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Article History:  Abstract. The main purpose of this study is to present the concept of the aircraft turbofan engine health 
status prediction with artificial neural network augmentation process. The main idea of engine health status 
prediction is based on the engine health status parameter broadly used in the aviation industry as well as 
propulsion technology being the performance and safety margin. As a result of research engine health status 
index is calculated in order to determine the engine degradation level. The calculated parameter is then used 
as a response parameter for the machine learning algorithm. The case study is based on the artificial neural 
network which was two-layer feedforward network with sigmoid hidden neurons and linear output neurons. 
Network performance is evaluated using mean squared error and regression analysis. The final results are ana-
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1. Introduction

Aircraft turbofan engine is the most popular aircraft pro-
pulsion type in the modern air transport. However, aircraft 
operation, reliability and safety strongly depend on the 
engine health status and its condition. Modern aircraft tur-
bofan engine is a very complex construction which is con-
trolled with very sophisticated electronic engine computer 
called FADEC (Full Authority Digital Engine Controller). This 
electronic device is trying to schedule engine operating 
parameters on the basis of the surrounding atmospheric 
conditions and signals provided by engine sensors. These 
sensors measure many signals like engine spool rotations, 
position of the engine actuators as well as pressure and 
temperature in several engine vertical cross-sections. All 
the engine data could be divided into the categories. Sig-
nal categories and types sensed and recorded during tur-
bofan engine operation are as follows:

Temperature Inputs
 ■ Engine Inlet Total Temperature (Tt2),
 ■ Compressor Exit Temperature (TT3),
 ■ Fan Turbine Inlet Temperature (FTIT).
Speed Inputs
 ■ Low Rotor Speed (N1),
 ■ High Rotor Speed (N2).

Pressure Inputs
 ■ Engine Inlet Static Pressure (Ps2),
 ■ Burner Pressure (Pb, Pt4, or Ps3),
 ■ Augmentor Inlet Total Pressure Mixed (Pt6m).
Position and movement signals
 ■ Compressor Inlet Variable Vanes resolver position 
transmitter (CIVV),

 ■ Rear Compressor Variable Vanes resolver position 
transmitter (RCVV),

 ■ Convergent Engine Nozzle Controller position trans-
mitter (CENC).

Aircraft Flight Condition Inputs
 ■ Mach Number (Mn or Mo),
 ■ Power Lever Angle (PLA).
The main object of the conducted research is the mod-

ern turbofan engine. This power plant is a low bypass, high 
compression ratio, dual spool, turbofan engine incorporat-
ing a mixed flow augmentor. The engine is of an advanced 
design with high thrust-to-weight ratio.

In this article, an effort was taken to define and deter-
mine engine health status model which is based on two 
of the recorded parameters representing engine aging 
and wearing. Step-by-step procedure was created which 
presents Engine Health Status Prediction algorithm taking 
advantage of the Machine Learning. On the example of 
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the F100-PW-229 engine, elaborated model and algorithm 
were used to train and test machine learning algorithms.

