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Article History:  Abstract. The early detection of faults in advanced technological systems is imperative for ensuring opera-
tional reliability and safety. While there is a growing interest in using artificial intelligence for fault detection, 
current methodologies often exhibit limitations in utilizing comprehensive system information and sensor 
data. Hidden faults within collected data further highlight the need for advanced analysis techniques.
This study introduces a novel deep learning-based framework designed to predict faults and extract insights 
from complex system datasets. The model, consisting of LSTM-autoencoder and BiLSTM classification compo-
nents, effectively reduces feature dimensions, thereby enhancing fault detection accuracy. The autoencoder’s 
latent layer identifies prominent features across various dimensions, while BiLSTM classification conducts bi-
directional analysis using these features from both healthy and faulty states, facilitating early fault detection.
Experimental results demonstrate the model’s efficacy, achieving an accuracy of 79.48% in predicting incipi-
ent faults 30 seconds before a serious malfunction occurs. This underscores the significant potential of the 
proposed framework in enhancing operational safety and reliability in complex systems. Moreover, the study 
emphasizes the importance of leveraging comprehensive data and advanced analysis techniques for early 
fault detection.
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1. Introduction 

In the modern age, advanced technological devices have 
become central components of daily life, fundamentally 
shaping interactions with the world. Among these innova-
tions, quadrotors, also known as quadcopters or drones, 
have gained significant popularity due to their diverse 
applications ranging from transportation to search and 
rescue missions (Belcastro et al., 2017; Zhao et al., 2018). 
However, the development and maintenance of quadro-
tors, equipped with complex sensors, navigation systems, 
and communication devices, often entail considerable 
costs. Emerging demands for enhanced safety, and cost-
effective maintenance necessitate the development of in-
novative preventive maintenance and inspection protocols, 
alongside improvements in design and manufacturing 
processes (Afshari & Pourtakdoust, 2018).

Quadrotors, comprising intricate systems, are particu-
larly sensitive to mechanical failures, environmental condi-
tions, and unpredictable behaviors. Along with the nonlin-
ear relationships, aerodynamic inefficiencies in the design, 
rotor interactions generating undesired lateral forces, and 
complex control algorithms designed to stabilize and 

guide the vehicle further complicate the system. Despite 
advancements in control mechanisms, experiencing con-
trol loss and crashes are still commonly observed. While 
some failures occur suddenly, others are incipient faults 
that intensify over time, eventually leading to a crash by 
affecting the subsystems. The consequences of quadrotor 
crashes often result in irreparable damage and significant 
financial losses, underscoring the imperative for effective 
early fault detection mechanisms.

In the field of unmanned aerial vehicles (UAVs), numer-
ous studies have investigated both traditional and artificial 
intelligence (AI) techniques for diagnosing and detecting 
faults (Ignatovich et al., 2013; Yasniy et al., 2024). These 
studies typically concentrate on identifying specific sen-
sor and equipment failures (Puchalski & Giernacki, 2022). 
Model-based approaches, such as the use of Kalman 
filters, rely on mathematical models to eliminate noise 
from sensor data (Hajiyev, 2016; Liu et al., 2016; Vural & 
Hacızade, 2016; Wang et al., 2019). While effective in de-
tecting existing faults, these methods require an accurate 
system model and comprehensive observation of each 
component, which is challenging to achieve. 
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Deep learning methods, on the other hand, rely on 
processing flight data from various sensors, including vi-
bration, acoustic emissions, speed, acceleration, current, 
and temperature. For instance, vibration data are widely 
used for diagnosing faults in bearings and gearboxes, while 
acoustic emission data detect faults in bearings and gears, 
especially in low-speed operating conditions. Despite the 
success of these methods in specific fault scenarios, they 
often neglect the thorough detection of early-stage faults 
that lead to quadrotor crashes, indicating a need for ad-
ditional exploration in this domain.

This study aims to bridge this gap by introducing 
a proactive fault detection method based on deep learn-
ing specifically tailored for quadrotors. The approach seeks 
to analyze comprehensive flight data from all sensors in the 
system, including gyroscopes, accelerometers, magnetom-
eters, temperature sensors, GPS sensors, and current sen-
sors, to enable early detection by revealing confidential and 
useful information. The novelty of the proposed framework 
lies in its combination of long short-term memory (LSTM)-
autoencoder and bidirectional LSTM (BiLSTM) classification 
components, which effectively reduce feature dimensions 
and enhance early fault detection accuracy. The autoen-
coder’s latent layer identifies prominent features across 
various dimensions, while the BiLSTM classification con-
ducts bidirectional analysis using these features from both 
healthy and faulty states, facilitating early fault detection.

The experimental results showcase the model’s ability, 
successfully predicting the onset of faults with a 79.48% 
accuracy, a half-minute prior to critical system failures. 
The development of an early warning system utilizing the 
model for potential faults holds promising prospects for 
enhancing the safety and reliability of quadrotor opera-
tions and other complex setups. Additionally, the study 
highlights the role of using expansive datasets and cut-
ting-edge analytic methodologies in the early identifica-
tion of potential faults. In summary, this article contributes 
to the field by:

 ■ Developing a deep learning-based model for early 
detection of incipient faults in quadrotors.

 ■ Enhancing the model’s efficiency through deep learn-
ing-based dimension reduction methods.

 ■ Creating a dataset by collecting real flight data and 
applying the model to these real quadrotor flights.

The rest of this paper is organized as follows. In Sec-
tion 2, studies on fault detection in aircraft are introduced 
and discussed. Section 3 explains the model and its pro-
cesses. Section 4 presents the experimental results and 
findings. Finally, section 5 concludes the paper with a sum-
mary of the key points and suggestions for future research. 

