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1.	Introduction 

Aircraft maintenance planning is a critical pillar of aviation 
safety, ensuring compliance with stringent regulations 
such as ICAO Annex 8 and EASA Part M while maintain-
ing operational efficiency (European Union Aviation Safety 
Agency [EASA], n.d.-a). For small fleets such as flight train-
ing schools, agricultural aviation, or emergency services 
maintenance downtime directly impacts operational via-
bility, as a single grounded aircraft can disrupt operation 
activities and cause maintenance congestion (Hasancebi 
et al., 2023). Despite advancements in optimization mod-
els for large-scale operations, existing frameworks often 
neglect the unique challenges of small fleets, including 
limited skilled manpower, high downtime costs, and reli-
ance on costly commercial software (e.g., AMOS, TRAX). 
Prior studies on maintenance planning have focused on 
large fleets, assuming homogeneous manpower efficien-
cies and overlooking skill-level disparities. For example, 
Kozanidis et al. (2012), Sanchez et al. (2020) developed 
optimization models that minimize downtime but fail to 
account for manpower heterogeneity, a critical factor in 
real-world efficiency. Additionally, heuristic approaches 
such as Witteman et  al. (2021) bin-packing algorithm 
prioritize computational speed over optimality, risking 
suboptimal resource allocation. Small fleets lack tailored 

solutions that balance manpower efficiency, regulatory 
compliance, and cost-effectiveness.

This study focuses on optimizing aircraft maintenance 
planning for small fleets by integrating manpower effi-
ciency (e.g. 75% vs. 50% skill levels) into a Mixed-Integer 
Linear Programming (MILP) framework. To develop a MILP 
model that minimizes maintenance downtime while en-
suring regulatory compliance and maximizing manpower 
utilization in small-fleet operations.

Research tasks:
1.	Review existing optimization models and identify 

gaps in manpower efficiency integration.
2.	Formulate a MILP model incorporating skill-based 

task allocation and safety constraints.
3.	Validate the model using MATLAB, offering a cost-

effective alternative to proprietary software.
4.	Analyze case studies (e.g., Cessna 172 maintenance 

checks) to assess reductions in downtime and work-
load imbalance.

This bridges a critical gap by explicitly modeling man-
power skill levels and regulatory constraints in MILP, a 
departure from prior studies that treat workforce as ho-
mogeneous. By leveraging MATLAB’s Branch-and-Bound 
algorithm, the model provides an accessible solution for 
small operators, reducing reliance on expensive tools.
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2.	Literature review

In this review, the emphasis is placed on two primary as-
pects: first, to clarify the factors that have been employed 
in the optimization process and the construction of the 
optimization model, as example variables such as man-
power quantity and feasibility; furthermore, it is impera-
tive to comprehend how these studies have neglected 
the efficiency of human resources. Second, the review will 
concentrate on the optimization models that have been 
implemented and their subsequent applicability and ex-
amine the potential applications of these models as well 
as the intricacies inherent in their structure.

Existing research on aircraft maintenance optimization 
has overlooked the critical role of manpower efficiency 
and workforce heterogeneity, focusing instead on techni-
cal and logistical constraints (Table 1). 

It is evident, that homogeneous manpower assump-
tions approach is effective for expedited scheduling, it 
poses a risk of suboptimal resource utilization in smaller 
fleets, where the heterogeneity of the manpower consider-
ably influences maintenance checks accomplishment dura-
tions results.

Neglect of Human Factors: while Muecklich et  al. 
(2023) linked 40% of ground-operation incidents to 
human error (e.g., procedural non-compliance, low ad-
equate experience), most optimization studies such as 
Jordan and Azarm (2022), Madeira et  al. (2021) ignored 
human factors in task allocation. Recent efforts in avia-
tion safety have emphasized the importance of proac-
tive hazard reporting, situational awareness, and resource 
management as part of a broader Safety Management 
System (SMS) framework (EASA, n.d.-b). A robust SMS 
explicitly integrates human performance metrics, such as 
skill-level variability and error probability, into mainte-
nance workflows, yet these considerations remain absent 
in quantitative optimization models This disconnect high-
lights the need for an integrative approach that captures 
the interplay between operational efficiency and human 
performance constraints.