2. Literature review

As for the literature, there are some publications concern-
ing engine health status prediction and there are also 
some elaborations concerning engine fault detection, but 
only very few propose the idea of artificial neural network 
implementation into engine condition prediction, espe-
cially that there is limited access to real life aircraft engine 
operational data, which could be used to build the model 
of prediction. For instance, Huang et al. (2016) proposed 
a prediction method of nonlinear time series analysis with 
the simulation example and validation of the algorithm. 
Song et al. (2009) proposed an aeroengine performance 
parameters forecasting method using multiple linear re-
gression model, in which the effect of multiple factors was 
considered. Ji et al. (2020) presented the method of how 
the Convolutional Neural Network (CNN) could be used in 
engine fault detection of hot components. Shi et al. (2012) 
on the basis of the research of complexity and non-line-
arity of aero-engine Exhaust Gas Temperature (EGT) sys-
tem, proposed a regularization chaotic prediction model 
to build short time forecasting model of EGT. Machining 
learning for engine remaining useful life estimation and 
prediction were presented by Lan et al. (2018), Liu et al. 
(2021), Thakkar and Chaoui (2022) or Zheng et al. (2017). 
Machine learning applications in engine faults detections 
and predictions were presented by: Almasi (2016), Broth-
erton et al. (2000), De Giorgi et al. (2023), Liu et al. (2018), 
Lu et al. (2014), Saxena et al. (2008), Xiangyang (2019), 
Song et al. (2009) or Zhang et al. (2022). The other neural 
network applications could be also found in the literature. 
Wang et al. (2023) proposed a model for engine Remain-
ing Useful Life (RUL) that is entirely based on the atten-
tion mechanism. The attention model is divided into the 
multi-head self-attention and timing feature enhancement 
attention models. Zhang et al. (2022) proposed a dual-task 
network structure to realize engine health status assess-
ment and RUL prediction, which was based on bidirection-
al gated recurrent unit (BiGRU) and multi-gate mixture-of-
experts (MMoE). Some of the elaborations are based on 
the engine health status index, while for instance Chen 
et al. (2022) proposed data-driven method which does not 
require to know the physical nature of degradation mech-
anism, and used a bidirectional long short term memory 
(Bi-LSTM) network to construct the health state evaluation 
model. Ensemble learning has been used by Cheng et al. 
(2023) for aircraft engine RUL prediction by combining 
multiple methods with diverse weights to achieve better 
prediction accuracy and universality. Researchers have in-
troduced ensemble learning-based prognostic approaches 
to model the degradation process of aircraft engines and 
predict their remaining useful life. Huang et al. (2022) 
proposed a dynamic probability (DP) model and a long 
short-term memory neural network (LSTM) to estimate the 
remaining useful life (RUL) of the engine. Tirovolas and 

Stylios (2022) proposed Fuzzy Cognitive Maps (FCMs) as a 
Health Indicator (HI) prognostics method for engines RUL 
prediction. Another type of neural networks proposed for 
the engine health status prediction was proposed by Liu 
et al. (2023). Residual life prediction model based on Au-
toencoder and a Temporal Convolutional Network (TCN) 
was proposed. Wang et al. (2023) discussed how the mul-
tilayered perceptron network with random forest feature 
selection could be used to assess engine remaining useful 
life. Peng et al. (2022) proposed a dual-channel long short-
term memory (LSTM) neural network model to adaptively 
select the time feature and then perform first-order pro-
cessing on the time feature value and use LSTM to extract 
the time feature and first-order time feature information.

3. Problem description 

Nowadays, aircraft engines are usually maintained in ac-
cordance with the condition-based maintenance strategy. 
It means that it is possible to continue engine flight op-
erations as long as its condition, health and performance 
comply within the designed range. What is the background 
and motivation of the study? It results out of the over 25 
years of experience in the air force and aviation industry. 
One of the most crucial decisions maintenance managerial 
personnel must make is answering the question: is it still 
safe to continue engine flight operations, or should the en-
gine be removed from the aircraft, before it fails. Too early 
engine removal decreases efficiency of engine useful life 
usage, and it is not financially effective. In addition to this, 
it results in grounding aircraft, mission capability rate deg-
radation and reduces aircraft fleet operations. On the other 
hand, continuing engine flight operations while it should 
be removed from service might result in aircraft accident 
or even catastrophe. That is why it is extremely crucial to 
predict the moment when it is absolutely necessary to stop 
engine operations. All airline operators would like to take 
advantage of the engine useful life up to the maximum. It 
also helps airliners in the planning process of the engine 
replacement, repairs and overhauls, which are extremely 
expensive and usually require spare engines which are not 
available at any moment.

There have been many attempts in aircraft engine 
health status predictions. Still there are not too many 
models of prediction to be implemented into the engine 
preventive maintenance strategy and system. One of the 
reasons for this is the limited access to the real engine 
operational flight data, which allows us to analyze this data 
and use this as the input data into the created artificial 
neural network. This would allow us to train the neural net-
work on the real operational data which comes from dif-
ferent regions of the world, various year seasons, variety of 
the in-flight atmospheric conditions as well as conditions 
at the ground level. Engine simulated data in not very re-
liable data as it does not take under consideration dif-
ferent engine health conditions and in-time degradation. 
This definitely affects engine data with the engine wearing 
and deterioration. This is why it is a great opportunity to 
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take advantage of the real engine operational data which 
was collected for several years both in flights and on the 
ground during engine runs and tests. 