2. Literature review

Studies on fault detection in quadrotors are categorized 
into model-based, data-based, and hybrid approaches, fo-
cusing on the detection of failures in one or several sen-
sors and components (Puchalski & Giernacki, 2022). Each 

of these approaches has distinct strengths and limitations 
which are crucial to understand for advancing the field. 

Model-based methods rely on mathematical models, 
including linear or nonlinear models, to detect faults. The 
most effective methods involve the use of Kalman filters 
to eliminate noise from sensor data (Hajiyev, 2016; Liu 
et al., 2016; Vural & Hacızade, 2016; Wang et al., 2019). 
While model-based approaches have shown success in 
detecting existing faults, comprehensive detection of all 
malfunctions in a quadrotor requires observation of each 
component and an accurate system model. A significant 
limitation is their inability to model the complex, nonlinear 
dynamics of quadrotors precisely, which leads to inaccu-
rate fault detection and diagnosis under varied operating 
conditions. A common issue in model-based methods is 
the simulation-to-reality gap. Models often fail to capture 
real-world complexities, leading to discrepancies between 
simulated results and actual performance (Zhang et al., 
2023). This limitation impacts the reliability of fault detec-
tion in real-world scenarios.

Data-based methods utilize historical and real-time 
data from various sensors. Deep learning techniques, 
such as convolutional neural networks (CNN) and LSTM, 
are commonly employed. For instance, Zhang et al. (2023) 
used a deep learning model for quadrotor propeller fault 
diagnosis, achieving notable accuracy. However, the reli-
ance on extensive labeled datasets for training is a sig-
nificant limitation. The collection and labeling of such 
comprehensive datasets are time-consuming and costly. 
Additionally, data-based methods struggle with general-
izing to new, unseen fault types not represented in the 
training data. These methods rely heavily on the quality 
and availability of sensor data, and incomplete, noisy, or 
biased datasets significantly degrade the performance 
of fault detection algorithms. Furthermore, obtaining la-
beled data for every possible fault condition is impractical 
(Puchalski & Giernacki, 2022). Besides, advanced machine 
learning techniques, such as deep neural networks, require 
substantial computational resources for training and real-
time operation. This requirement limits their applicability 
in resource-constrained environments, such as onboard 
UAV systems (Bondyra et al., 2022).

Hybrid approaches combine model-based and data-
based methods to utilize the strengths of both. For ex-
ample, Anidjar et al. (2023) proposed a framework using 
deep learning for anomaly detection in UAV sound waves, 
which integrates model predictions with real-time data 
analysis. While hybrid methods show promise in enhanc-
ing fault detection accuracy, they inherit the limitations 
of both constituent approaches, such as the need for ac-
curate models and extensive data. Both model-based and 
data-based methods often struggle to generalize to new, 
unforeseen fault types. This limitation is particularly criti-
cal in dynamic environments where new fault modes can 
emerge (Liu et al., 2020).

Deep learning methods rely on processing flight 
data, where they are either integrated into the model or 
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processed independently. Data are collected continuously 
from various sensors existing on a system, including vi-
bration, acoustic emissions, speed, acceleration, current, 
axes of movement, and temperature. For example, vibra-
tion data find broad application in diagnosing faults in 
bearings and gearboxes. Acoustic emission data, especially 
in environments with low-speed operating conditions and 
low-frequency noise, have the potential to detect faults 
and deformations in bearings and gears. Instantaneous 
speed data are typically used for motor fault diagnosis 
because they have high resistance to external influences. 
Current or voltage data play an important role in diagnos-
ing faults in electrical components on the systems. There-
fore, existing AI based studies are roughly categorized 
based on the applicable machine learning methods and 
the components related to obtained data. 

Beginning with Zhang et al. (2023), their deep learn-
ing model effectively addresses the simulation-to-reality 
gap in quadrotor propeller fault diagnosis. Through the 
use of newly identified features and domain adaptation 
techniques, the model achieves commendable accuracy, 
marking a significant advancement in the field. Similarly, 
Pose et al. (2023) contribute to the domain with a neural 
network-based method for estimating propeller damage. 
Their approach exhibits satisfactory performance in extrap-
olating from limited data, with the added advantage of 
quick prediction times, implying its potential for onboard 
application. Another method proposed by Liu et al. (2020) 
is for identifying propeller damage using CNN and transfer 
learning techniques, achieving high accuracy rates. Iannace 
et al. (2019) construct a classification model for detecting 
unbalanced blades in quadrotor propellers using artificial 
neural networks (ANN), while Yang et al. (2021) focus on 
detecting early minor faults in propellers using deep re-
sidual shrinkage network.

Numerous studies also aim to identify faulty compo-
nents through acoustic data analysis. Bondyra et al. (2022) 
present fault detection and isolation systems offering high 
detection rates and precise localization of single actuator 
faults. Their work demonstrates practical applications in 
onboard acoustic data acquisition and processing. Simi-
larly, Anidjar et al. (2023) propose a framework for detect-
ing anomalies in sound waves emitted from UAVs using 
deep-learning methods. Their approach demonstrates 
high accuracy in anomaly detection with fewer parameters, 
making it suitable for real-time applications.

Guo et al. (2018) propose a transformative approach 
by utilizing CNN to extract features from residual signals 
of UAV sensor faults, yielding promising outcomes in fault 
detection. Their method utilizes short-time Fourier trans-
form to convert residual signals from the sensors into time-
frequency maps, which are then analyzed using a CNN 
to extract features and implement fault diagnosis. Olyaei 
et al. (2018) introduce a novel algorithm using color images 
from time-frequency-amplitude graphs for fault classifica-
tion through deep neural networks, achieving satisfactory 
accuracy in fault identification, particularly in sensor and 
actuator fault scenarios. Fu and Che (2021) present a fault 

diagnosis model for UAVs, combining conformal Fourier 
transform and an improved self-organizing feature map 
neural network. Their method enhances fault diagnosis 
and pattern recognition capabilities for efficient clustering 
and fault diagnosis. Huang et al. (2021) introduces a novel 
fault detection and classification method integrating time-
frequency analysis and deep learning technologies. Initially, 
randomly generated datasets undergo transformation into 
the time-frequency domain using short-time Fourier trans-
form, resulting in time-frequency graphs. Subsequently, 
these graphs are utilized to train a deep network, enabling 
rapid and accurate classification of fault types.

