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1.	Introduction 

The aviation industry is experiencing significant growth due 
to global air travel demand, with the International Civil Avia-
tion Organization (ICAO) predicting a double-digit increase 
in flying passengers by 2040. This growth is causing environ-
mental issues, including emissions from airplane operations 
and airport activities, contributing to local air pollution and 
global climate change. Surface congestion, ineffective taxiing, 
and airport delays increase fuel consumption and emissions 
(Cereijo, 2024). Contemporary airports are becoming sophis-
ticated operating centers with complex interactions among 
stakeholders, such as air traffic control, airline operators, 
ground handlers, and regulatory bodies. High-complexity 
airports face difficulties in managing arrivals and departures, 
requiring sophisticated scheduling, collaborative decision-
making systems, and integrated airport operations manage-
ment to enhance throughput and minimize emissions. Recent 
improvements in air traffic control systems aim to improve 
flight efficiency and mitigate environmental concerns.

2.	Airport traffic complexity

Airport traffic complexity is a significant concern due to 
the increasing demand for worldwide air travel. It involves 
challenges in managing aviation operations due to traf-

fic density, aircraft interactions, weather unpredictability, 
airspace configuration, and human constraints (Delahaye 
et al., 2014). Understanding and measuring this complexity 
is crucial for improving air traffic control, reducing delays, 
maintaining safety (Eleimat & Őszi, 2025), and facilitating 
automation in the future air transportation system.

Airport traffic complexity can be categorized as air-
side complexity, which pertains to aircraft in the airspace 
around the airport and runways, and groundside complex-
ity, which relates to aircraft taxiing and gate operations. 
Factors contributing to traffic congestion at airports in-
clude traffic density and interaction (Wang et  al., 2023), 
airport design and runway arrangement (Olive et al., 2025), 
meteorological conditions (Dalmau & Attia, 2025), aircraft 
composition and wake turbulence, and various aircraft 
classifications (Yin et al., 2024).

Metrics to assess air traffic complexity include traffic 
density, conflict rate, dynamic density (Laudeman et  al., 
1998), and entropy-based metrics (Moreno et al., 2024a). 
Recent improvements in machine learning and data-driven 
approaches have been used to classify traffic complexity 
using radar data, aircraft trajectories, and air traffic control 
communications (Moreno et al., 2024b). Ground complex-
ity includes gate assignment disputes, taxiway congestion, 
pushback time, and runway crossing management. Simula-
tion techniques like the Federal Aviation Administration’s 
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Surface Management System (SMS) and EUROCONTROL’s 
Enhanced METeo Information Translation (EMIT) are used 
to simulate and forecast the complexity of surface move-
ment (Yin et al., 2024).

The burden of controllers is both a cause and a re-
sult of traffic complexity. Research has associated elevated 
subjective effort with heightened complexity metrics and 
an increased likelihood of errors (Hilburn, 2004). Cogni-
tive load theory suggests that exceeding a certain thresh-
old of complexity impairs performance, necessitating the 
implementation of support aids or traffic flow limitations 
(Delahaye et al., 2014).

Various solutions to alleviate complexity include pre-
tactical planning, dynamic re-sectorization, decision sup-
port systems, and automation and artificial intelligence (AI) 
(Moreno et al., 2024a, 2024b). The research in this article 
focuses on flight control and traffic management at air-
ports and the sustainable development of air traffic.

2.1. Flight control and traffic management at 
airports 
Airport air traffic control is divided into tower control, 
approach/departure control, and en-route control. Tower 
controllers oversee aircraft on runways and taxiways, while 
approach/departure controllers manage aircraft entering 
and departing the terminal manoeuvring area (Interna-
tional Civil Aviation Organization [ICAO], 2025). The airport 
air traffic control service provides information to pilots, 
including engine start times, meteorological and airport 
information, local traffic, unauthorized departures, turbu-
lence dangers, incorrect aircraft configurations, and airport 
status information (Netjasov & Babić, 2020; Poškuvienė 
et al., 2022). Airports use various methods to organize and 
manage traffic, particularly during peak periods. Arrival 
and departure management (AMAN/DMAN) regulates 
aircraft entry into optimum time slots to mitigate conges-
tion and fuel use. Time-Based Flow Management (TBFM) 
is used in the United States (Federal Aviation Administra-
tion, 2022), while Extended Arrival Management (XMAN) 
is used in Europe (Eurocontrol, 2021). Optimal runway 
use is essential for maximizing throughput (Memarzadeh 
et al., 2023). Ground controllers monitor taxiway systems 
using surveillance technologies like ASDE-X or A SMGCS. 
Airport Collaborative Decision Making (A-CDM) combines 
airlines, airport operators, ground handlers, and air traffic 
control to make real-time decisions on turnaround times 
(Wei et al., 2024), slot utilization, and delays (ICAO, 2015). 
Automation is used in aviation and airport traffic manage-
ment, with Decision Support Systems (DSS) (Jung et  al., 
2016), and machine learning and AI forecasting runway oc-
cupancy durations, surface congestion, and conflict zones 
(Nguyen et al., 2022).