One of the problems is the engine health status pa-
rameter determination. This data would be the crucial 
parameter in predicting the whole engine condition and 
degradation. In this article one of the possible ways of 
engine health status prediction was presented. 

4. Research methodology

In Figure 1 there has been presented the proposed algo-
rithm of the neural network application in aircraft engine 
health status prediction.

4.1. Engine Health Status Prediction algorithm 
taking advantage of the neural network
The main purpose of this algorithm is to design, train de-
signed neural network architecture to distinguish (differ-
entiate) between healthy operation (“safe operation”) and 
two other engine health status conditions (“middle” and 
“unsafe”). 

Algorithm of the engine health status prediction con-
sist of the following steps:

1. Engine data exploration (identify what are the sig-
nals sensed as well as what is the data which was 
recorded),

2. Analyze the engine data and preprocess it (analyze 
engine parameters, what they comprise, which data 
is absolutely necessary),

3. Extract data features, which engine sensed param-

eters are crucial for engine degradation assessment,
4. Select, define or determine engine parameter which 

could be used to evaluate engine health status index 
(in our case Health Index results from Performance 
Margin (PMAR) and Specific Fuel Consumption Mar-
gin (SMAR) engine parameters),

5. Setting Engine Health Status Classes based on the 
PMAR, SMAR (“safe”, “middle”, “unsafe”),

6. Split the whole data into training set and testing 
set (usually the 2/3rd of the whole set is taken as a 
training data and 1/3rd of the testing data),

7. Design neural network, shallow feedforward network 
with sigmoid hidden neurons and linear output neu-
rons,

8. Train engine training dataset using all possible al-
gorithms,

9. Compare learning algorithms, check not only what 
is the learning accuracy but also what is the cost of 
the misprediction. What is the crucial misprediction 
is the fact that for the engine which has reached 
unsafe engine health condition, the prediction value 
is safe, 

10. Test the designed neural network architecture on the 
separate engine testing dataset,

11. Classify the whole engine fleet into three categories: 
Safe, Middle and Unsafe,

12. Export the most optimal training algorithm and im-
plement neural network architecture into the main-
tenance strategy software.

The main idea of the case study as well as the neu-
ral network architecture have been presented in Figure 2. 
This case study methodology was based on the Two-layer 
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Figure 1. Neural network engine health status prediction algorithm
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Figure 2. Two-layer feedforward network with sigmoid hidden neurons and linear output neurons: 1 – input data,  
2 – network weight, 3 – network bias, 4 – Sigmoid hidden neurons, 5 – number of sigmoid hidden neurons,  
6 – linear output neurons, 7 – output data
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feedforward network with sigmoid hidden neurons and 
linear output neurons. The reason for this was the fact 
that usually there is no exact linear relation between en-
gine parameter input data and the resulting output data. If 
the activation function is linear, then no matter how many 
hidden layers in the neural network you generate, the final 
output is still a linear combination of the original input 
data. That is why the sigmoid hidden neurons function was 
selected to create this artificial neural network. 

If neuron activation function would be noted as z, this 
could be calculated in accordance with Equation (1):

1

m

i i
i

z w x b
=

= +∑ , (1)

where: z – neuron activation function, m – number of in-
put features (engine input parameters), wi – the following 
weight, xi – the following input data, b – bias.

Then the sigmoid function s could be noted in accord-
ance with Equation (2): 
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4.2. Engine data exploration, preprocessing 
and features extraction
Engine performance data exploration relies on identifi-
cation of the signals sensed by the engine sensors and 
analysis what kind of data is being recorded. On the basis 
of this analysis, it is possible to determine which signals 
represent engine health status and how to calculate en-
gine degradation level and what is more important which 
engine parameters to predict while assessing engine de-
terioration and health condition. 

Engine performance data was collected for the aircraft 
turbofan engine type. Engine data collection selected for 
this research consisted of the real-life engine operation 
data. This amount of data has been collected for 12 years 
of engine flight and ground operations. In result there 
were 29999 records uploaded into the artificial neural net-
work. Each record comprised 46 engine data parameters. 
What is really important is the fact that all the records 
were sensed at the same engine thrust level requirement 
being the maximum augmentation level. 