Zheng et al. (2021) employ a compound fault diction-
ary and machine learning models for enhanced fault di-
agnosis. The method enables the labeling of flight data 
with multiple fault modes corresponding to simultaneous 
single faults. Altinors et al. (2021) focus on fault diagnosis 
of brushless DC motors in UAVs, achieving high accuracy 
using decision tree, support vector machines (SVM), and 
k-nearest neighbor (KNN) algorithms, with the added ad-
vantage of real-time operation on embedded systems.

Several studies have proposed innovative methods us-
ing vibration data. One approach involves (Ozkat et al., 
2023) detecting the remaining useful life of UAVs using 
collected vibration data and long short-term memory 
(LSTM) to forecast future mean peak frequency values. 
Another study (Chen et al., 2021) utilize wavelet analysis 
and gate recurrent units for fault detection using motor 
vibrations or wind-induced noise and effectively analyzes 
sensor data and detects faults using residuals and thresh-
old-based techniques. Additionally, a novel method (Jiang 
et al., 2015) is proposed for detecting and identifying ro-
tor faults in quadrotors using airframe vibration signals. 
This method employs three-level wavelet packet decom-
position and ANN to analyze vibration signals and design 
a fault diagnostic system, validated through experimental 
data collected from quadrotor hovering experiments.

In Ouadine et al. (2020) and Jing and Pebrianti (2016), 
authors propose fault detection methods combining mod-
el based approaches with ANN, and demonstrate effec-
tiveness in fault classification and identification. Jing et al. 
(2017) develop a fault detection algorithm using Kalman 
filter and ANNs for quadrotors, achieving decent detection 
accuracy with minimal time delay.

Al Younes et al. (2016) introduce a fault-tolerant di-
agnosis and control approach for sensors in quadrotors, 
to address bias-type sensor faults by introducing an in-
telligent output-estimator, during real flight experiments. 
Ai et al. (2021) contribute a novel fault diagnosis scheme, 
utilizing wavelet packet translation for fault feature extrac-
tion, based on the optimized deep forest algorithm. Erfani-
an and Ramezani (2022) discusses the successful utilization 
of the bidirectional LSTM (BiLSTM) algorithm for detecting 
actuator faults in quadrotors. By simulating the quadrotor 
model and employing BiLSTM algorithm, the study success-
fully detects actuator faults through data extraction and 
network training, demonstrating the potential of BiLSTM in 
fault detection applications for quadrotor systems.
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3. Methodology

Historically, fault diagnosis in quadrotors heavily relied on 
human expertise, but artificial intelligence algorithms, also 
known as intelligent fault diagnosis (IFD), have enabled 
quadrotors to automatically identify, classify, and poten-
tially predict their own fault conditions. This not only re-
duces the need for human intervention but also equips 
operators to proactively manage quadrotor health, thereby 
ensuring secure and uninterrupted operations.

However, as mentioned earlier, previous studies have 
focused on detecting faults for one or a few components 
and on detecting faults as they occur. In this study, a 
framework has been established for detecting faults that 
cause a fall in quadrotors after a certain time. Overview of 
the framework is illustrated in Figure 1. The framework is 
comprised of three main stages: data preparation, dimen-
sionality reduction and fault prediction. After preparing a 
large amount of sensor data collected from various flights 
for use in the mentioned methods, an autoencoder us-
ing LSTM is initially trained to both eliminate unnecessary 
information and reduce dimensionality. Subsequently, the 
encoded data containing more useful information from 
the latent layer is fed into a classification algorithm using 
BiLSTM to make early predictions of faults. The proposed 
structure has been detailed step by step in a top-down 
strategy throughout the following.

Although data processing appears to be the first step 
in Figure 1, it is necessary to provide information about 
the data used in this study. Firstly, it should include flight 
data resulting in crashes so that the algorithm learns from 

those incidents as well. However, such data are very lim-
ited compared to healthy ones. There are numerous stud-
ies that inject synthetic values emulating faults into flight 
data, thereby simulating various fault events in this manner 
(Chen et al., 2021; Erfanian & Ramezani, 2022; Guo et al., 
2018; Huang et al., 2021; Jing & Pebrianti, 2016; Jing et al., 
2017). The flight of a UAV is carried through highly nonline-
ar systems; therefore, failure detection models constructed 
on such data do not perform well under real flight cir-
cumstances. Furthermore, studying early failure detection 
on such data is not possible since there is not a symp-
tom leading to a breakdown. Hence, these issues led us to 
search for natural crash events in quadrotors.

Accidents involving quadrotor operators often prompt 
the sharing of experiences on online blogs to exchange 
information among peers facing similar challenges. For 
this study, data were systematically collected and ana-
lyzed from these online sources, focusing on incidents 
where the cause of the accident was uncertain. During the 
selection process, data from 10 flights that experienced 
crashes were obtained from online blogs, and the data 
were organized to exclude information beyond the start 
point of uncontrolled descent. Additionally, collaboration 
with a team conducting quadrotor experiments on campus 
provided another set of 10 flights.

Consequently, a dataset comprising 20 flights was com-
piled; these flights were classified into 10 as faulty (crash-
related) and 10 as healthy. The faulty flights, sourced from 
online blogs, had a total duration of 126 minutes and 
16 seconds, while the healthy flights from campus experi-
ments had a total duration of 70 minutes and 25 seconds.

