-
port can be valuable for all parties involved.

The Time Inefficiency (Tl) of a flight is determined by
the Equation (Simi¢ & Babi¢, 2015):

Jj="1...mi, (2)

where: T; - the time that the observed flight i spends
in flight phase j; T,,;; — optimal time — the time flight ¢
would spend in flight phase j if it were alone in the system
(without delay); m; — the total number of observed flight
phases for flight { (each flight in the observed system goes
through certain phases depending on the type of opera-
tion: landing or take-off).

Tjand T,y are used to determine aircraft delays, indi-
cating weather inefficiency and operational performance
at the airport.

Fuel consumption values and emissions of gases dur-
ing flight phases are sourced from the ICAO database
(ICAO, 2025) and EUROCONTROL's database, using the
Advanced Emission Model based on the BADA database
(EUROCONTROL, 2022).

Fuel consumption (FBij) during a certain phase j of
flight i (in kilograms) is calculated by the equation (Simi¢
& Babic¢, 2015):

FBij = Tij x Nix FBIj, 3)

where: T; — the time flight { spends in flight phase j (in
seconds); N; — engine number of the aircraft performing
the flight i; FBI;; — fuel consumption index of one engine
in flight phase j for a specific type of aircraft engine in
flight i (in kg/s).

The total fuel consumed on the flight and during the
observed phases of the flight j is (Simi¢ & Babi¢, 2015):

TFi:ZjFBij :zj(TiijixFBlij) j=1...mi. @)



Total spent fuel (TFa) of all observed flights i (for ob-
served phases of flight j) is (Simi¢ & Babi¢, 2014):

TFG:ZTH i=1...n, (5)
L

where: n — total number of observed flights i.

The emission of gas k during phase j of the observed
flight i is determined, depending on the gas, in one of the
following ways:

1) For the determination of HC, CO, and NOx emissions

Eijk = Tij x Ni x Elijk , (6)

where: Tij — the time flight i spends in flight phase j (in
seconds); Ni — engine number of the aircraft performing
the flight i; Elijk — gas emission k by one engine during
flight phase j for a specific aircraft engine type in flight i
(in kg/s).

2) To determine CO,, H,O and SO, emissions

Eijk = wk x FBij (7)

wk — multiplying factor of fuel consumed in a given flight
phase j on flight; i for specific gas k (Wcgp = 3.149; Wyppo =
1.23; wgp, = 0.00084); FBij — fuel consumed on flight i dur-
ing a certain flight phase j (in kg).

The different inefficiencies during phase j of the ob-
served flight i are determined in the following ways:

1. Inefficiency of fuel consumption

Following the establishment of the methodology for
assessing fuel consumption and gas emissions during spe-
cific and all recorded flight phases, the flight's fuel inef-
ficiency (FI) may be calculated using the equation below:

_ TFI-TFopti N

= ! 100, (8)
TFopti

where is: TFi — total fuel consumed during the flight and
during the observed flight phases j; TFopti — the amount
of fuel that would be consumed on flight i (during the
observed phases of flight j) when the aircraft would be
alone in the system (without delay).

2. Inefficiency of gas emissions

Similarly, the inefficiency of gas emissions El (Emission
Inefficiency) of the flight can be determined by the equation:

li = EELZTEOPH 400, )

TEopti

where is: TE( — total gas emission for all observed gases k
during flight phases j on flight i; TEopti — the amount of
observed gases k that would be emitted on flight i (during
the observed phases of flight j) if the aircraft were alone in
the system (without delay).

The inefficiencies of fuel consumption and gas emissions
are indicators of the airport’'s environmental performance.

3. Cost inefficiency

When determining the so-called cost inefficiencies, Cl
cost values related to the emission of certain gases and
noise were considered.
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The costs of gas emissions are calculated as follows:

= The cost of gas emissions k during phase j of ob-
served flight { is determined using the following
Equation (10):

CEijk = cek x Elijk, (10)

where is: cek — cost of emission of a certain gas (in Euro/kg;
ceco = 0.154762, cecn, = 0.04127, ceyc = 6.190476, cenoy =
7.050265, ceg,, = 6.706349); Elijk — emission of gas k by
one engine during flight phase j for a specific type of air-
craft engine on flight i (in kg/s).