As a result of the artificial neural network structure pre-
sented in Figure 2, the whole engine data set was divided 
into three parts. 70% of the whole set (20999 observations) 
were randomly assigned as Training Data. 15% of the whole 
data set (4500 observations) were selected for the valida-
tion process and the rest 15% (4500 observations) were 
dedicated to the test process of the neural network.

Each artificial neural network was trained, validated 
and tested with three different algorithms being: Leverent-
Marquandt, Bayesian Regularization and Scaled Conjugate 
Gradient. The first one is working quite fast, the second 
one is working slower but generalizes well and the third 
one is very well in memory managing and efficiency. In 
addition to this, each neural network was trained, vali-

dated and tested with different number of hidden layers. 
For each algorithm three deep learning processes were 
performed with 10, 20 and 50 hidden layers. 

4.3. Engine health status parameter selection
On the basis of the domain knowledge and experience it 
was determined that there were two engine parameters 
which could be appropriate to build engine health status 
index. The reason why PMAR parameter was used was the 
fact that it is one of the crucial engine operation param-
eters. Exceeding EGT allowed limits could result in a severe 
engine damage and in the worst-case scenario aircraft 
catastrophe. What is even more interesting it is the fact 
that this parameter is a very good indicator of the turbine 
efficiency decrement and engine degradation. In time of 
the engine operation, engine efficiency decreases, which 
means that to achieve the same level of thrust more fuel 
is needed in the combustion chamber. More fuel sprayed 
into the combustion chamber results in higher exhaust gas 
temperature. When engine parts become worn or suffer 
damage then parts like the turbine blades can not harvest 
the energy form the hot compressed air expanding as ef-
ficiently as they should. As a result, engine has less power 
being taken from the turbine to the compressor, which 
leads to a slower speed or less thrust. 

In order to counteract this, the Engine Control Unit (ECU) 
adds more fuel in, so more energy is created, and the turbine 
extracts the required torque to maintain thrust. This will cause 
EGT rise as more fuel is being burned to create the same level 
of thrust or core operating speed. EGT is an important factor 
in engine trending and monitoring to indicate engine issues 
and that is why it was selected to calculate PMAR parameter 
which is going to be used to predict engine health status. 
Engine parameter called performance margin PMAR reflects 
the difference between EGTredline and EGTmax. During engine 
operations all engine and aircraft data is being sensed and 
collected by so called Full Authority Digital Engine Control. All 
the engine data which reflects engine thermodynamic pro-
cesses is sent to Engine Diagnostic Unit (EDU), where PMAR 
is calculated. This calculated PMAR parameter was used to 
design Engine Health Status Index in accordance with the 
concept presented in Figure 3b.

In Figure 3a Engine degradation range presented by 
EGT change was presented. In Figure 3b Engine Health 
Status Index Model calculated for the PMAR parameter 
and engine degradation was presented.

 As it might be deduced from the description above it 
is the fact that the lower the PMAR is the more degraded 
engine condition is. Where it is close to or reaches zero 
value, it might lead to engine construction damage and 
result in aircraft severe accident or even catastrophe. 

redline maxPMAR EGT EGT@ − , (3)

where: EGTredline – marginal temperature of the hot gases 
in engine which results in engine part damage;

EGTmax – maximum operational temperature which is 
reached in normal flight operations.



Aviation, 2024, 28(4), 225–234 229

This parameter is used as a parameter to be predicted 
with the artificial neural network. That is why, this is going 
to be selected in the MATLAB software as a response data.

Another engine data parameter used to design engine 
health status index was SMAR. Why SMAR data could be 
used to define engine health status and condition? This 
is the data which tells us what the fuel consumption rate 
in relation to the engine thrust (power) is. In reality, this 
parameter is measured as the relation of the fuel mass 
flow rate provided to the engine combustion chamber and 
engine thrust generated while converting this amount of 
fuel into the heat energy. It is evident that specific fuel 
consumption rate increases when the engine compres-
sor compression rate decreases. If the engine compressor 
compression rate decreases in time for the same power 
level requirement, it means that engine compressor ef-
ficiency has degraded.