Figure 1. Proposed framework in this study
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The collected data included log records containing 
measurements from various sensors onboard the quadro-
tors. To ensure the validity of early fault detection, care-
ful selection prioritized potentially useful data from these 
logs, focusing on features that could provide insights into 
flight health and fault detection. This process involved 
filtering out irrelevant, unnecessary, or redundant sensor 
readings that could complicate fault detection. 

From the extensive sensor data available, 50 features 
across different sensors were identified and prioritized as 
attributes for the dataset. The selected features encom-
pass a wide range of parameters including estimated 
orientation (roll, pitch, yaw), geographic coordinates (lati-
tude, longitude), vehicle performance metrics (gyro drift 
error, altitude, climb rate), controller gains, throttle and 
servo inputs/outputs, battery status, velocity components, 
accelerometer data, and more. This comprehensive data-
set, combining insights from real-world accident reports 
shared online and controlled sensor data from campus 
experiments, serves as the foundation for analyzing and 
improving early fault detection mechanisms in quadrotor 
operations.

When feeding data with varied distributions directly 
into an ANN, it can lead to increased error rates due to 
the network’s sensitivity to the scale and distribution of 
input data which cause a slower convergence. To mitigate 
this issue, the data should undergo normalization first. 
Normalization transforms the data so that each feature 
(sensor data in this case) has a similar scale and distribu-
tion. For this purpose, z-score normalization was applied 
to the data. Z-score normalization reorganizes the sensor 
data to have a mean of 0 and a standard deviation of 1. 
This adjustment ensures that each sensor’s data points are 
expressed in terms of their relationship to the mean and 
standard deviation of the entire dataset. Normalizing the 
data in this way reduces the variability that could cause the 
ANNs to prioritize features with larger numerical ranges, 
potentially skewing the learning process. Consequently, 
normalized data helps the ANN to learn more effectively 
by ensuring that all input features contribute equally to 
the model’s training, ultimately improving its accuracy and 
convergence rate. 

After normalization process, the data is divided into 
small data windows (segments) by the sliding window 
method. Experimenting various sizes, window size is de-
cided as 10 which refers to 1 second. Changing shift sizes 
are also experimented and it is determined as 5 which re-
fers to 0.5 second long. Note that size of each data sample 
becomes 500 (10 × 50).

The next stage involves extracting meaningful infor-
mation from the data. Here, dimensionality reduction was 
applied to all available data using a deep learning method 
proven to be successful for complex systems. This pro-
cess is advantageous for eliminating redundant informa-
tion and enhancing the accuracy of diagnostic outcomes. 
To achieve this, an LSTM-autoencoder structure was pro-
posed.

An LSTM-autoencoder is a neural network architec-
ture that integrates the principles of LSTM networks and 
autoencoders, specifically effective in handling sequential 
data. When combined, they form a powerful model for 
reconstructing sequence-to-sequence data and extract 
features of lower dimensionality from the latent layer.

LSTM represents a significant advancement in neural 
network architecture, often seen as an extension of recur-
rent neural networks (RNN). While RNN offer a form of 
“short-term memory,” allowing them to utilize recent in-
formation for ongoing tasks, LSTM takes this a step further 
by introducing the concept of “long-term memory.” Unlike 
RNN, which retain information only from a certain point in 
time, LSTM maintains a comprehensive record of all past 
information, making it accessible to the current neural 
node. This extended memory capacity enables LSTM to 
capture and utilize context and dependencies over more 
extended sequences, making them especially powerful in 
handling sequential data and tasks that require a broader 
understanding of past information.

In a standard LSTM unit, which is illustrated in Figure 2, 
several key components (gates) work together to enable 
its extended memory and precise information flow con-
trol. These components include the cell, an input gate, 
an output gate, and a forget gate. The cell retains values 
over extended time intervals, effectively functioning as 
the long-term memory repository. Meanwhile, the input 
gate, output gate, and forget gate work in coordination to 
manage the flow of information into and out of the cell. 
The cell state maintains a record of the network’s long-
term memory, encompassing a list of past information. In 
contrast, the previous hidden state serves as a form of 
short-term memory, capturing the network’s output from 
the preceding time step. Finally, the input data carries the 
current time step’s input value, allowing the LSTM to pro-
cess and incorporate the most recent information into its 
memory and computations. In the LSTM architecture, the 
three primary gates, which allow the network to effectively 
process sequential data by maintaining and updating the 
network’s memory over time, are described below.

Step 1: Forget Gate
The forget gate determines which pieces of informa-

tion within the cell state should be preserved or discarded. 
It generates the outputs using a sigmoid activation func-
tion by evaluating both the previous hidden state and the 
new input data. These outputs, represented as ft, tend to 
be closer to 1 for relevant information and closer to 0 for 
less relevant data. The mathematical representation of this 
process is given in Equation 1, which involves weights wf, 
bias bf, and the concatenation of the previous hidden state 
ht–1, and the current input xt.

( )1,   t f t t ff w h x b− = σ −  . (1)

Step 2: Input Gate
The input gate serves a dual purpose. First, it assesses 

whether incoming information, including the previous hid-
den state and new input data, is worth retaining in the cell 
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state. Subsequently, it determines the extent to which the 
new data will be added to the cell state. To achieve this, 
the input gate undergoes two processes. The first involves 
calculating a new information vector tc , using the hyper-
bolic tangent (tanh) activation function as follows:

( )1tanh ,   t c t t cc w h x b− = +  . (2)

The second process identifies the components of the 
new input using a sigmoid-activated network, resulting in 
an it vector as shown in the following equation:

( )1,   t i t t ii w h x b− = σ −  . (3)

These two processes are combined through pointwise 
multiplication as depicted in Equation (4) to regulate the 
magnitude of the new information. This combined vector 
is then added to the cell state, updating the network’s 
long-term memory.