Prior studies employed diverse optimization tech-
niques, each with distinct applicability, scale, and complex-

ity. A critical evaluation of approaches used in scientific 
literature highlights limitations for resource-constrained 
operators (Table 2). 

Multi-Objective Mixed-Integer Linear Programming 
(MMILP): extends MILP by simultaneously addressing 
conflicting objectives (e.g., cost minimization vs. resour-
ce availability). For example, Sanchez et al. (2020) used 
MMILP to optimize tail assignments and hangar sche-
duling for large fleets, achieving near-optimal solutions 
in minutes. However, its computational intensity requires 
iterative algorithms and large datasets renders it imprac-
tical for small fleets with limited IT infrastructure and fe-
wer resources to manage complex trade-offs. Mixed-Bi-
nary Integer Nonlinear Programming (MBINLP): handles 
nonlinear relationships (e.g., variable maintenance inter-
vals during disruptions). Jordan and Azarm (2022) applied 
MBINLP, adapting to flight cancellations and workforce 
shortages. However, its nonlinear complexity and reliance 
on machine learning for uncertainty modelling make it 
inaccessible for small operators lacking advanced tools. 
Second-Order Cone Programming (SOCP) Duran et  al. 
(2014) used SOCP to optimize cruise times and reduce 
idle costs by 60%. While effective for large airlines. SOCP 
is a type of convex optimization problem that involves 
optimizing a linear objective function over the intersec-
tion of an affine set and the product of second-order 
cones, making it suitable for problems with conic cons-
traints. In contrast, MILP involves linear objective func-
tions and constraints, with some variables constrained 
to be integers, making it ideal for problems requiring 
discrete decisions. The following sections delve into 
the key differences and applications of SOCP and MILP. 
Heuristic and Metaheuristic Approaches: Heuristics like 
bin-packing algorithm did not achieve optimal solutions 
(Witteman et al., 2021) or genetic algorithms (Niu et al., 
2021) prioritize computational speed over optimality. For 
instance, Witteman et al. (2021) reduced task allocation 
time by 30% using a constructive heuristic but ackno-
wledged an optimality gap of up to 5%. Similarly, meta-
heuristics (e.g., bacterial foraging optimization) (Ribagin 
& Lyubenova, 2021) they usually need precise adjustment 
of parameters, which can take a lot of time and might 

Table 1. Comparison between elements used in different research papers (source: compiled by the authors)

Reference Approach Findings / Results Limitations

(Dinis & Barbosa-
Póvoa, 2015)

Optimization framework for 
maintenance planning

Not explicitly stated (implied focus 
on technical/logistical constraints)

Assumed homogeneous manpower skill 
levels; ignored workforce heterogeneity 

(Johny Ali Firdaus 
et al., 2020)

Linear programming for 
heavy maintenance centers

Achieved 90% resource utilization Failed to account for skill-level disparities 
(e.g., 75% vs. 50% efficiency) or dynamic 
task assignments

Witteman et al. 
(2021)

Bin-packing heuristic for 
task allocation

30% reduction in task allocation 
duration; 5% optimality gap

Treated manpower as uniform; disregarded 
skill-level variations, leading to suboptimal 
resource utilization

Jordan and Azarm 
(2022)

Pandemic-era scheduling 
model

Adapted to manpower shortages Overlooked efficiency losses due to skill 
mismatches; ignored human performance 
metrics
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need specialized knowledge (Ribagin & Lyubenova, 2021). 
This tuning process can lead to suboptimal performance 
if not done correctly. Reinforcement Learning (RL) dyna-
mically adjusts schedules based on real-time data. Guo 
and Wang (2023) applied RL to balance flight hours and 
maintenance intervals. RL’s reliance on extensive training 
data and stochastic environments makes it unsuitable 
for small fleets with deterministic schedules and limited 
historical data.