4.4. Network design
As presented in Figure 2 there has been two-layer feed-
forward artificial neural network created. The number of 
sigmoid hidden neurons was changing and during case 
study it was set at three different levels: 10, 20 and 50. 
The input data was the engine performance data which 
was collected for the aircraft turbofan engine type. Engine 
data collection selected for this research consisted of the 
real-life engine operation data. Engine performance data 
is an extremely significant data, as it is collected during 
aircraft take-offs. This is the moment when engine is op-
erating at the highest power or thrust and very close or 
at the parameter margin. At this moment engine suffers 
the highest thermal and mechanical loads which might re-
sult in engine degradation or even failure. Each record of 
the performance data usually means one flight. In order 
to be able to train neural network plenty of engine op-
erational data is required. As an output data prediction 
of the selected and calculated performance parameter is 
achieved, which identifies engine health status. However, 
the main goal would be to assess how well the created 
artificial neural network is working in predicting engine 
parameter value. How close the predicted values are to 
the actual target data. 

In order to do this, there is a need to train artificial 
neural network in engine health status prediction. In order 
to do this one of the applications from MATLAB Works 
2023 was selected. This application is called Neural Net 
Fitting and could help in solving neural network fitting 
problems using two-layer feedforward networks. With this 
application it is possible to create, visualize and train gen-
erated network to solve data fitting problems. There has 
been MATLAB live script written which allowed to import 
engine data from previously prepared file. Then this data 
set was split into training, validation and test sets. As a 
following step training neural network was defined using 
three selected algorithms: Leverent-Marquandt, Bayesian 
Regularization and Scaled Conjugate Gradient. The number 
of hidden layers was set at three different levels; 10, 20, 50. 
As a result of the research, created network performance 
was evaluated using mean squared error and regression 
analysis. The final results were analyzed using visualization 
plots such as regression fit plot and histogram of errors.

4.5. Artificial neural network performance 
measures
The mean squared error MSE of the trained neural network 
is measured with respect to the testing samples. This will 
give us a sense of how well the network will do when 
applied to another real turbofan engine operational data. 
MSE is calculated in accordance with Equation (4).

( ) ( )2 2

1 1

1 1N N

i i i
i i

MSE e t y
N N

= =

= = −∑ ∑ , (4)

where: N – number of observations, ei – the following error 
in the prediction, ti – the following target value, yi – the 
following predicted value.

Comparison of the MSE and number of epochs re-
quired to achieve the best performance for each algorithm 
and the size of the artificial neural network is presented 
in Table 1.

From Table 1 it could be easily deduced how the size 
of the layers (the number of hidden layers) affected the 
whole neural network performance. It might be concluded 
that in all cases except Bayesian Regularization, the incre-
ment of the layer size improved the Mean Squared Error 
for both Training, Validation and Test. The best MSE was 
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Figure 3. Engine degradation concept: a – presented by EGT change, b – Engine health status index model
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achieved for the Bayesian Regularization based network. 
However, in this case the Validation process resulted in 
NaN (Not a Number) results. About 50% lower accuracy 
was achieved for the Leverent-Marquandt based neu-
ral network. However, in this case the Validation process 
was fully accomplished and confirmed. In addition to this, 
this artificial network worked quite well in additional test 
achieving 25.7897MSE. This is the reason why this model-
based network was selected to be exported and tested on 
another set of data. The highest (worst) MSE was achieved 
for the Scaled Conjugate Gradient algorithm base neural 
network. The results were 4–8 times higher than for the 
other two networks. However, in additional test the final 
MSE was close to the one achieved in the Bayesian Regu-
larization algorithm neural network. 

Another aspect of the artificial neural network train-
ing, validation and testing is comparison of the number of 
the epochs required to achieve the best training, valida-
tion and testing performance (in this case MSE). In Table 1 
the number of epochs required to achieve the best per-
formance for each algorithm and the size of the network 
were presented. The maximum number of epochs set for 
each type of the algorithms and the size of the network 
was 1000. As it was presented in Table 1 for the Bayesian 
Regularization type of the algorithm for 20 and 50 hidden 
layers the process of training reached maximum number 
of epochs. It is worth noting that for the Leverent-Mar-
quandt type algorithm, the best validation performance, 
meaning the lowest MSE was achieved after 50, 55 and 
30 epochs, adequately for 10, 20 and 50 hidden layers. 