1*   * t t t t tc f c i c−= +  . (4)

Step 3: Output Gate
In the final step, the output gate determines the new 

hidden state. It applies a sigmoid activation function to the 
previous hidden state and the current input data as shown 
in Equation (5) to obtain the filter vector ot. 

( )1,   t o t t oo w h x b− = σ −  . (5)

The cell state is passed through a tanh activation func-
tion to constrain its values to the range of [–1, 1]. This 
squished cell state is then multiplied pointwise with the fil-
ter vector ot to produce the new hidden state ht as follows: 

( )* tanht t th o c= . (6)

Both the new cell state ct, and the new hidden state ht 
are outputs of this unit. These values are propagated to 
the next LSTM unit in the sequence, with ct becoming the 
previous cell state for the next unit, and ht serving as the 
previous hidden state.

An autoencoder is a neural network that copies values 
from the input layer to the output layer. That is, the data 
given as input to the neural network is reconstructed in 
the output layer. The most significant feature that distin-
guishes autoencoders from feed-forward ANN is that the 
input dataset and the output dataset are the same, resulting 
in the number of neurons in the output layer being equal 
to the number of neurons in the input layer. In an autoen-
coder model, the number of neurons in the input layer is 
usually higher than the number of neurons in the hidden 
layers. Autoencoders (Figure 3) is broken down into three 
key components: encoding, decoding, and the optimization 
process aimed at minimizing reconstruction loss.

Initially, the autoencoder begins its operations by re-
ceiving input data, which includes all the relevant features, 
into its input layer. This information is then transmitted to 
the hidden layer(s) through a mathematical process, which 
is represented by Equation (7). 

1

n
i j jij

y f x w
=

 
=   

 ∑ , (7)

where xj represents the value associated with the j-th neu-
ron in the input layer, yi represents the value transferred to 
the i-th neuron in the hidden layer, n corresponds to the 
total number of neurons within the input layer, wji denotes 
the weight that connects the j-th neuron in the input layer 
to the i-th neuron in the hidden layer, and finally, f repre-
sents the activation function applied to each neuron. These 
components collectively contribute to the encoding pro-
cess, a pivotal step in the functioning of the autoencoder.

Following the encoding stage, the obtained values are 
then transmitted to the output layer, denoted as x’j, for fur-
ther processing (decoding), as demonstrated in Equation (8).

1
'

m
j i jii

x f y w
=

 
=   

 ∑ , (8)

where j is the neuron index number within the output lay-
er, the i is the neuron index number residing in the hidden 

Figure 2. LSTM unit (source: created by authors)

Note: the variables depicted in the figure are represented in equations 1-6, with their explanations pro-
vided in the corresponding paragraphs.
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layer (represented as yi), wji is the weight connecting the 
i-th neuron of the hidden layer to the j-th neuron of the 
output layer, m is the number of neurons situated within 
the hidden layer, and f is the activation function. Equation 
(8) encapsulates the essence of this transfer and transfor-
mation process, which ultimately yields the final values in 
the Autoencoder’s operation.

At the core of the autoencoder model lies a fundamen-
tal objective: to ensure that the obtained output closely 
resembles the value initially present in the input layer. To 
achieve this, the optimization process involving weight cal-
culation and continuous updates comes into play. These 
weight adjustments are driven by the backpropagation 
algorithm, a crucial operation of ANN’s training process. 
This algorithm works diligently to minimize the square of 
the difference between these two values, as elucidated in 
Equation (9). In essence, the backpropagation algorithm 
tunes the network’s parameters, enabling it to learn and 
replicate the essential patterns and features in the input 
data, facilitating the reconstruction of the original input, 
which is a central goal of the autoencoder model.

( )2
1

'
n

j jj
min x x

=

 
−  

 ∑ . (9)

The LSTM-autoencoder model, combines LSTM net-
works and autoencoders for dimensionality reduction in 
time-series data (Lazzara et al., 2022; Said Elsayed et al., 
2020). Initially, the original dataset is transformed into time 
sequences containing fixed-length windows of data. The 
LSTM encoder unfolds these sequences, processing them 
with multiple LSTM cells capturing crucial information 
from each time step. The encoded representation is then 
propagated through a decoder to reconstruct the original 

data sequence. Using LSTM-autoencoder, meaningful and 
reduced features are obtained obtained from the latent 
layer of LSTM-autoencoder, subsequently enhancing the 
performance of the classification layer.

In the final stage, a classification layer was employed 
to determine the system’s health. During this phase, vari-
ous machine learning techniques such as ANN (Fu & Che, 
2021; Iannace et al., 2019; Jiang et al., 2015; Jing & Pebri-
anti, 2016; Jing et al., 2017; Ouadine et al., 2020; Pose 
et al., 2023), Random Forests (Bondyra et al., 2018), SVM 
(Altinors et al., 2021), KNN (Altinors et al., 2021), Decision 
Trees (Altinors et al., 2021), Fuzzy C-means (FCM) Cluster-
ing (Wei et al., 2020), Ensemble Learning (Duncan Imbas-
sahy et al., 2020) can be utilized. However, considering 
the data structure and its suitability for time series data, 
a BiLSTM-based deep learning layer was implemented. 

The conventional LSTM network primarily focuses on 
past data context while overlooking future context. Using 
LSTM to regenerate inputs in time series data is an effec-
tive strategy for autoencoders. However, the classification 
performance can be enhanced even further by employing 
bidirectional data processing for classification. Given the 
prominent temporal dependencies within time series sen-
sor data, this approach falls short in fully capturing the 
data’s intricacies. To address this limitation and incorpo-
rate both past and future temporal information, a BiLSTM 
structure is adopted for fault detection. This specialized 
architecture processes the sequence data in dual direc-
tions, both forward and backward, utilizing two hidden 
layers. Consequently, it combines the insights from both 
directions into a single output layer. The structure of the 
BiLSTM network is presented in Figure 4, showcasing its 
bidirectional data flow and enhanced capacity to compre-
hend the temporal dynamics of the input data.