MILP (Mixed-Integer Linear Programming) is a highly 
adaptable and cost-effective method that allows for ef-
ficient resource allocation by incorporating specific con-
straints and objectives, making it particularly beneficial 
for small fleets. Its flexibility enables the integration of 
discrete variables, such as varying skill levels of mainte-
nance personnel, alongside linear constraints that align 
with regulatory requirements, which is crucial given the 
manpower heterogeneity and compliance needs of small 
operators. Additionally, MILP can be solved using acces-
sible and affordable tools like MATLAB, contrasting with 
more expensive commercial software options (Derbez & 
Lambin, 2022), thus offering a cost-effective option for 
operators with limited budgets. Its scalability allows it to 
effectively manage small-scale problems with fewer vari-
ables, unlike more complex approaches that require ex-

tensive computational resources. The primary advantage 
of MILP lies in its ability to integrate manpower efficiency 
and safety constraints, specifically addressing the unique 
challenges faced by small fleets while ensuring that main-
tenance planning is both efficient and compliant, all while 
remaining computationally lightweight (Schulze Spüntrup 
et al., 2021). This makes MILP an ideal choice for small op-
erators seeking to optimize their operations while avoid-
ing significant costs, ultimately enhancing productivity and 
maintaining regulatory compliance.

3.	Methodology

The MILP approach is implemented using mathematical 
models in MATLAB, specifically using Branch and Bound 
(B&B) function which applied through MATLAB function 
(intlinprog) (Messac, 2015). B&B is an algorithmic tech-
nique that systematically explores all possible solutions 
to find the optimal one, by partitioning the problem into 
smaller subproblems (branching) and calculating bounds 
(bounding) to eliminate those subproblems that cannot 
yield a better solution than the current best (Figure 1). 
This method is particularly effective for solving combinato-
rial and discrete optimization problems, such as the trave-
ling salesman problem and integer programming. Linear 

Table 2. Comparison between different optimization methods in different research papers (source: compiled by the authors)

Technique/ 
Method Description Key Benefits Limitations for Small Operators References

MMILP Multi-Objective Mixed-Integer 
Linear Programming addressing 
conflicting objectives (e.g., cost vs. 
resource availability).

Achieves near-optimal 
schedules rapidly for 
large fleets (e.g., 529 
aircraft).

Computationally intensive; 
requires large datasets and IT 
infrastructure.

Sanchez et al. 
(2020)

MBINLP Mixed-Binary Integer Nonlinear 
Programming for nonlinear 
relationships (e.g., variable 
maintenance intervals).

Adapts to disruptions 
(flight cancellations, 
workforce shortages).

Complexity and reliance on 
machine learning for uncertainty 
modeling; inaccessible without 
advanced tools.

Jordan and 
Azarm (2022)

SOCP Second-Order Cone Programming 
for convex optimization with conic 
constraints.

Reduces idle costs by 
60% in large-scale airline 
scheduling.

Requires large-scale operations 
to justify setup; unsuitable for 
small fleets.

Duran et al. 
(2014)

Heuristics Rule-based methods (e.g., bin-
packing) for rapid task allocation.

30% faster scheduling 
with <5% optimality 
gap.

Suboptimal solutions; sacrifices 
precision for speed.

Witteman et al. 
(2021)

Metaheuristics High-level strategies (e.g., genetic 
algorithms, bacterial foraging 
optimization).

Prioritizes computational 
speed and adaptability.

Time-consuming parameter 
tuning; requires expertise to 
avoid suboptimal performance.

Niu et al. (2021); 
Ribagin and 
Lyubenova (2021)

Reinforcement 
Learning (RL)

Dynamic schedule adjustments 
using real-time data.

Balances flight hours 
and maintenance 
intervals with a 0.12% 
optimality gap.

Relies on extensive training data; 
unsuitable for deterministic small 
fleets.

Guo and Wang 
(2023)

FMILP Fuzzy Mixed-Integer Linear 
Programming for handling 
ambiguous constraints.

Reduces downtime 
in maintenance task 
scheduling.

Complexity from fuzzy logic; 
requires specialized knowledge.

Hasancebi et al. 
(2023)

ILP Integer Linear Programming for 
optimizing utility capacity.

Enhances compliance 
in labor-intensive 
environments.

Limited flexibility for mixed-
variable problems.