As it was presented in Table 1, for Bayesian Regulariza-
tion algorithm the number of epochs was provided only 
for the training since for the validation the network output 
data was NaN. Generally, the error reduces after more ep-
ochs of training, but might start to increase on the valida-
tion data set as the network starts overfitting the training 
data. The training stops after six consecutive increases in 
validation error, and the best performance is taken from 
the epoch with the lowest validation error.

Another comparison of the results might be performed 
by comparing R-squared results. R-squared is the calcu-
lated by artificial neural network coefficient of determina-
tion. It is always smaller than 1 and usually larger than 0. 

It compares the trained model with the model where the 
response is constant and equals the mean of the train-
ing response. In this case the closer this value to 1 is the 
better the neural network performance is. In the context 
of regression, it is a statistical measure of how well the 
regression line approximates the actual data. R-squared 
coefficient is calculated in accordance with Equation (5).

( )

( )
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∑
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where: N – number of observations, SSR – sum squared 
regression is the sum of the residuals1 squared, SST – total 
sum of squares is the sum of the distance the data is away 
from the mean all squared, ti – the following target value, 
yi – the following predicted value,  y  – the mean of the 
predicted value.

Comparison of the R-squared coefficient for each neu-
ral network as well as different number of hidden layers is 
presented in Table 2.

As it might be noticed in the Table 2 both Leverent-
Marquandt and Bayesian Regularization based neural net-
work are working very well. Even for the smaller 10-layer 
size it was possible to achieve 0.99 R-squared value. There 
was a slight improvement with the increment of the size 
of the hidden layers, but in general it was still very close 
to 1. Unfortunately, still the Bayesian Regularization based 
network was unable to perform validation process and in 
addition to this this network achieved lower R-squared 
value for the additional test. At the same time Leverent-
Marquandt based neural network worked almost perfectly 
for both: Training, Validation, Test and Additional Test with 
the average result close to 0.99 of the R-squared. It may 
be concluded that selection of this type of neural network 
on basis of the Mean Squared Error was the best choice 
and it was also confirmed by the R-squared comparison. 

Another measure of how well the neural network has 
fit the data is the regression plot. Here the regression is 
plotted across all samples. The regression plot shows the 
actual network outputs plotted in terms of the associated 

1 residual value = actual t value − predicted y value

Table 1. Mean Squared Error MSE and number of epochs required to achieve the best performance for each algorithm and 
the size of the artificial neural network comparison (source: Authors’ own elaboration, 2024)

Performance 
metric / 
Training 
length

Neural network 
life cycle phase

Leverent-Marquandt Bayesian Regularization Scaled Conjugate Gradient

Number of hidden layers

10 20 50 10 20 50 10 20 50

MSE Training 11.9774 8.6299 5.2376 6.1771 4.2623 2.8425 64.0062 58.9715 44.5310
Validation 14.0952 13.1410 7.1607 NaN NaN NaN 67.2213 62.8588 48.3333
Test 14.6726 9.8665 6.8064 7.3819 7.0726 12.4208 67.2904 66.1934 48.5074
Additional Test – – 25.7897 – – 95.3641 – – 99.2125

Number of 
Epochs

Validation 50 55 30 – – – 135 105 235
Training – – – 765 1000 1000 – – –
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target values. If the network has learned to fit the data 
well, the linear fit to this output-target relationship should 
closely intersect the bottom-left and top-right corners of 
the plot. If this is not the case then further training, or 
training a network with more hidden neurons, would be 
advisable.

In the Figure 4 below there have been presented re-
gression plot for all the trained validated and tested data.

The comparison of two main algorithms has been pre-
sented: 50-layer size neural network Leverent-Marquandt 
Figure 4a and Scaled Conjugate Gradient Figure 4b.

From the analysis of the plots presented in Figure 4 it 
might be quite easily deduced which artificial neural net-
work and the type of the algorithm is fitting the prediction 

the best. In each of the regression plots there is the line 
“Y  = T”, which represents the situation when all the pre-
dicted values are the same as the target (real) values. The 
more output results are located around this line, the better 
is our neural network working. For all the processes: train-
ing, validation and test, network based on the Leverent-
Marquandt type algorithm is working better all most of 
the predictions are located close to the real values. 