4.2. Application of methodology

The proposed methodology aims to evaluate the impact
of air traffic control management on airport sustainabil-
ity by analyzing traffic complexity and system inefficiency
indicators. An experiment will be conducted using a hy-
pothetical airport to demonstrate the implementation of
this approach, considering medium-term traffic forecasts
predicting congestion and delays.

The system under consideration includes landing and
departing aircraft, airport manoeuvring surfaces and plat-
forms, traffic volume, fuel consumption, gas emissions, and
noise produced by specific aircraft types. The methodology
assumes predetermined values for aircraft speeds, separa-
tion distances, and separation on the runway and during
taxiing. The system uses taxiways and intersections based
on the "First come - first served” (FCFS) principle, and air-
craft movement is not monitored. The system is initially
devoid of traffic at the beginning of the observed period.

The experiment examined two air traffic management
strategies to optimize infrastructure: implementing a se-
quencing strategy where landings take precedence (Ar-
rivals Priority — A/P) and departing aircraft order is de-
termined by arrival and departure times (FCFS sequence).
This strategy allows take-offs to escape the runway if suf-
ficient time exists between landings or after the preceding
take-off. However, supplementary delays may be imposed
on landings, but overall aircraft take-off delays may be
reduced compared to the prior sequencing strategy.

The study assumes random aircraft entry into a system
with uniform inter-arrival times for low-intensity R (60s,
180s) and high-intensity traffic R (30s, 90s). This aligns with
medium-term traffic predictions, demonstrating the level
of traffic that results in system congestion and severe air-
craft delays. The observed time frame was one hour.

The experiment randomly assigned landing and take-
off operations to previously generated aircraft, with an
equally distributed 50/50% ratio. Two aircraft types were
observed: heavy and large, with a 25/75% ratio. Heavy
aircraft included B747s and A310s, while large aircraft
included B737-700s and F100s. Each type had a 50/50%
distribution. Heavy aircraft landing speeds are 150 kt, large
aircraft 130 kt, with taxiing speed on taxiways 25 kt and
15 kt at apron exit. Take-off is permitted when aircraft are
over 2 NM from landing threshold, previous aircraft left
PSS, and distance from previous take-off is sufficient, with
separation between aircraft being 120s or 90s.
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5. Results and discussion

The experiment examined Scenario 1 and Scenario 2, as-
sessing the impact of tactical forecast management strat-
egies on inefficiency solutions, using MATLAB codes to
generate aircraft operations with all traffic composition
and attribute requests (see Appendix).

The next figures will compare computations and re-
sults, analyze scenarios and traffic intensities to identify
system inefficiencies and determine effective techniques
for each situation.

Figure 1 shows average inefficiency values under low-
intensity traffic conditions, comparing Arrivals have prior-
ity (A/P) and Arrivals/Departure (A/D). Time inefficiency is
moderate, with A/D showing slightly higher values. Fuel
and cost inefficiencies remain close to zero or slightly neg-
ative, while emissions of CO,, H,0O, SO,, and NO, remain
close to zero. Emission inefficiencies for hydrocarbons and
CO are significantly elevated, suggesting incomplete com-
bustion emissions are disproportionately affected.

Figure 2 shows high inefficiency values for various
parameters under high-intensity traffic conditions, com-
paring A/P and A/D traffic scenarios. Time inefficiency is
high, with A/D reaching over 200%, indicating significant
delays. Fuel inefficiency and emissions of CO,, H,0, and
SO, show negative values, while emission inefficiencies for
hydrocarbons and CO are significantly elevated, especially
in the A/D scenario. NO, inefficiency also increases, and
cost inefficiency rises moderately.

In Figure 2, negative values of fuel and CO, inefficiency
can be observed for high-intensity traffic. While this may
appear counterintuitive at first, it results from the way in-
efficiency is defined relative to the theoretical “optimal”
no-delay baseline. In real-world conditions under very
high traffic intensities, airplanes may operate at speeds
and engine loads that occasionally place them in a more
favorable efficiency range (e.g., closer to optimal fuel
consumption per distance traveled). This can cause the
calculated real-world scenario to appear “more efficient”
than the baseline reference. Thus, negative values do not
indicate a methodological error but rather highlight that,
under certain operating regimes, actual driving conditions
can exceed the assumed optimal benchmark in terms of
fuel use and CO, emissions.