Hasancebi et al. 
(2023)

NLP Nonlinear Programming for 
modeling system interactions.

Captures complex 
variable relationships.

Prone to local optima; 
convergence challenges.

(Sriram & 
Haghani, 2003)
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programming (LP), also known as linear optimization, is a 
method used to achieve the best possible outcome (such 
as maximum or minimum value) in a mathematical model 
characterized by linear relationships. It is a specialized 
form of mathematical programming that finds extensive 
application in various fields, including resource alloca-
tion, production planning, and scheduling (Cassel, 2021; 
Jordan & Azarm, 2022). Additionally, MILP extends linear 
programming by allowing some decision variables to be 
integers, providing greater modeling flexibility in real-
world scenarios. MILP is particularly useful when discrete 
decisions are required, such as task assignments or equip-
ment selection (Cassel, 2021; Qin et al., 2020). It consists 
of three key components of MILP:

1.	An objective function that represents the goal of the 
optimization (such as minimizing cost, maximizing 
aircraft availability, or improving maintenance effi-
ciency). 

2.	Decision variables (both continuous and integer), 
such as manpower allocation, specific maintenance 
tasks to be performed, and available time slots. 

3.	Constraints that represent the limitations and re-
quirements of the problem, such as regulations 
regarding mandatory maintenance intervals, dou-
ble inspections, required inspection item tasks, or 
human factors like crew fatigue limitations and ef-
ficiency.

The main MILP formula that the suggested model use 
is defined as:
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where: c is vector of coefficients, x is vector of decision 
variables (integer variables), n represents number of ele-
ments and i is the index of element.

The linear inequality constraints are defined by feasible 
region or limits for the decision variables (x), as follows:

Ax b≤ ,	 (5)
where: A is matrix of coefficients in for the linear inequal-
ity constraints, b is vectors of constants responding to the 
upper bounds. The equality constraints are defined as fol-
lows:

eq eqA x b= ,	 (6)

where: Aeq is matrix coefficient for the equality constraints, 
beq is vector of constants representing the exact values 

the linear combination must equal. The nonnegative con-
straints are set as 

0ix ≥ .	 (7)

The relationship between maintenance checks and 
manpower is established seeking to optimize operations 
under constraints, such as limited manpower or time. Since 
the function f(x) to be optimized is the check’s elapsed 
time, which is minimized by optimal task allocation, con-
sequently, the check completion time must be defined and 
formalized as follows: 

( )1 2, , , n cf x x x = ε .	  (8)

The duration of the maintenance check is denoted by
  cε , representing the total time for completion. Since a 
maintenance check consists of multiple tasks, the duration 
of each task is denoted as tε  (in hours), indicating the 
time required for its completion. Task duration is meas-
ured in man-hours, which represents the total time needed 
for one person to complete the task. Certain tasks can be 
performed independently and in parallel, whereas others 
require a sequential approach for completion. 

Figure 1. Branch & Bound by MATLAB (Intlinprog) function 
(source: compiled by the authors)
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3.1. Parallel, sequential tasks and total check 
duration
The parallel tasks are executed within the same time frame 
as Figure 2 performing multiple maintenance tasks at the 
same time by different technicians. For example, one tech-
nician inspects the engine while another checks the land-
ing gear simultaneously. Consequently, the total elapsed 
duration for the entire maintenance check must exceed 
the maximum elapsed duration of the individual tasks.

 max ti
cp i iM

 ε
ε ≥   

 
,	  (9)

where:   cpε  is check elapsed duration for all tasks per-
formed in parallel in (hours), { }i

φ  is task elapsed duration 
for task (i) in Man-hour, Mi is amount of manpower for 
each task (i), i is task index number (in parallel method).

For the scenario where all tasks are performed in a se-
quence as Figure 2, Sequential task execution involves per-
forming maintenance tasks one after another by the same 
or different technicians. For example, an inspection must 
be completed before a component can be reinstalled. total 
check duration is given by the following Equation:

0

n
tn

cs
nM

 ε
ε ≥   

 
∑ ,	 (10)

where: csε  is check total duration for all tasks performed 
sequentially, tnε  is task elapsed duration for task (n) in 
Man-hour, Mn is amount of manpower for each task (n), 
n is index of the task number (in the sequential method).