At the strategic level, Airport Collaborative Decision-
Making entails collaboration between airlines, airport op-
erators, ground handlers, and air traffic control to make 
real-time decisions on turnaround times, slot utilization, 
and delays. The Network Manager Operations Centre 

(NMOC) in Europe oversees and regulates traffic flow at 
the network level, allocating Air Traffic Flow Management 
(ATFM) slots when demand exceeds capacity. Automation 
is used in aviation and airport traffic management, with 
Decision Support Systems (DSS) guiding controllers in se-
quencing, dispute resolution, and ideal taxi routes.

3.	Emissions from the aviation sector 

The aviation industry is a significant contributor to global 
climate change, accounting for over 2.5% of global carbon 
dioxide (CO₂) emissions and contributing approximately 
3.5% to global warming when including non-CO₂ impacts 
such as nitrogen oxides (NOₓ), contrails, and cirrus cloud 
production (Our World in Data, 2020). Despite improve-
ments in aviation fuel efficiency, overall emissions from the 
industry have persistently increased due to the exponential 
expansion of air travel. In 2018, commercial aviation pro-
duced over 918 million tonnes of CO₂, ranking it as the 
sixth-largest emitter worldwide (Overton, 2019). 

In addition to CO₂, airplane engines release NOₓ at 
high altitudes, facilitating ozone production and dimin-
ishing atmospheric methane (Transport & Environment, 
2021). Additionally, airplanes’ condensation trails may 
evolve into cirrus clouds, which retain heat in the Earth’s 
atmosphere and exacerbate warming effects. The non-CO₂ 
impacts may constitute two-thirds of aviation’s overall cli-
mate impact (Lee et al., 2021).

Subsonic aircraft influence climate through radiative 
forcing mechanisms, such as CO2 emissions resulting in 
positive Radiative Forcing (RF) (warming), NOx emissions 
forming tropospheric O3 via atmospheric chemistry, NOx 
emissions destroying ambient methane (CH4) via atmos-
pheric chemistry, sulphate particles arising from sulphur 
in the fuel resulting in negative RF (cooling), soot parti-
cles resulting in a negative RF (warming), persistent linear 
contrails forming in the wake of an aircraft, contrail-cirrus 
cloud formation from spreading contrails, and a sub-com-
ponent of aviation-induced cirrus initiated by soot parti-
cles initiating cirrus clouds (Lee et al., 2009; Bagdi et al., 
2023).

Aviation emissions within the European Union (EU) are 
around 3.8% of total greenhouse gas emissions, making 
them the second-largest source of transport emissions 
behind road transport. In the absence of mitigation, fore-
casts indicate that aviation emissions may quadruple by 
2050 relative to 2015 levels, jeopardizing the attainment 
of global climate objectives (European Commission, 2022). 
Addressing aviation’s environmental impacts requires a 
synthesis of technological innovation, regulatory struc-
tures, and behavioral changes.

The landing and take-off (LTO) cycle, defined by the 
International Civil Aviation Organization, involves activities 
below 3000 feet. Airplane engines release pollutants such 
as carbon monoxide, hydrocarbons, nitrogen oxides, and 
particulate matter. These emissions are harmful to human 
health and contribute to the production of ground-level 
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ozone. The emissions vary across flight phases, affecting 
environmental and health impacts. Analyzing emissions 
during specific flight phases is crucial for understanding 
these impacts.