Figure 1. Average values of inefficiency for low-intensity
traffic (source: own edition)

Figure 2. Average values of inefficiency for high-intensity
traffic (source: own edition)

Figure 3 shows fuel consumption and emissions under
low traffic intensity conditions across different operational
scenarios. CO, emissions are highest, ranging from 21 000
to 22 000 units, indicating a strong correlation with to-
tal fuel usage. Fuel consumption values are lowest in the
baseline scenario and highest in the A/D scenario, indi-
cating delay-related inefficiencies. H,O emissions follow
a similar pattern to fuel use, slightly elevated under A/D
conditions. Take-off at the gate configurations show re-
duced fuel and emission levels, suggesting potential ef-
ficiency benefits.

Figure 4 shows the average hourly emission values of
key pollutants, including hydrocarbons (HC), carbon mon-
oxide (CO), nitrogen oxides (NO,), and sulfur oxides (SO,),
under low traffic intensity scenarios. NO, emissions are
the most prominent, consistently exceeding 110 kg/h. CO
emissions show greater variability, with the highest values
in the A/D scenario and lowest in the no-delay configu-
ration. Delays increase CO and HC emissions, while NO,
remains consistently high.

Figure 5 shows fuel consumption and emissions in dif-
ferent operational scenarios under high traffic intensity.
The A/D scenario has the highest emissions, with CO,
emissions approaching 60 000 kg/h and fuel consump-
tion exceeding 20 000 kg/h. The A/D scenario with take-
off at the gate yields lower values, suggesting operational
benefits in emission reduction. The no-delay scenario also
performs favorably, with lower fuel and CO, values. CO,
remains the dominant emission type.

Figure 3. Average values of fuel and emissions — low traffic
intensity (source: own edition)



Figure 4. Average values of emissions — low traffic intensity
(source: own edition)

Figure 5. Average values of fuel and emissions — high traffic
intensity (source: own edition)

Figure 6. Average values of emissions — high traffic
intensity (source: own edition)

Figure 6 shows the average hourly emission values of
key pollutants under low traffic intensity. NO, emissions
dominate, exceeding 250 kg/h in most cases. CO emis-
sions vary, with the highest values in the A/D scenario.
HC and SO, emissions remain low, with slight increases
in A/D and A/P. Scenarios involving take-off at the gate
significantly reduce all emission types, especially CO and
NO,. The no-delay scenario also performs favorably for CO
and HC emissions.
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6. Conclusions

The increasing complexity of airport traffic poses signifi-
cant challenges to effective airspace management and
ecological sustainability. With the expansion of global air
travel, airports face increased demands on ground opera-
tions, air traffic management, and runway capacity, lead-
ing to prolonged taxiing durations, delays, and elevated
fuel consumption. This operational inefficiency leads to
increased emissions of greenhouse gases (GHGs) and air
pollutants. Aviation fuel usage is linked to traffic density
and airport congestion, with idle time on taxiways, holding
patterns upon landing, and inefficient aircraft routing con-
tributing to excessive fuel use. Consequently, CO, emis-
sions and other harmful pollutants escalate, intensifying
the aviation industry’s environmental impact.

Aviation emissions account for around 2-3% of world-
wide CO, emissions, with the potential for significant es-
calation without mitigating efforts. In addition to carbon
dioxide, aircraft release non-CO, pollutants at elevated al-
titudes, contributing to further warming impacts. Enhanc-
ing airport traffic management, advancing aircraft tech-
nology, and implementing sustainable aviation fuels are
crucial measures for mitigating the environmental effects
of air travel.