BiLSTM network processes input sequences, represent-
ed with xi, in both forward and backward directions with 
LSTM units. In the forward pass, data flows convention-
ally from the sequence’s start to the end, capturing past 
dependencies. Simultaneously, in the backward pass, data 
is processed in reverse, from end to start, enabling the 
network to grasp future context. Each LSTM unit within 
these two passes maintains hidden states, representing 
learned information from both past and future contexts. 

Figure 3. Autoencoders (source: created by authors)

Figure 4. BiLSTM structure (source: created by authors)
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These forward ( th


) and backward ( th


) hidden states are 
then merged as in Equation 10, where g represents ReLU 
function, creating a unified representation encompassing 
bidirectional context. 

( )1 2t t tO g w h w h= +
 

. (10)

This merged representation Ot is fed into an output 
layer tailored to the specific task, such as classification or 
prediction. During training, the model minimizes the loss 
between its predictions and actual targets using back-
propagation and optimization techniques. During infer-
ence, the BiLSTM uses its bidirectional understanding to 
make predictions or generate output, proving particularly 
effective in tasks where considering both past and future 
context is critical.

In this study, the BiLSTM classifier is utilized for de-
tecting incipient faults in quadrotors. To enhance fault 
detection using BiLSTM classification, the importance of 
integrating dimensionality reduction techniques to opti-
mize the structure’s efficiency is emphasized, particularly 
in terms of complexity. Furthermore, this strategic reduc-
tion of unnecessary inputs is paramount in refining the 
quality of the outcomes.

As a result, a structure consisting of three stages was 
introduced: data processing, LSTM-autoencoder, and BiL-
STM classifier. The adoption of the LSTM-autoencoder 
unit is advocated as a viable approach with its success on 
time-based data. The primary goal of the first phase of 
the autoencoder is to represent the flight data with a low 
margin of error by utilizing the robust framework of the 
LSTM-autoencoder. As a crucial next step, the intention 
is to discard the decoder component of this architecture, 
thus unveiling a latent layer. Rather than directly employ-
ing the original data, this strategy hinges on the extraction 
of outputs from the latent layer, which serves as the critical 
intermediary between raw data and BiLSTM classifier. In 
order to provide real-time alerts upon the detection of a 
fault during a flight, real-time monitoring of the flight is 
necessary, and the data from the flight needs to be pro-
cessed in a segmented manner rather than as a whole. In 
the proposed framework, data generated during the flight 
is processed in a segmented fashion to perform fault de-
tection. As an output, the BiLSTM classifier classifies the 
segments into two categories: healthy and faulty. BiLSTM 
is particularly useful for tasks where understanding the 
complete context is essential with its ability to capture in-
formation from both past and future contexts simultane-
ously which sets it apart from traditional LSTM and other 
deep learning methods. Since each data segment contains 
sequential data and needs to be decided whether faulty 
or not, BiLSTM classification is utilized for the fault detec-
tion process.

To evaluate the performance of the proposed LSTM-
autoencoder model integrated with the BiLSTM classifier, 
several evaluation metrics were employed. The metrics 
provided below (Equations (11), (12), (13), and (14)) offer 
a comprehensive understanding of the model’s effective-
ness in identifying healthy and faulty flights.

Accuracy: Accuracy is the ratio of correctly predicted 
instances to the total instances. It is calculated as follows:

  100TP TNAccuracy
TP TN FP FN

+
= ×

+ + +
, (11)

where:
 ■ TP (True Positives): The number of correctly predicted 
faulty flights.

 ■ TN (True Negatives): The number of correctly pre-
dicted healthy flights.

 ■ FP (False Positives): The number of healthy flights in-
correctly predicted as faulty.

 ■ FN (False Negatives): The number of faulty flights in-
correctly predicted as healthy.

Precision: Precision is the ratio of correctly predicted 
positive (faulty) observations to the total predicted posi-
tives. It is particularly important in scenarios where the 
cost of false positives is high. It is calculated using the 
formula:

TPPrecision
TP FP

=
+

. (12)

Recall (Sensitivity): Recall is the ratio of correctly pre-
dicted positive (faulty) observations to all observations in 
the actual class. It is crucial for detecting faults, ensuring 
that as many actual faults are identified as possible. It is 
defined as:

TPRecall
TP FN

=
+

. (13)

F1-score: The F1-score is the weighted average of Pre-
cision and Recall, providing a balance between the two. It 
is especially useful when there is an uneven class distri-
bution, as in cases where faults (1) are rare compared to 
healthy states (0). It is calculated as:

1– 2 Precision RecallF score
Precision Recall

×
= ×

+
. (14)

The model was evaluated using these metrics to en-
sure a comprehensive assessment of its performance in 
distinguishing between healthy and faulty flights. The se-
lected metrics contribute to a precise evaluation of the 
model’s capabilities, particularly in accurately identifying 
faults while minimizing false alarms.

4. Results

A major drawback in detecting faults in quadrotors is the 
highly imbalanced nature of the data. The likelihood of a 
healthy flight is much more common than that of a crash. 
Even when a crash event occurs, there is only a slight 
chance of having sufficient pre-failure flight time for anal-
ysis. Machine learning algorithms struggle to accurately 
predict outcomes with such data. In this study, data total-
ing 126 minutes and 16 seconds from 10 different flights 
that experienced crash events were collected from blogs, 
along with 70 minutes and 25 seconds of data from 10 dif-
ferent healthy flights conducted on our campus. A dataset 
was created by consolidating all this data.
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For the model to detect incipient faults during flights, 
these faults need to be introduced to the model. To 
achieve this, the flight segments created must be labeled 
as either healthy or faulty before being provided to the 
system. In this study, the aim is to detect incipient mal-
functions 30 seconds before the start of an uncontrolled 
descent. Accordingly, in flights where accidents occurred, 
the flight segments from 30 seconds before the start of 
the descent until the moment the descent begins are 
labeled as faulty. To ensure an equal distribution of the 
data, in flights without accidents, the last 30 seconds of 
the flight are selected and labeled as healthy.