3.1. Emissions from the aviation sector: 
detailed pollutant analysis 
Hydrocarbons, emitted during inefficient combustion, 
contribute to photochemical smog and respiratory health 
issues. Engine design improvements have decreased hy-
drocarbon emissions by 8.7% from 2005 to 2011, thanks 
to fuel atomization and combustion regulation (Wasiuk 
et al., 2016).

Carbon monoxide, a colorless gas, is released during 
idle and taxi operations in aviation. Despite its brief air 
presence, it poses health hazards. CO emissions decreased 
by 1.6% between 2005 and 2011 (Wasiuk et al., 2016).

Carbon dioxide is the primary greenhouse gas released 
by aircraft, contributing significantly to global warming due 
to its prolonged air lifespan and radiative forcing impact. 
In 2018, commercial aviation released around 918 million 
tons of CO₂, constituting 2.4% of total worldwide emis-
sions (Lee et al., 2021). CO₂ emissions are the most signifi-
cant component of aviation’s total contribution to climate 
change, accounting for approximately 2% of all anthro-
pogenic emissions (ICAO, 2025). Improving fuel efficiency 
is crucial to minimizing environmental impact. Removing 
CO2 from the atmosphere requires several processes, with 
50% expected to be removed in 30 years and 30% in the 
next few centuries (EASA Eco., n.d.).

Hydrocarbon fuel combustion produces water vapor, a 
significant portion of airplane exhaust. This vapor can form 
condensation trails, cirrus clouds, which retain infrared ra-
diation, causing net warming (Burkhardt & Kärcher, 2011).

Aviation gasoline contains sulfur compounds that pro-
duce sulfur dioxide (SO₂), which can oxidize into sulfate 
aerosols, affecting air quality and human health. Although 
the aviation sector contributes less to SOₓ than ground 
transportation or industrial activities, its high-altitude 
emissions are significant.

4.	Experiment

4.1. Methodology 
The methodology involves understanding airport maneu-
vering surfaces, airspace configuration, traffic volume, 
aircraft paths, departure and landing distribution, aircraft 
share ratio, fuel consumption, emissions, and costs of 
emissions and noise. It also considers traffic volume, air-
craft types, fuel consumption, and emissions during flight 
phases.

This study evaluates traffic complexity within an air-
port system, considering all aircraft in the system, from 
landing to take-off, and analyzing the airport’s maneuver-
ing regions and surrounding airspace, varying based on 
aircraft type.

ATM can mitigate the environmental impacts of air 
transportation by measuring performance using flight in-
efficiency measures, which refer to deviations from optimal 
4D flight trajectory during any phase.

The Inefficiency Metric (IM) quantifies the disparity be-
tween actual and optimum values of the examined param-
eters, represented in a generic form as follows (Reynolds, 
2009):

( )      %   100
 

Actual value Optimal valueIM
Optimal value

−
= × .	 (1)

The study examines the time, fuel, and gas emissions 
of airplanes, focusing on Inefficiency Metrics. Actual and 
optimal values represent actual and optimal duration, fuel 
use, and emissions, while optimal values represent unob-
structed flight and taxiing.

Inefficiency measurements are crucial for sustainability, 
and analyzing performance indicators and metrics related 
to economic, social, and environmental concerns at an air-
port can be valuable for all parties involved.

The Time Inefficiency (TI) of a flight is determined by 
the Equation (Simić & Babić, 2015):

100           1,j j

h
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∑

,	 (2)

where: Tij  – the time that the observed flight i spends 
in flight phase j; Toptij  – optimal time  – the time flight i 
would spend in flight phase j if it were alone in the system 
(without delay); mi – the total number of observed flight 
phases for flight i (each flight in the observed system goes 
through certain phases depending on the type of opera-
tion: landing or take-off). 

Tij and Toptij are used to determine aircraft delays, indi-
cating weather inefficiency and operational performance 
at the airport.

Fuel consumption values and emissions of gases dur-
ing flight phases are sourced from the ICAO database 
(ICAO, 2025) and EUROCONTROL’s database, using the 
Advanced Emission Model based on the BADA database 
(EUROCONTROL, 2022).