The comparison between parallel and sequential task 
execution highlights significant differences in their impact 
on total maintenance check duration (Figure 2). Parallel 
execution allows multiple technicians to work simultane-
ously on different tasks, which can greatly reduce over-
all elapsed time. However, its effectiveness depends on 
the independence of tasks, manpower availability, and 
workspace constraints. In contrast, sequential execution 
increases the total check duration since each task must 
wait for the completion of the previous one, making it less 

efficient in terms of time utilization. Sequential schedul-
ing is typically required when tasks are interdependent, 
limited manpower, when physical space or tooling limits 
simultaneous operations, or when procedural or safety re-
quirements enforce a specific order. 

In the case of both task modes are combined, the total 
check elapsed time is represented as follows:

 c cp csε ≥ε + ε .	 (11)

0

 max
n

ti tn
c i i nM M

   ε ε
ε ≥ +      

   
∑ .	 (12) 

In practice a combined tasks allocation strategy, inte-
grating both parallel and sequential task flows more ac-
curately reflects typical maintenance practice (Figure 3). 
It optimizes technician efficiency, reduces idle time, and 
ensures procedural correctness.

3.2. Variables and constraints
Two types of variables are employed in the proposed 
model: binary decision variables, which indicate task as-
signments, and continuous variables, which track man-
power completion times.

The binary variable (task assignment variable) xij indi-
cates whether task (i) is assigned to manpower (j).

( ) ( ) ( )
( )
1                
0    ij

if thetask i assigned tomanpower J
x

otherwise





.

In scenario I, { }  1,2,3i∈ .corresponds to the task in-
dex, and { }   1,2j∈  corresponds to the manpower index. 
These variables represent the core decision of the prob-
lem namely, which tasks are assigned to each technician. 
The manpower completion time variable Tj represents the 
total time manpower (technician) (j) takes to complete the 
assigned tasks, adjusted for efficiency factor ej. Formally:

3

1

(     ) ti
j ij

ji

T x
e

=

ε
= ⋅∑ ,	 (13)

where tiε  is the duration of task i. These variables repre-
sent how long each technician remains occupied based Figure 2. Comparison between parallel and sequential task 

(source: compiled by the authors)

Figure 3. Combination of parallel and sequential tasks 
(source: compiled by the authors)
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on their assignments. The total completion time T, is a 
continuous variable, representing the maximum comple-
tion time Tj among all technicians:

{ }max jj
T T= .	 (14)

Finally, the overall check duration cε ​ must be at least 
as large as T, ensuring that no tasks extend beyond the 
total allocated time:

c T∴ε ≥ .	 (15)

To ensure the feasibility, efficiency, and logical consist-
ency of the proposed maintenance check model, a set of 
mathematical constraints is defined. These constraints gov-
ern the behavior of task assignments, manpower workload, 
and the total check duration within the MILP formulation 
(Figure 4). Each constraint serves a specific operational pur-
pose ranging from enforcing one-to-one task-to-technician 
allocation to limiting technician working hours based on ef-
ficiency. The constraints also reflect practical maintenance 
planning realities, such as maximum allowable check time 
and non-negativity of duration variables.

The constraints that are used in the model (Figure 4) 
seeking to ensure a realistic and solvable optimization 
problem are presented below, grouped according to their 
functional roles within the model, highlighting their role in 
shaping a realistic and solvable optimization model.

Assignment constraints – each task must be assigned 
exactly to one manpower:

{ }
=

= ∀ ∈∑
2

1

1      1,2,3ij i
j

x .	 (16)

Manpower time constraints – computes the time each 
worker spends on their assigned tasks, accounting for ef-
ficiency:

{ }
3

1

(    )       1,2ti
j ij j

ji

T x
e

=

ε
= ⋅ ∀ ∈∑ .	 (17)

Total completion time constraint  – ensuring T is the 
maximum of Tj:

{ }       1,2j jT T≥ ∀ ∈ .	 (18)

Non-negativity constraints – time cannot be negative:

{ }0 ,   0         1,2  j jT T≥ ≥ ∀ ∈ .	 (19)