In the pursuit of fault detection with the BiLSTM clas-
sifier, emphasis has been placed on dimensionality reduc-
tion to enhance the efficiency of the structure in terms 
of time complexity and achieve more refined outcomes 
by eliminating unnecessary input features. During fault 
detection, instead of using the original data directly, out-
puts obtained from the latent layer of the data fed into 
the LSTM-autoencoder structure were utilized to feed the 
BiLSTM classifier network depicted in Figure 1. This ap-
proach began with LSTM-autoencoder experiments. 

To retain all pertinent information from the flight data 
during the LSTM-autoencoder phase, the objective is to 
minimize the error while reconstructing the flight data. To 
achieve this, a structured model was developed incorpo-
rating sequence input layer, LSTM layer with sigmoid gate 
activation and tanh state activation, fully connected layer, 
and regression layer. Training employed the Adaptive 

Moment Estimation (ADAM) optimizer with a learning rate 
of 0.01, utilizing a batch size of 50 over 200 epochs. The 
loss function employed was Mean Squared Error (MSE), 
augmented by L2 regularization to enhance generaliza-
tion. A series of experiments were conducted using both 
healthy and faulty data. Whole data is partitioned as 80% 
train, 10% test and 10% validation which is vital to avoid 
overfitting. To evaluate the performance of networks with 
different neuron counts in the latent layer, nine different 
networks were created by gradually increasing the neuron 
count in the latent layer from 5 to 45 in increments of 5. 

Figure 5 depicts the graph of actual and autoencoder-
reconstructed values for normalized pitch and altitude sig-
nals obtained from the respective sensor. The employed 
autoencoder in this experiment features a latent layer with 
20 neurons. Likewise, each set of sensor data was exam-
ined with varying neuron counts in the latent layer, and 
the Root Mean Squared Error (RMSE) values for each flight 
are presented in Table 1. The overall average RMSE for the 
entire dataset is 0.3898.

The results demonstrate that the flights having crash 
(C1-C10) and healthy flights (H1-H10) are represented pre-
cisely by LSTM-autoencoders particularly when the num-
ber of neurons in hidden layer is near to the feature count. 
The autoencoder’s error rate decreases with an increase 
in the number of neurons within the hidden layer. This 
observation indicates that precise dimensionality reduction 
is achieved by keeping the neuron count above a certain 
number where significant information is not lost.

Figure 5. Normalized actual signals and their representatives reconstructed with LSTM-
autoencoder having 20 neurons in latent layer: a) pitch signal of a healthy flight; b) pitch 
signal of a faulty flight; c) altitude signal of a healthy flight; d) altitude signal of a faulty flight
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After the dimensionality reduction phase, the subse-
quent phase entails preemptive fault detection through 
the classification network. To assess the efficacy of BiLSTM 
in fault detection, a series of experiments were conducted 
using a BiLSTM classifier network. This network archi-
tecture includes, a sequence input layer, a BiLSTM layer 
with 30 hidden units (using tanh as the state activation 
function and sigmoid for gating), a fully connected layer, 
and a classification layer. Training was performed using 
the ADAM optimizer with a learning rate of 0.01, a batch 
size of 50, and a maximum of 100 epochs. Cross-entropy 
was used as the loss function, and L2 regularization was 
applied to prevent overfitting. To determine the optimal 
number of latent variables for dimensionality reduction, 
nine previously created LSTM-autoencoder networks were 
used, excluding their decoder components. The effective-
ness of the LSTM-autoencoder in dimensionality reduction 
for fault detection was evaluated through this approach. 
During the experimentation phase, a specialized 10-fold 
cross-validation methodology was employed across 
20 flights. Each fold consisted of two distinct flights, one 
healthy and one faulty. Within each fold, half of the data 
was allocated to the validation set to mitigate overfitting, 
with a validation patience set at 7, meaning that the train-
ing will be stopped if the validation accuracy does not 
increase for 7 consecutive epochs. Nine networks were 
generated based on variations in the number of neurons 
in the latent layer of the LSTM-autoencoder network in-
tegrated into the BiLSTM classifier network. Each network 
underwent the experiment four times, and the average 

classification performance results, using different metrics, 
are presented in Figure 6.

Based on the results, fault detection achieved an accu-
racy of 73.57% when performed without dimensionality re-
duction. In subsequent experiments involving dimension-
ality reduction, it was noted that reducing the number of 
neurons in the latent layer from 45 to 20 led to an increase 
in classification accuracy, rising from 74.83% to 79.48%. 
However, a further reduction in the number of neurons 
to 15 resulted in a significant decrease in classification 
success, dropping to 70.48%. Continuing the reduction to 
even fewer neurons led to a further decline in classification 
success, reaching 67.95%.

Precision and recall follow similar trends, reinforc-
ing the observations from the accuracy metric. Precision 
begins at about 0.70 with 45 neurons and increases to a 
peak of 0.84 at 20 neurons. This trend highlights that an 
optimal number of neurons enhances the model’s abil-
ity to correctly identify faulty flights (true positives) while 
minimizing false positives. Similarly, recall starts at 0.68 
with 45 neurons, peaks at 0.76 at 20 neurons, and then 
declines with further reduction in neurons. This pattern 
indicates that the model’s ability to identify all actual faults 
is maximized with an optimal latent layer size.