Fuel consumption (FBij) during a certain phase j of 
flight i (in kilograms) is calculated by the equation (Simić 
& Babić, 2015): 

FBij Tij Ni FBIij= × × ,	 (3)

where: Tij  – the time flight i spends in flight phase j (in 
seconds); Ni – engine number of the aircraft performing 
the flight i; FBIij – fuel consumption index of one engine 
in flight phase j for a specific type of aircraft engine in 
flight i (in kg/s). 

The total fuel consumed on the flight and during the 
observed phases of the flight j is (Simić & Babić, 2015): 

( )     1,
j j

TFi FBij Tij Ni FBIij j mi= = × × = …∑ ∑ .	 (4)
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Total spent fuel (TFa) of all observed flights i (for ob-
served phases of flight j) is (Simić & Babić, 2014):

           1,
i

TFa TFi i n= = …∑ ,	 (5)

where: n – total number of observed flights i. 
The emission of gas k during phase j of the observed 

flight i is determined, depending on the gas, in one of the 
following ways: 

1)	For the determination of HC, CO, and NOx emissions

Eijk Tij Ni EIijk= × × ,	 (6)

where: Tij  – the time flight i spends in flight phase j (in 
seconds); Ni – engine number of the aircraft performing 
the flight i; EIijk  – gas emission k by one engine during 
flight phase j for a specific aircraft engine type in flight i 
(in kg/s). 

2)	To determine CO2, H2O and SOx emissions 

Eijk wk FBij= × ,	 (7)

wk – multiplying factor of fuel consumed in a given flight 
phase j on flight; i for specific gas k (wCO2 = 3.149; wH2O = 
1.23; wSOx = 0.00084); FBij – fuel consumed on flight i dur-
ing a certain flight phase j (in kg). 

The different inefficiencies during phase j of the ob-
served flight i are determined in the following ways: 

1.	Inefficiency of fuel consumption 
Following the establishment of the methodology for 

assessing fuel consumption and gas emissions during spe-
cific and all recorded flight phases, the flight’s fuel inef-
ficiency (FI) may be calculated using the equation below:

100TFI TFoptiFIi
TFopti
−

= × ,	  (8)

where is: TFi – total fuel consumed during the flight and 
during the observed flight phases j; TFopti – the amount 
of fuel that would be consumed on flight i (during the 
observed phases of flight j) when the aircraft would be 
alone in the system (without delay). 

2.	Inefficiency of gas emissions 
Similarly, the inefficiency of gas emissions EI (Emission 

Inefficiency) of the flight can be determined by the equation:

100tEI TEoptiEIi
TEopti
−

= × ,	 (9)

where is: TEi – total gas emission for all observed gases k 
during flight phases j on flight i; TEopti – the amount of 
observed gases k that would be emitted on flight i (during 
the observed phases of flight j) if the aircraft were alone in 
the system (without delay). 

The inefficiencies of fuel consumption and gas emissions 
are indicators of the airport’s environmental performance.

3.	Cost inefficiency 
When determining the so-called cost inefficiencies, CI 

cost values related to the emission of certain gases and 
noise were considered. 

The costs of gas emissions are calculated as follows:
	■ The cost of gas emissions k during phase j of ob-
served flight i is determined using the following 
Equation (10): 

CEijk cek EIijk= × ,	 (10)
where is: cek – cost of emission of a certain gas (in Euro/kg; 
ceCO = 0.154762, ceCO2 = 0.04127, ceHC = 6.190476, ceNox = 
7.050265, ceSox = 6.706349); EIijk – emission of gas k by 
one engine during flight phase j for a specific type of air-
craft engine on flight i (in kg/s). 

4.2. Application of methodology
The proposed methodology aims to evaluate the impact 
of air traffic control management on airport sustainabil-
ity by analyzing traffic complexity and system inefficiency 
indicators. An experiment will be conducted using a hy-
pothetical airport to demonstrate the implementation of 
this approach, considering medium-term traffic forecasts 
predicting congestion and delays.

The system under consideration includes landing and 
departing aircraft, airport manoeuvring surfaces and plat-
forms, traffic volume, fuel consumption, gas emissions, and 
noise produced by specific aircraft types. The methodology 
assumes predetermined values for aircraft speeds, separa-
tion distances, and separation on the runway and during 
taxiing. The system uses taxiways and intersections based 
on the “First come – first served” (FCFS) principle, and air-
craft movement is not monitored. The system is initially 
devoid of traffic at the beginning of the observed period.