4.	Results

By applying the suggested optimization method to the 
scenario described in Table 1, all feasible task assignments 
for Technicians A and B can be systematically evaluated. 
The goal is to minimize the overall check elapsed time by 
determining the optimal distribution of tasks between the 
two technicians. By applying the method (Equations (13) 
and (16)) on the scenario: 

( )1 11 21 31
1 0.75  0.5   

0.75
T x x x= + + ;	 (20)

( )2 12 22 32
1 0.75  0.5 

0.5
T x x x= + + .	 (21)

Since xij must be binary variable, and with respect to 
the constrains (Equations (15), (17), (18)) and all possible 
assignments are generated by substituting xij by {0,1}. The 
resulting outcome solutions and scenarios are presented 
in Table 3, revealing that scenario 2 yields the shortest 
check elapsed time and all optimal scenarios are shown 
in bold fields. 

Table 3. A summary of task assignment to technicians A 
and B with all feasible scenarios (source: compiled by the 
authors)

Scenario Tech-A 
(tasks) 

Tech-B 
(tasks) T1 (hrs) T2 (hrs) T (hrs)

1 1,2,3 none 3 0.0 3
2 1,2 3 2 1.5 2
3 1,3 2 2.33 1 2.33
4 1 2,3 1.33 2.5 2.5
5 2,3 1 1.66 2 2
6 2 1,3 0.667 3.5 3.5
7 3 1,2 1 3 3
8 none 1,2,3 0.0 4.5 4.5

Figure 4. The proposed MILP-based maintenance allocation 
model (source: compiled by the authors)
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The best scenarios (2nd and 5th columns) are shown in 
red while the other scenarios in blue (Figure 5). The ob-
tained results show that, the combination of parallel and 
sequential tasks distribution (Figure 6) allows reduction of 
check completion time by 1 hour. 

Brute-force enumeration  was used to systematical-
ly evaluate  all possible task assignment scenarios  (e.g., 
2 workers and 3 tasks = 8 total assignments) and compute 
their completion times. This serves as a verification step to 
confirm that the MILP solution truly achieves the optimal 
time (by comparing it against all feasible solutions).

4.1. Optimizing manpower vs workload: 
scenario I
To illustrate how different workload distributions affect the 
total completion time, two approaches to assigning tasks – 
parallel and sequential – were analysed. The scenario I de-
fines available manpower (n = 2) with different efficiency 
levels: Technician A with efficiency 75% and Technician B 
with efficiency 50%, performing 3 tasks requiring [1, 0.75, 
0.5] man-hour with different accomplishment times (Table 4).

Table 4. Example data (source: compiled by the authors)

Task 
no

Task Duration 
(mhrs) Manpower Manpower 

efficiency

1 1 Tech A 75%
2 0.75

Tech B 50%
3 0.5

The workflow is structured into two dedicated work 
packages (A and B), each assigned to a specific techni-
cian (A or B). These work packages are executed in parallel 
(both technicians work simultaneously on their respective 
packages), while tasks within each package are performed 
sequentially (one after another by the assigned technician). 
The script used to determine the optimal task allocation – 
based on Equation (8) for minimizing total completion 
time. To ensure proper formulation for MILP, the model 
explicitly defines constraints (e.g., task assignment rules, 
manpower efficiency adjustments) and decision variables 
(both discrete xij​ for task assignments and continuous Tj​ 
for worker-specific completion times).

4.2. Optimizing manpower vs workload: 
scenario II – 50 hours check of Cessna 172 
aircraft 
To test the performance of the model in realistic set-up, 
a 50-hour check of Cessna 172 aircraft is considered, with 
the goal of minimizing the total completion time by op-
timally distributing tasks. The check includes 13 tasks, 
each taking between 0.5 and 1 hour (Table 5). Since the 
manufacturer does not provide specific task durations for 
the Cessna 172 (CESSNA 172S maintenance programme, 
2022), these values are synthetic and randomly generated 
to reflect real-world variability. This choice does not affect 
the model’s ability to determine the optimal solution, as 
the optimization process is driven by the structural rela-
tionships between tasks and technician efficiency, rather 
than the numerical value of specific task durations. In prac-
tice, substituting real-world task durations would yield dif-
ferent numerical results (e.g., total check completion time), 
but would not alter the model’s structure, logic, or accu-
racy. Thus, the use of synthetic data in simulation affects 
only the numerical outcome, not the performance or ap-
plicability of the proposed optimization model.