The F1-score mirrors the trends observed in the other 
metrics since the dataset was balanced by gathering last 
30 seconds from both healthy and faulty flights. Starting 
from 0.70 with 45 neurons, it peaks at approximately 0.76 
at 20 neurons, and then decreases as the number of neu-
rons is further reduced. The peak F1-score at 20 neurons 

Table 1. Root mean squared errors of trained LSTM-autoencoder on flight data with varying neuron counts in latent layer

Flights Instance 5 10 15 20 25 30 35 40 45

C1 10897 0.7667 0.6614 0.5494 0.4809 0.3996 0.3142 0.2293 0.1444 0.0637
C2 6507 0.6946 0.5649 0.4957 0.4105 0.3469 0.2706 0.1903 0.1034 0.0409
C3 5523 0.8009 0.6981 0.608 0.512 0.4429 0.3416 0.2623 0.1607 0.0654
C4 7459 0.721 0.5932 0.4834 0.4055 0.3385 0.264 0.1777 0.1017 0.0446
C5 3790 0.7723 0.6876 0.5638 0.4559 0.3779 0.3069 0.2315 0.1258 0.07
C6 1057 0.7163 0.5892 0.5254 0.465 0.3973 0.3182 0.2352 0.1312 0.0635
C7 10987 0.7709 0.5838 0.5207 0.4412 0.3573 0.2737 0.1853 0.1017 0.0461
C8 25118 0.6701 0.5294 0.4584 0.3956 0.3167 0.247 0.1759 0.1054 0.0457
C9 4230 0.784 0.6733 0.6055 0.5404 0.4719 0.3791 0.2894 0.1611 0.0847
C10 670 0.8147 0.6528 0.586 0.5177 0.4303 0.3576 0.2348 0.1291 0.0587
H1 1935 0.7887 0.6783 0.587 0.5005 0.4091 0.333 0.2318 0.1463 0.0597
H2 1624 0.7801 0.671 0.5843 0.5004 0.4227 0.3157 0.2393 0.1501 0.066
H3 2071 0.7997 0.6391 0.5636 0.4629 0.3731 0.2864 0.207 0.1273 0.062
H4 1974 0.7837 0.6508 0.5636 0.4759 0.391 0.3136 0.2334 0.1372 0.0592
H5 2648 0.7425 0.6284 0.5415 0.4727 0.3868 0.2968 0.2252 0.1022 0.0458
H6 8057 0.7995 0.6639 0.5756 0.4973 0.3989 0.3159 0.235 0.1258 0.0473
H7 7388 0.7532 0.5937 0.4992 0.4016 0.3328 0.2506 0.1997 0.125 0.0532
H8 9254 0.7395 0.616 0.5203 0.438 0.3632 0.2702 0.2047 0.1258 0.052
H9 2806 0.7531 0.6454 0.5634 0.4872 0.4186 0.3455 0.2545 0.1393 0.0625
H10 3341 0.773 0.6427 0.5575 0.4724 0.3664 0.2866 0.2171 0.1244 0.0581

Average: 0.7612 0.6331 0.5476 0.4666 0.3870 0.3043 0.2229 0.1283 0.0574
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signifies the most balanced performance, combining both 
high precision and recall.

The findings illustrate that excessive information is in-
troduced into the system when the neuron count in the 
latent layer is high, resulting in a detrimental impact on 
classification performance. Conversely, a reduction in the 
neuron count leads to improved classification success, sig-
nifying the elimination of unnecessary or redundant infor-
mation and an augmentation in the proportion of essential 
data. Overall, the results underscore the critical role of di-
mensionality reduction in enhancing performance. None-
theless, when attempting further dimensionality reduction, 
a noticeable decline in classification success emerges, pri-
marily due to the loss of fault-descriptive information.

5. Conclusions

A deep learning-based framework is proposed herein to 
anticipate and mitigate potential crashes in quadrotors, 
enabling safe landings facilitated by an early warning sys-
tem. This study distinguishes itself from previous works 
through the comprehensive utilization of all available sen-
sor data, ensuring no relevant information is overlooked. 
Despite the recognition that some sensor data may be 
unnecessary or redundant, dimensionality reduction was 
conducted before the classification process to eliminate 
such redundancy. This step enhances fault detection ac-
curacy and reduces complexity. The model comprises two 
primary components: 1) LSTM-autoencoder for both fea-
ture dimension reduction and computation of optimal re-
construction errors associated with each quadrotor flight, 
2) BiLSTM classification for learning incipient faults from 
both healthy and faulty flights during training.

The proposed model was applied to quadrotor flight 
dataset created by gathering data collected from both 
web and the flights carried out in the university campus. 

The experimental results show that incipient faults are effi-
ciently detected by the model with an average accuracy of 
79.48%, 30 seconds before triggering serious malfunctions. 
This underscores the potential of the model to enhance 
both the safety and security of quadrotor flight operations. 
Moreover, the model’s flexibility, with adjustable input and 
neuron sizes, makes it highly applicable to other systems. 

Adapting the model to fault detection applications in a 
wide range of complex systems will be a research path in 
the future. It is believed that the results of this study are 
quite relevant for further expansion of the potential in this 
area through new studies. A prevalent challenge in fault 
detection lies in the scarcity of data containing informa-
tion about faults compared to healthy operational data, 
leading to an unbalanced distribution of data. The data 
were balanced first, hence, experiments were conducted 
with a limitation as a significant portion of healthy flight 
data could not be fully utilized. Thus, this study will be re-
directed towards optimizing the utilization of healthy flight 
data and enhancing fault detection success by adapting 
methods employed for imbalanced data. This adaptation 
will be a focus of upcoming research to ensure a more 
comprehensive and effective fault detection approach.
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