The experiment examined two air traffic management 
strategies to optimize infrastructure: implementing a se-
quencing strategy where landings take precedence (Ar-
rivals Priority  – A/P) and departing aircraft order is de-
termined by arrival and departure times (FCFS sequence). 
This strategy allows take-offs to escape the runway if suf-
ficient time exists between landings or after the preceding 
take-off. However, supplementary delays may be imposed 
on landings, but overall aircraft take-off delays may be 
reduced compared to the prior sequencing strategy.

The study assumes random aircraft entry into a system 
with uniform inter-arrival times for low-intensity R (60s, 
180s) and high-intensity traffic R (30s, 90s). This aligns with 
medium-term traffic predictions, demonstrating the level 
of traffic that results in system congestion and severe air-
craft delays. The observed time frame was one hour.

The experiment randomly assigned landing and take-
off operations to previously generated aircraft, with an 
equally distributed 50/50% ratio. Two aircraft types were 
observed: heavy and large, with a 25/75% ratio. Heavy 
aircraft included B747s and A310s, while large aircraft 
included B737-700s and F100s. Each type had a 50/50% 
distribution. Heavy aircraft landing speeds are 150 kt, large 
aircraft 130 kt, with taxiing speed on taxiways 25 kt and 
15 kt at apron exit. Take-off is permitted when aircraft are 
over 2 NM from landing threshold, previous aircraft left 
PSS, and distance from previous take-off is sufficient, with 
separation between aircraft being 120s or 90s.
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5.	Results and discussion

The experiment examined Scenario 1 and Scenario 2, as-
sessing the impact of tactical forecast management strat-
egies on inefficiency solutions, using MATLAB codes to 
generate aircraft operations with all traffic composition 
and attribute requests (see Appendix).

The next figures will compare computations and re-
sults, analyze scenarios and traffic intensities to identify 
system inefficiencies and determine effective techniques 
for each situation.

Figure 1 shows average inefficiency values under low-
intensity traffic conditions, comparing Arrivals have prior-
ity (A/P) and Arrivals/Departure (A/D). Time inefficiency is 
moderate, with A/D showing slightly higher values. Fuel 
and cost inefficiencies remain close to zero or slightly neg-
ative, while emissions of CO₂, H₂O, SOₓ, and NOₓ remain 
close to zero. Emission inefficiencies for hydrocarbons and 
CO are significantly elevated, suggesting incomplete com-
bustion emissions are disproportionately affected.

Figure 2 shows high inefficiency values for various 
parameters under high-intensity traffic conditions, com-
paring A/P and A/D traffic scenarios. Time inefficiency is 
high, with A/D reaching over 200%, indicating significant 
delays. Fuel inefficiency and emissions of CO₂, H₂O, and 
SOₓ show negative values, while emission inefficiencies for 
hydrocarbons and CO are significantly elevated, especially 
in the A/D scenario. NOₓ inefficiency also increases, and 
cost inefficiency rises moderately.

In Figure 2, negative values of fuel and CO₂ inefficiency 
can be observed for high-intensity traffic. While this may 
appear counterintuitive at first, it results from the way in-
efficiency is defined relative to the theoretical “optimal” 
no-delay baseline. In real-world conditions under very 
high traffic intensities, airplanes may operate at speeds 
and engine loads that occasionally place them in a more 
favorable efficiency range (e.g., closer to optimal fuel 
consumption per distance traveled). This can cause the 
calculated real-world scenario to appear “more efficient” 
than the baseline reference. Thus, negative values do not 
indicate a methodological error but rather highlight that, 
under certain operating regimes, actual driving conditions 
can exceed the assumed optimal benchmark in terms of 
fuel use and CO₂ emissions.

Figure 3 shows fuel consumption and emissions under 
low traffic intensity conditions across different operational 
scenarios. CO₂ emissions are highest, ranging from 21 000 
to 22 000 units, indicating a strong correlation with to-
tal fuel usage. Fuel consumption values are lowest in the 
baseline scenario and highest in the A/D scenario, indi-
cating delay-related inefficiencies. H₂O emissions follow 
a similar pattern to fuel use, slightly elevated under A/D 
conditions. Take-off at the gate configurations show re-
duced fuel and emission levels, suggesting potential ef-
ficiency benefits.