This research assesses the inefficiencies and environ-
mental effects linked to airport ground operations across
different traffic levels and procedural arrangements. It
finds that the A/D scenario consistently yields the greatest
inefficiency across all categories, especially under heavy
traffic situations. Take-off operations exhibit much greater
inefficiencies in relative and absolute metrics, with signifi-
cant disparities in CO and HC emissions. Delay mitigation
strategies, such as gate-based takeoff protocols and im-
proved scheduling, are essential for airports seeking to
reconcile operational needs with environmental account-
ability, especially under rising air traffic pressures.
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Appendix

A1: MATLAB code for the input - low-intensity traffic sce-
nario

% Define constants num_landings = 50;
num_takeoffs = 50; total_aircraft =
num_landings + num_takeoffs;

% Aircraft types and probabilities
aircraft_types = {

‘B747 (3GEQ77), 'Heavy’, 150, 0.25 * 0.5;
‘A310 (1GEO15)’, 'Heavy’, 150, 0.25 * 0.5;
‘B737-700 (3CM031)’, 'Large’, 130, 0.75 * 0.5;
‘F100 (3RRO31)', 'Large’, 130, 0.75 * 0.5
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h

% Generate operations ensuring a 50% landing/takeoff
ratio operations =

[repmat({'Landing’}, num_landings, 1); repmat({'Take-off’},
num_takeoffs,

Nl

operations = operations(randperm(total_aircraft)); % Shuf-
fle operations

% Generate aircraft types based on probabilities
aircraft_choices = cell(total_aircraft, 1);
aircraft_probabilities =
cumsum(cell2mat(aircraft_types(;4))); for i =
1:total_aircraft r = rand;idx = find(r <=
aircraft_probabilities, 1);  aircraft_choices{i} =
aircraft_types{idx, 1}; end

% Generate inter-arrival times and occurrence times
inter_arrival_times = randi([60, 180], total_aircraft, 1);
occurrence_times = cumsum(inter_arrival_times);

% Initialize start of service times

start_service_times = occurrence_times;

%

Separation

parameters

previous_time = 0; previous_type =

",
1

for i = 1:total_aircraft current_aircraft =
aircraft_choices{i};

row_idx =

122

123

strcmp(aircraft_types(;, 1), current_aircraft);

current_type = aircraft_types{row_idx, 2};

if strcmp(operations(i}, ‘Landing’) if
~isempty(previous_type)
if strcmp(previous_type, 'Heavy') && strcmp(current_type,
‘Heavy’)
separation_time = 4 * 10; % 4 NM * 10s per NM el-
seif
strcmp(previous_type, 'Heavy’) &8& strcmp(current_type,

‘Large’)

separation_time = 5 * 10; elseif strcmp(previous_type,
‘Large’) &&

strcmp(current_type, 'Heavy') separation_time = 3 *
10;

elseif strcmp(previous_type, ‘'Large’) && strcmp(current_
type, ‘Large’)

separation_time = 3 * 10; else
end

separation_time = 0;

start_service_times(i) = max(start_service_times(i), pre-
vious_time +
separation_time);

end

previous_time = start_service_times(i) + (60 *
strcmp(current_type, 'Heavy’) +
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50 * strcmp(current_type, ‘Large’)); previous_type = cur-
rent_type;

elseif strcmp(operations{i}, ‘Take-off’)
vice_times(i) =
max(start_service_times(i), previous_time + (120 *
strcmp(previous_type, ‘Heavy’)
+ 90 * strcmp(previous_type, ‘Large’)));
start_service_times(i); previous_type = ";

start_ser-

previous_time =
end end

% Compute delays delays =
start_service_times - occurrence_times;

% Prepare data for Excel
IAS_approach =
cell(total_aircraft, 1); for i =
1:total_aircraft if
strcmp(operations{i}, ‘Landing’)
row_idx = strcmp(aircraft_types(;,1),
aircraft_choices{i}); IAS_approach{i} =
aircraft_types{row_idx, 3}; else
IAS_approach(i} =
NaN; end end