Two technicians, technician A with efficiency of 75% 
and technician B with efficiency of 50%  – are available 
for the check-up. To minimize total check duration, the 
workflow is divided into two work packages. Each package 
contains a group of tasks selected to achieve the shortest 
possible execution time and is assigned to one techni-
cian. Tasks within each package are performed sequen-
tially, while both packages are executed in parallel. This 
configuration demonstrates the model’s ability to balance 
manpower efficiency and task dependencies through a 
combined execution strategy, where sequential task ex-
ecution within packages is complemented by parallel ex-
ecution between packages.

Figure 5. Completion times (Check) resulting from possible 
combinations of task assignments (source: compiled by the 
authors)

Figure 6. Scenario 2 with best task distribution (source: 
compiled by the authors)
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Again Brute-force enumeration was used to systemati-
cally evaluate all possible task assignment scenarios (e.g., 
2 Technicians and 13 tasks more than 8000 possible sce-
narios) and compute their completion times. This serves 
as a  verification step  to confirm that the MILP solution 
truly achieves the optimal time (by comparing it against 
all feasible solutions).

Optimal scenario for task distributions is summarized 
in Table 6, with total completion time of 7.82 hours, and 
the average completion time of 10.49 hours see Figure 7. 

The obtained result reflects a 25.5% improvement 
over average scenarios, highlighting the model’s ability 
to significantly reduce downtime. The optimization pro-
cess intelligently favors assigning shorter tasks to the less 

efficient technician, maximizing parallel execution without 
causing delays. Technician A (75% efficiency) is assigned a 
larger number of tasks but completes them faster due to 
higher throughput. Technician B (50% efficiency) receives 
fewer but strategically selected tasks that fit his slower rate 
without creating bottlenecks.

To evaluate the effectiveness of the proposed MILP op-
timization model, statistical validation was performed by 
generating ten sets of random task durations see Table 7. 
and comparing total check completion times under both 
manual (random assignment) and MILP optimized task al-
location strategies. 

The average check duration for the manual scenari-
os was 10.54 hours, while the MILP-optimized scenarios 
achieved an average of 7.91 hours, representing an aver-
age improvement of 25%. A paired t-test confirmed that 
this reduction was statistically significant (p-value = 0.0000, 
p < 0.05), indicating that the MILP-based model provides a 
consistently superior solution compared to manual plan-
ning under varied task distributions.

5.	Discussion and conclusions

The results of the study highlight several key findings rele-
vant to the optimization of aircraft maintenance processes. 
In line with previous works, the MILP model demonstrat-
ed the benefits of optimal task allocation and manpower 
distribution to reduce maintenance time while adhering 

Table 5. Time necessary to accomplish tasks (source: compiled by the authors)

Task No 1 2 3 4 5 6 7 8 9 10 11 12 13

Duration mhr 0.92 0.75 0.71 0.67 0.50 0.62 0.83 0.88 0.58 1.0 0.79 0.54 0.96

Figure 7. The optimal scenario vs all other scenarios (source: 
compiled by the authors)

Table 6. A summary of task assignments to each of two technicians for an optimal completion time (source: compiled by the 
authors)

Task No 1 2 3 4 5 6 7 8 9 10 11 12 13

Tech No B A A A A B B A B A A A B

Table 7. Comparison of MILP and manual check times using random task durations (source: compiled by the authors)

NO MILP times(hr) Mean times(hr) Task durations assumed (mhr)