Figure 4 shows the average hourly emission values of 
key pollutants, including hydrocarbons (HC), carbon mon-
oxide (CO), nitrogen oxides (NOₓ), and sulfur oxides (SOₓ), 
under low traffic intensity scenarios. NOₓ emissions are 
the most prominent, consistently exceeding 110 kg/h. CO 
emissions show greater variability, with the highest values 
in the A/D scenario and lowest in the no-delay configu-
ration. Delays increase CO and HC emissions, while NOₓ 
remains consistently high.

Figure 5 shows fuel consumption and emissions in dif-
ferent operational scenarios under high traffic intensity. 
The A/D scenario has the highest emissions, with CO₂ 
emissions approaching 60  000 kg/h and fuel consump-
tion exceeding 20 000 kg/h. The A/D scenario with take-
off at the gate yields lower values, suggesting operational 
benefits in emission reduction. The no-delay scenario also 
performs favorably, with lower fuel and CO₂ values. CO₂ 
remains the dominant emission type.

Figure 1. Average values of inefficiency for low-intensity 
traffic (source: own edition)

Figure 2. Average values of inefficiency for high-intensity 
traffic (source: own edition)

Figure 3. Average values of fuel and emissions – low traffic 
intensity (source: own edition)
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Figure 6 shows the average hourly emission values of 
key pollutants under low traffic intensity. NOₓ emissions 
dominate, exceeding 250 kg/h in most cases. CO emis-
sions vary, with the highest values in the A/D scenario. 
HC and SOₓ emissions remain low, with slight increases 
in A/D and A/P. Scenarios involving take-off at the gate 
significantly reduce all emission types, especially CO and 
NOₓ. The no-delay scenario also performs favorably for CO 
and HC emissions.

6.	Conclusions

The increasing complexity of airport traffic poses signifi-
cant challenges to effective airspace management and 
ecological sustainability. With the expansion of global air 
travel, airports face increased demands on ground opera-
tions, air traffic management, and runway capacity, lead-
ing to prolonged taxiing durations, delays, and elevated 
fuel consumption. This operational inefficiency leads to 
increased emissions of greenhouse gases (GHGs) and air 
pollutants. Aviation fuel usage is linked to traffic density 
and airport congestion, with idle time on taxiways, holding 
patterns upon landing, and inefficient aircraft routing con-
tributing to excessive fuel use. Consequently, CO₂ emis-
sions and other harmful pollutants escalate, intensifying 
the aviation industry’s environmental impact.

Aviation emissions account for around 2–3% of world-
wide CO₂ emissions, with the potential for significant es-
calation without mitigating efforts. In addition to carbon 
dioxide, aircraft release non-CO₂ pollutants at elevated al-
titudes, contributing to further warming impacts. Enhanc-
ing airport traffic management, advancing aircraft tech-
nology, and implementing sustainable aviation fuels are 
crucial measures for mitigating the environmental effects 
of air travel.

This research assesses the inefficiencies and environ-
mental effects linked to airport ground operations across 
different traffic levels and procedural arrangements. It 
finds that the A/D scenario consistently yields the greatest 
inefficiency across all categories, especially under heavy 
traffic situations. Take-off operations exhibit much greater 
inefficiencies in relative and absolute metrics, with signifi-
cant disparities in CO and HC emissions. Delay mitigation 
strategies, such as gate-based takeoff protocols and im-
proved scheduling, are essential for airports seeking to 
reconcile operational needs with environmental account-
ability, especially under rising air traffic pressures.
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Appendix 