% Create table
T = table((1:total_aircraft)’, operations, aircraft_choices,
IAS_approach, ...
occurrence_times, start_service_times, delays, ...
‘VariableNames', {{Number_of_Aircraft’, ‘Operation’,
‘Type_of_Aircraft’, ...
‘IAS_Approach’, ‘Occurrence_in_System’, ‘Start_of_Service’,
'Delay’});
% Save to Excel filename =
‘Aircraft_Schedule_MATLAB xlsx’;
writetable(T, filename);
disp(['Excel file saved: ' filename]);
A2: MATLAB code for the input - high-intensity traffic sce-
nario
% Set random seed for reproducibility
rmg(42);
% Number of aircraft
num_landings = 60;
num_takeoffs = 40;
total_aircraft = num_landings + num_takeoffs;
% Aircraft types and classifications
aircraft_types = {'B747', 'A310', '‘B737-700', 'F100'};
engine_types
containers.Map({'B747','A310’,'B737-700’,'F100'},
{'3GE077',/1GE015','3CMO031’,'3RR031"});
aircraft_class = containers.Map({'B747',’A310},
{'heavy’, 'heavy);
aircraft_class('B737-700") = 'large’;
aircraft_class('F100') = 'large’;
IAS_map = containers.Map({'heavy’, large’}, [150, 130]); %
knots
% Generate operations
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ops = [repmat({’Landing’}, 1, num_landings), repmat({ Take-
off'}, 1, num_takeoffs)];

ops = ops(randperm(total_aircraft)); % shuffle

% Generate inter-arrival times and occurrence times

occ_landings = cumsum(60 + (180 - 60).*rand(1, num_

landings));

occ_takeoffs = cumsum(60 + (180 - 60).*rand(1, num_take-
offs));

% Merge occurrence times based on operation
occ_idx_| = 1;

occ_idx_t = 1;

occ_times = zeros(1, total_aircraft);

for i = 1:total_aircraft

if strcmp(ops{i}, ‘Landing’)

occ_times(i) = occ_landings(occ_idx_l);
occ_idx_| = occ_idx_| + 1;

128
129
else
occ_times(i) = occ_takeoffs(occ_idx_t);
occ_idx_t = occ_idx_t + 1;
end
end

% Generate aircraft types
aircraft_list = cell(1, total_aircraft);
class_list = cell(1, total_aircraft);
engine_list = cell(1, total_aircraft);
IAS_list = zeros(1, total_aircraft);

for i = 1:total_aircraft
if rand < 0.25 % heavy
type = randsample({'B747','A310'},1);
else % large
type = randsample({'B737-700','F100'},1);
end
aircraft_list{i} = type{1};
class_list{i} = aircraft_class(type{1});
engine_list{i} = engine_types(type{1});
IAS_list(i) = IAS_map(class_list{i});
end

% Initialize service times
start_service = zeros(1, total_aircraft);
delays = zeros(1, total_aircraft);
last_service = 0;

last_class = ";

last_op = ";

for i = 1:total_aircraft
occ = occ_times(i);
op = opsfi};

130

cls = class_list{i};

if strcmp(op, ‘Landing’)
sep = 0;
if strcmp(last_op, ‘Landing’)
% Separation in NM to time (s) = NM / speed
(NM/h) * 3600
switch [last_class ‘-’ cls]
case 'heavy-heavy’
sep = (4 / IAS_map(cls)) * 3600;
case 'heavy-large’
sep = (5 / IAS_map(cls)) * 3600;
case ‘large-heavy’
sep = (3 / IAS_map(cls)) * 3600;
case ‘large-large’
sep = (3 / IAS_map(cls)) * 3600;
end
end
occ_time = 60 * strcmp(cls, ‘'heavy’) + 50 *
strcmp(cls, ‘large’);
min_start = max([occ, last_service + sep + occ_
time));
else % Take-off
if strcmp(last_class, 'heavy’)

sep = 120;

elseif strcemp(last_class, ‘large’)
sep = 90;

else
sep = 0;

end

min_start = max([occ, last_service + sep]);

end

start_service(i) = min_start;

delays(i) = start_service(i) - occ;

last_service = start_service(i);

last_class = cls;

last_op = op;
end
% Create a table and save to Excel
T = table((1:total_aircraft)’, ops’, aircraft_list’, engine_list’,
IAS_list’, occ_times’,
start_service’, delays’, ...
‘VariableNames',
{'Aircraft_ID’,
‘Operation’,
‘Aircraft_Type’,
'IAS_Approach’, ‘Occurrence_Time’, ‘Start_of_Service’, 'De-
lay'});
‘Engine_Type',
writetable(T, 'Aircraft_Operations_Simulation_MATLAB.
xlsx’);
disp(‘Excel file generated: Aircraft_Operations_Simulation_
MATLAB.xIsx");