Another, the fourth measurement of how well the 
neural network fits our data is the error histogram. This 
shows how the error sizes are distributed. Typically, most 
errors are near zero, with very few errors far from that. On 
the X-axis there are the errors values, which are the dif-
ferences between the targets and output values meaning 

Table 2. R-squared coefficient comparison of the artificial neural network performance (source: Authors’ own elaboration, 2024)

Performance 
metric

Neural network 
life cycle phase

Leverent-Marquandt Bayesian Regularization Scaled Conjugate Gradient

Number of hidden layers

10 20 50 10 20 50 10 20 50

R-squared Training 0.9851 0.9892 0.9935 0.9923 0.9947 0.9965 0.9165 0.9247 0.9431
Validation 0.9823 0.9838 0.9910 NaN NaN NaN 0.9165 0.9182 0.9392
Test 0.9816 0.9879 0.9916 0.9911 0.9914 0.9849 0.9139 0.9153 0.9384
Additional Test – – 0.9684 – – 0.8875 – – 0.8733

a)

b)

Figure 4. Regression plots for the trained validated and tested data comparing two main algorithms: a – 50-layer size 
neural network Leverent-Marquandt, b – Scaled Conjugate Gradient
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the actual values and predicted values. On the Y-axis are 
the numbers of instances being the number of samples 
(records) which fell into each bin. Each bin represents the 
range of the error. The whole maximum range is divided 
into 20 smaller ranges which are called “bins”. The best 
result is when the highest number of samples fall into the 
bin which is close to “zero” axis vertical line (yellow color).

In Figure 5 Error Histogram with 20 Bins for 50-layer 
size neural network and Scaled Conjugate Gradient type 
algorithm was presented. As it might be easily deduced 
from Figure 5 was the fact that neural network based on 
this type of algorithm and with 50 hidden layers is working 
quite efficiently. For all the processes: training, validation 
and testing, the greatest numbers of the results fitted into 
the bin which was close to “Zero error” value (0.2912). 

As a following step all the results were compared, and 
the comparison was presented in the Tables 1 and 2. Ana-
lyzing results from the Table 1 and 2 it was noticed that 
the best (lowest) Mean Squared Error and the R-squared 
coefficient was achieved for the Leverent-Marquandt algo-
rithm. This was the reason why it was decided to export 
the best working artificial neural network as a script into 
the MATLAB. 

4.6. Artificial Neural Network performance 
confirmation
To confirm the results achieved for the first engine data 
set, there was another (completely) different data test was 
selected and prepared. The reason for this was the fact 
that the first training, validation and testing were per-
formed for the same data and range of the parameters. 
They were just divided into three groups. The next data 
set was also the collection engine performance data which 
comprised the same features (engine sensor signals), but it 
was from a different time period and for the engine with a 
various engine operating hours. The training validated and 
tested network was used on the different engine test data 
which consisted of 12172 records and still 46 features. (For 
one selected and the best performing neural network. In 
this case this was the Leverent-Marquandt algorithm-
based network). The results of the test were presented in 
Figure 6.

As presented in Figure 6 over 5000 observations were 
assigned to the bin with 1.358 Error (target-prediction) 
value. For about 1700 observations error value was around 
5.093 and for about 700 observations error value was 
around 7.808. 

In Figure 7 regression plot for 50-layer size neural net-
work based on the Leverent-Marquandt algorithm, for the 
additional engine data set, was presented. 

Figure 7. Regression plot for the additional engine data set 

As presented in Figure 7 being the regression plot for 
the additional engine data set, the output value @ 0.9×Tar-
get value+10, which gave the total R-squared value R = 
0.94675. The following results were achieved for the previ-
ously trained, validated and tested artificial network, which 
was the 50-layer size neural network based on the Lever-
ent-Marquandt algorithm. Mean square error MSE for this 
final test was calculated as 42.6760, while the R-squared 
coefficient was calculated as R = 0.94675.