A1: MATLAB code for the input - low-intensity traffic sce-
nario 
% Define constants num_landings = 50; 
num_takeoffs = 50; total_aircraft = 
num_landings + num_takeoffs; 
% Aircraft types and probabilities 
aircraft_types = { 
‘B747 (3GE077)’, ‘Heavy’, 150, 0.25 * 0.5; 
‘A310 (1GE015)’, ‘Heavy’, 150, 0.25 * 0.5; 
‘B737-700 (3CM031)’, ‘Large’, 130, 0.75 * 0.5; 
‘F100 (3RR031)’, ‘Large’, 130, 0.75 * 0.5 
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}; 
% Generate operations ensuring a 50% landing/takeoff 
ratio operations = 
[repmat({‘Landing’}, num_landings, 1); repmat({‘Take-off’}, 
num_takeoffs, 
1)]; 
operations = operations(randperm(total_aircraft)); % Shuf-
fle operations 
% Generate aircraft types based on probabilities 
aircraft_choices = cell(total_aircraft, 1); 
aircraft_probabilities = 
cumsum(cell2mat(aircraft_types(:,4))); for i = 
1:total_aircraft	 r = rand;	idx = find(r <= 
aircraft_probabilities, 1);	 aircraft_choices{i} = 
aircraft_types{idx, 1}; end 
% Generate inter-arrival times and occurrence times 
inter_arrival_times = randi([60, 180], total_aircraft, 1); 
occurrence_times = cumsum(inter_arrival_times); 
% Initialize start of service times 
start_service_times = occurrence_times; 
% 
Separation 
parameters 
previous_time = 0; previous_type = 
‘’; 
for i = 1:total_aircraft	 current_aircraft = 
aircraft_choices{i}; 
row_idx = 
122 
123 
strcmp(aircraft_types(:,1), current_aircraft); 
current_type = aircraft_types{row_idx, 2}; 

if strcmp(operations{i}, ‘Landing’)    if 
~isempty(previous_type) 
if strcmp(previous_type, ‘Heavy’) && strcmp(current_type, 
‘Heavy’) 
separation_time = 4 * 10; % 4 NM * 10s per NM	 e l -
seif 
strcmp(previous_type, ‘Heavy’) && strcmp(current_type, 
‘Large’) 
separation_time = 5 * 10;	 elseif strcmp(previous_type, 
‘Large’) && 
strcmp(current_type, ‘Heavy’)	 separation_time = 3 * 
10; 
elseif strcmp(previous_type, ‘Large’) && strcmp(current_
type, ‘Large’) 
separation_time = 3 * 10;	 else	 separation_time = 0; 
end 

start_service_times(i) = max(start_service_times(i), pre-
vious_time + 
separation_time); 

end 

previous_time = start_service_times(i) + (60 * 
strcmp(current_type, ‘Heavy’) + 

50 * strcmp(current_type, ‘Large’));	 previous_type  = cur-
rent_type; 

elseif strcmp(operations{i}, ‘Take-off’)	 start_ser-
vice_times(i) = 
max(start_service_times(i), previous_time  + (120 * 
strcmp(previous_type, ‘Heavy’) 
+ 90 * strcmp(previous_type, ‘Large’)));  previous_time = 
start_service_times(i); previous_type = ‘’;	 end end 

% Compute delays delays = 
start_service_times - occurrence_times; 

% Prepare data for Excel 
IAS_approach = 
cell(total_aircraft, 1); for i = 
1:total_aircraft	 if 
strcmp(operations{i}, ‘Landing’) 

row_idx = strcmp(aircraft_types(:,1), 
aircraft_choices{i});	 IAS_approach{i} = 
aircraft_types{row_idx, 3};	 else 

IAS_approach{i} = 
NaN; end end 

% Create table 
T  = table((1:total_aircraft)’, operations, aircraft_choices, 
IAS_approach, ... 

occurrence_times, start_service_times, delays, ... 
‘VariableNames’, {‘Number_of_Aircraft’, ‘Operation’, 