1 8.54 11.39 0.91 0.95 0.56 0.96 0.82 0.55 0.64 0.77 0.98 0.98 0.58 0.99 0.98

2 8.58 11.43 0.74 0.90 0.57 0.71 0.96 0.90 0.98 0.83 0.52 0.92 0.97 0.84 0.88

3 7.58 10.11 0.87 0.70 0.83 0.59 0.85 0.52 0.64 0.52 0.55 0.91 0.85 0.66 0.98

4 7.84 10.44 0.52 0.72 0.69 0.88 0.90 0.59 0.74 0.72 0.82 0.85 0.88 0.64 0.84

5 7.87 10.48 0.83 0.58 0.56 0.75 0.98 0.67 0.79 0.61 0.88 0.63 0.75 0.85 0.95

6 7.57 10.1 0.98 0.77 0.57 0.57 0.63 0.92 0.63 0.91 0.62 0.96 0.67 0.60 0.63

7 8.07 10.74 0.81 0.74 0.68 0.92 0.79 0.77 0.96 0.64 0.88 0.88 0.69 0.78 0.54

8 7.45 9.93 0.53 0.77 0.89 0.97 0.56 0.78 0.73 0.51 0.67 0.58 0.90 0.66 0.76

9 7.72 10.29 0.58 0.80 0.63 0.83 0.84 0.87 0.73 0.54 0.61 0.96 0.58 0.91 0.77

10 7.84 10.46 1.00 0.54 0.72 0.55 0.98 0.50 0.89 0.91 0.93 0.54 0.70 0.63 0.90
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to constraints. By assigning tasks based on technician ef-
ficiency, the model identified solutions that minimized 
downtime. The Branch and bound algorithm used in the 
MILP model helped manage the numerous possible task 
allocation scenarios – specifically, 8192 scenarios for this 
example. This algorithm enabled the model to find the 
optimal solution efficiently. It is particularly useful for large 
optimization challenges, where the number of scenarios 
increases rapidly, i.e. for conditions where availability of 
skilful manpower is restricted but crucial like small fleet 
settings where workforce is frequently limited. The analysis 
of a 50-hour check for the Cessna 172 aircraft illustrates 
how optimization can reduce task completion times – it 
achieved approximately a 25% reduction in maintenance 
time compared to the average completion time in the 
simulation, based on the optimal time of approximately 
7.8  hours compared to the average time. By distribut-
ing tasks among technicians with different skill levels, the 
model balanced the workload effectively, ensuring ef-
ficient use of resources. By varying technician efficiency, 
the model’s accuracy remains unaffected. Since the MILP 
always selects the minimum completion time, such varia-
tions influence both manual allocations (and their mean 
values) and optimized results in a similar way affecting 
only the numerical outcome, not the validity of the model. 
It provides a good and easily understandable illustration of 
the MILP advancement for the small fleet settings. 

However, several challenges remain in implementing 
optimization models in real-world settings. One major is-
sue is the lack of documented task durations and man-
power (technicians) efficiencies, which necessitates devel-
oping estimation methods based on historical data and 
averaging previous checks. Although assumptions and the 
use of randomly generated task durations does not affect 
the model’s ability to determine the optimal solution, the 
use of generated task durations may not capture all the 
complexities of actual maintenance scenarios. In addition, 
applying the model in small aviation organizations may 
require integration with existing planning systems, which 
are often manual or fragmented, and may involve basic 
IT upgrades. Implementation also requires basic familiarity 
with MATLAB, sufficient to input task data, run the optimi-
zation routine, and interpret the resulting task allocation 
and completion time outputs. Personnel may need intro-
ductory training to use such tools effectively. Moreover, 
Safety Management Systems (SMS), in collaboration with 
Engineering and Quality departments, can support the 
evaluation of manpower efficiency and the development 
of task duration estimates based on historical performance 
records. These practical considerations represent important 
directions for applied research and real-world adoption.

Future research could use surveys and historical data 
to improve task duration estimates and develop better 
paths for assessing technician efficiency. Additionally, 
incorporating technician efficiency into the model intro-
duces ethical challenges. In practice, high-performing staff 
may be consistently assigned more work, potentially lead-
ing to overburdening or dissatisfaction. On the other hand, 

lower-performing individuals may deliberately underper-
form to avoid workload, creating unfair task distributions. 
To address this, performance metrics should be supported 
by a transparent and fair incentive or reward system, en-
suring that motivation is preserved and task allocations 
remain equitable.
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