5. Discussion and conclusions

This article is the introduction to the series of scientific 
studies which are aimed at Artificial Intelligence (AI) ap-
plications for the turbofan engine health status predic-
tion. The whole research is based on the real-life engine 
operational data and is called data-driven engine health 
monitoring. The key element of the data-driven engine 

Figure 5. Error Histogram with 20 bins for 50-layer size 
neural network Scaled Conjugate Gradient Figure 6. Error Histogram with 20 bins for 50-layer size 

neural network Leverent-Marquandt
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health status prediction was the Engine Health Status In-
dex designing. This is usually the most difficult and chal-
lenging part of the research. If the design health status 
index is very reliable it could be implemented into the 
engine maintenance strategy and planning. Such meth-
odology could help propulsion maintenance management 
in engine big data analysis and avoid any situations when 
the engine health status degraded below acceptable level, 
especially for the large engine fleets. Engine health status 
prediction based on the Artificial Neural Network ANN is 
an extremely strong tool in aircraft accident and incident 
prevention. The next step of the methodology improve-
ment is the application of the various architectures of deep 
neural networks.

As a result of the research case study, it was confirmed 
that artificial neural network is a very powerful tool which 
could be used to augment the process of prediction en-
gine health status and its degradation. With fairly simple 
artificial neural network it was possible to predict engine 
health status parameter with a very high accuracy. 

Analyzing the predicted values, it was discovered that 
some of the predicted parameters were marked as NaN. 
MATLAB represents values that are not real or complex 
numbers with a special value called NaN, which stands 
for “Not a Number”. NaN (Not a Number) is a numeric 
data type that means an undefined value or value that 
cannot be represented, especially results of floating-point 
calculations. What might be the reason for this? After the 
in-depth analysis of the training data, it was found out 
that there was some missing data in the whole training 
data set, or some data was treated as a text type data. 
That is why the result of the prediction was not calculated 
properly. So, this is one of the crucial factors and very 
important conclusion from this article that trying to take 
advantage of the artificial neural network in predicting 
real operational engine health status, training and testing 
data must be properly configured and data which is cor-
rupted or missing has to be removed from the set. The 
corrupted or missing data was also the reason why the 
Mean Squared Error was definitely higher for the test data 
in comparison with the training and validation data and 
the R-squared final value was lower.

The question might be raised, what is the advantage of 
the proposed shallow Neural Network (NN) predicting the 
engine health status parameter compared to some other 
parametric methods? Even though, NN performance re-
sults, in some cases, in comparison to the machine learn-
ing algorithms or other stochastic methods might be to 
some extent quite similar, there are still some significant 
factors in favor of NN. 

The greatest advantage between artificial neural net-
works and other parametric methods is the fact that ar-
tificial neural networks work great with all types of data, 
either parametrical or categorical. It also works better for 
various numeric types, while machine learning algorithms 
might fail to converge. The reason for this is that neural 
networks work with diverse types of predictors. They work 
with both numerical data, vectors and the categorical data, 

while ML algorithms (Discriminant and KNN types) in some 
case might fail or result in very “weak” (with low perfor-
mance) prediction models.

In summary it is extremely important to mention the 
fact that, there is nothing more important than safety in 
aviation. And from this perspective it is crucial to predict 
the moment when it is still safety to fly the aircraft, to con-
tinue engine flight operations. If it was possible to predict 
the moment when it was needed to stop flight opera-
tions and to perform engine maintenance, it would allow 
to save a huge amount of money for the flight operators. 
The reason for this is the fact that airliners are able to take 
advantage of the engine useful life, up to the maximum, 
and what is also really important for airline operators is the 
planning process of the engine replacement, repairs and 
overhauls, which are extremely expensive and usually re-
quire spare engines which are not available at any moment.

Due to the fact that the modern turbofan engine is a 
very complex and sophisticated machinery, and it is very 
common and popular in air transport it is extremely im-
portant to develop engine health status prediction model. 
As a result of the conducted research and analysis, as a 
future work, implementation of the developed neural net-
work architecture model into the airliners maintenance 
system might be proposed. After every flight engine data 
could be uploaded into the computerized maintenance 
system to update the engine remaining useful life. This 
could help in scheduling engine maintenance, repairs and 
overhauls and avoid any unnecessary maintenance. Such 
system reinforced by AI would be a great support for the 
airline operators.
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