‘Type_of_Aircraft’, ... 
‘IAS_Approach’, ‘Occurrence_in_System’, ‘Start_of_Service’, 
‘Delay’}); 
% Save to Excel filename = 
‘Aircraft_Schedule_MATLAB.xlsx’; 
writetable(T, filename); 
disp([‘Excel file saved: ‘ filename]); 
A2: MATLAB code for the input - high-intensity traffic sce-
nario 
% Set random seed for reproducibility 
rng(42); 
% Number of aircraft 
num_landings = 60; 
num_takeoffs = 40; 
total_aircraft = num_landings + num_takeoffs; 
% Aircraft types and classifications 
aircraft_types = {‘B747’, ‘A310’, ‘B737-700’, ‘F100’}; 
engine_types 
= 
containers.Map({‘B747’,’A310’,’B737-700’,’F100’}, 
{‘3GE077’,’1GE015’,’3CM031’,’3RR031’}); 
aircraft_class  = containers.Map({‘B747’, ’A310’}, 
{‘heavy’,’heavy’}); 
aircraft_class(‘B737-700’) = ‘large’; 
aircraft_class(‘F100’) = ‘large’; 
IAS_map = containers.Map({‘heavy’, ‘large’}, [150, 130]); % 
knots 
% Generate operations 
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ops = [repmat({‘Landing’}, 1, num_landings), repmat({‘Take-
off’}, 1, num_takeoffs)]; 
ops = ops(randperm(total_aircraft)); % shuffle 
% Generate inter-arrival times and occurrence times 
occ_landings  = cumsum(60  + (180 - 60).*rand(1, num_
landings)); 
occ_takeoffs = cumsum(60 + (180 - 60).*rand(1, num_take-
offs)); 
% Merge occurrence times based on operation 
occ_idx_l = 1; 
occ_idx_t = 1; 
occ_times = zeros(1, total_aircraft); 
for i = 1:total_aircraft 
if strcmp(ops{i}, ‘Landing’) 
occ_times(i) = occ_landings(occ_idx_l); 
occ_idx_l = occ_idx_l + 1; 
128 
129 

else 
occ_times(i) = occ_takeoffs(occ_idx_t); 
occ_idx_t = occ_idx_t + 1; 

end 
end 

% Generate aircraft types 
aircraft_list = cell(1, total_aircraft); 
class_list = cell(1, total_aircraft); 
engine_list = cell(1, total_aircraft); 
IAS_list = zeros(1, total_aircraft); 

for i = 1:total_aircraft 
if rand < 0.25 % heavy 

type = randsample({‘B747’,’A310’},1); 
else % large 

type = randsample({‘B737-700’,’F100’},1); 
end 
aircraft_list{i} = type{1}; 
class_list{i} = aircraft_class(type{1}); 
engine_list{i} = engine_types(type{1}); 
IAS_list(i) = IAS_map(class_list{i}); 

end 

% Initialize service times 
start_service = zeros(1, total_aircraft); 
delays = zeros(1, total_aircraft); 
last_service = 0; 
last_class = ‘’; 
last_op = ‘’; 

for i = 1:total_aircraft 
occ = occ_times(i); 
op = ops{i}; 

130 
cls = class_list{i}; 

if strcmp(op, ‘Landing’) 
sep = 0; 
if strcmp(last_op, ‘Landing’) 

% Separation in NM to time (s) = NM / speed 
(NM/h) * 3600 

switch [last_class ‘-’ cls] 
case ‘heavy-heavy’ 

sep = (4 / IAS_map(cls)) * 3600; 
case ‘heavy-large’ 

sep = (5 / IAS_map(cls)) * 3600; 
case ‘large-heavy’ 

sep = (3 / IAS_map(cls)) * 3600; 
case ‘large-large’ 

sep = (3 / IAS_map(cls)) * 3600; 
end 

end 
occ_time = 60 * strcmp(cls, ‘heavy’) + 50 * 

strcmp(cls, ‘large’); 
min_start = max([occ, last_service + sep + occ_

time]); 
else % Take-off 

if strcmp(last_class, ‘heavy’) 
sep = 120; 

elseif strcmp(last_class, ‘large’) 
sep = 90; 

else 
sep = 0; 

end 
min_start = max([occ, last_service + sep]); 

end 
start_service(i) = min_start; 
delays(i) = start_service(i) - occ; 
last_service = start_service(i); 
last_class = cls; 
last_op = op; 

end 
% Create a table and save to Excel 
T = table((1:total_aircraft)’, ops’, aircraft_list’, engine_list’, 
IAS_list’, occ_times’, 
start_service’, delays’, ... 
‘VariableNames’, 
{‘Aircraft_ID’, 
‘Operation’, 
‘Aircraft_Type’, 
‘IAS_Approach’, ‘Occurrence_Time’, ‘Start_of_Service’, ‘De-
lay’}); 
‘Engine_Type’, 
writetable(T, ‘Aircraft_Operations_Simulation_MATLAB.
xlsx’); 
disp(‘Excel file generated: Aircraft_Operations_Simulation_
MATLAB.xlsx’);


