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1. Introduction

Aviation meteorological Terminal Aerodrome Forecasts 
(TAF), depicted in the Figure 1, serve as the cornerstone 
of aviation meteorological practice, crucially underpinning 
flight safety and operational decisions. Formulated in a 
concise code format, they encapsulate essential informa-
tion indispensable for global aviation participants. This 
standardized format is universally adhered to by states 
aligned with the International Civil Aviation Organiza-
tion (ICAO) or World meteorological organization (WMO) 
standards, supplying a diverse spectrum of recipients, en-
compassing civilian, military, professional, and recreational 
pilots, meteorologists, and external users alike.

Despite the growing trend towards automated mete-
orological observations, the production of TAF still relies 
significantly on meteorologist’s expertise. Scrutinizing 
these forecasts and their underlying methodologies holds 
the potential to substantially refine their accuracy and uni-
formity. The TAF inherent irregularity poses a persistent 
challenge for automated interpretation, characterized by 
a series of distinctive complexities:

 ■ Varied counts of change groups;
 ■ Fluctuating numbers of elements within each group;

 ■ Diverse header formats for predictions;
 ■ Pervasive data availability issues, distinct from obser-
vations;

 ■ Wide-ranging regional nuances and compliance man-
dates.

This study endeavours to deliver a vast analysis ex-
ecuted through Python functions shared within a GitHub 
repository (Sládek, 2024). These notebooks provide a tool 
for fellow meteorologists, offering a swift mechanism for 
dissecting a range of reports, as well as for researchers and 
aviation personnel. Comprehensive explanations of each 
function empower meteorologists to tailor these tools to 
their unique exigencies.

Figure 1. Schematic depiction of the TAF and its 
structure divided to the header (identification) and 
forecast part
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Although TAF reports have been subjected to numer-
ous analyses, they primarily find their place in technical 
reports, analyses, and safety assessments. Beyond the for-
mulation of TAF detailed in ICAO Annex 3 (International 
Civil Aviation Organization [ICAO], 2018), the benchmark 
of quality is elucidated in Section 7.4 of ICAO Regulation 
9873, the Manual on Quality (ICAO, 2010). This stipulates 
the overarching requisites that meteorological services 
and products must fulfil, including: 

 ■ Fulfilment of primary user (airlines/crews) requisites; 
 ■ Prompt assimilation of revised WMO/ICAO standards; 
 ■ Minimization of message correction or delay; 
 ■ Timely distribution of documentation to airline per-
sonnel; 

 ■ Punctual preparation of periodic summaries; 
 ■ Precision of issued forecasts.
Several papers have dealt in more detail with the ac-

tual methods for determining accuracy, e.g. (Mahringer, 
2008; Sharpe et al., 2016; Novotny et al., 2021; Sladek, 
2019, 2021). The focus of the research has been on quan-
tifying the characteristics of forecasts regarding the mini-
mization of message corrections (as referred to in the 
third bullet point) and, to some extent, the precision of 
issued forecasts (point 6). These studies recognize the 
inherent complexity of weather prediction, particularly 
evident in the TAF blend of deterministic and probabil-
istic predictions. Moreover, the incorporation of various 
factors to determine the periodicity of change adds fur-
ther intricacy. Consequently, the establishment of stand-
ardized weights for these forecasts remains a work in 
progress, with ongoing research aimed at refining these 
methodologies.

Previous studies have emphasized the critical role of 
weather forecasting in optimizing aerodrome operations 
and ensuring safe air traffic management (Simone et al., 
2022). While TAF are a routine operation for aerodrome 
systems, their accuracy and reliability remain paramount 
for effective decision-making. This paper proposes a per-
formance-based analysis of weather forecast accuracy tai-
lored to International Civil Aviation Organization (ICAO) 
standards, aiming to provide operational insights for both 
Weather Service Providers (WSP) and Air Navigation Ser-
vice Providers (ANSP).

None of these studies focused on the overall attributes 
of the forecasts and how they change geographically and 
over time. This could be one of the key aspects of assess-
ing the quality of forecasts. In addition to international 
regulations, there may be a number of internal regulations 
and guidelines, as well as changes.

An important consideration is the number of changes 
that can be introduced at the national level on a year-on-
year basis. As an example of changes that can be made 
within one-year period, the changes implemented in the 
Czech Republic for the years 2022–2023 are exemplified 
through various modifications. This accents the need for 
continuous and coordinated international monitoring.

The primary and pivotal adjustment revolves around 
Václav Havel Airport Prague (LKPR), the largest interna-
tional airport in the Czech Republic, boasting the highest 
traffic on runways and aprons. Initially, TAF were issued at 
six-hour intervals, with a forecast validity of thirty hours, 
occurring at 00:00, 06:00, 12:00, 18:00 UTC. In response 
to the request of the Czech Air Navigation Agency, and 
the commencement of the 2023 contract for aeronauti-
cal meteorological information and services by the Czech 
Meteorological Office, the frequency of sending TAF to 
LKPR was halved. Presently, these forecasts are dispatched 
at 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 
UTC. This alteration has notably reduced the number of 
TAF AMD LKPR messages and significantly enhanced fore-
cast accuracy.

Another notable transformation involved the reduc-
tion of the TAF validity period for civil, regional airports 
Karlovy Vary (LKKV), Brno (LKTB), and Ostrava (LKMT). 
Although the TAF sending times remain at 00:00, 06:00, 
12:00, 18:00 UTC, the validity period was shortened from 
30 hours to 24 hours. Consequently, TAF for LKKV, LKTB, 
and LKMT are now crafted for 24 hours, aligning with the 
validity of TAF for all military airports in the Czech Repub-
lic, namely Praha – Kbely (LKKB), Čáslav (LKCV), Náměšť 
(LKNA), Pardubice (LKPD).

The most recent innovation transpired in August 2023 
when the Czech Meteorological Office assumed mete-
orological security responsibilities for České Budějovice 
Airport (LKCS). In collaboration with the airport opera-
tor and the Czech Air Traffic Control, the Czech Mete-
orological Office initiated the issuance of short TAF for 
LKCS, valid for only 9 hours. These forecasts are released 
at 06:00, 09:00, 12:00, 15:00, 18:00, 21:00 UTC, and ex-
clusively when the airport is operational, potentially also 
unscheduled and upon special request from the airport 
operator.

These adjustments underscore the necessity of con-
ducting real-time or near-real-time evaluations of TAF 
forecasts, as any unforeseen alterations in national regu-
lations markedly impact the airport’s reliability for pilots. 
To implement such a system effectively, comprehensive 
analyses of the current state are imperative. In addition 
to providing tools for analyzing TAF, this study seeks to 
address a fundamental question: Can a comprehensive 
analysis of the nature of change groups serve as a robust 
indicator for mapping regulatory changes, internal direc-
tives compliance, adherence to ICAO regulations, and 
ultimately, the complexity of weather and aviation fore-
caster’s performance when comparing airports in close 
proximity? By delving into the intricacies of change group 
dynamics, this research aims to shed light on the multi-
faceted challenges faced by aviation meteorologists and 
regulatory bodies, offering valuable insights for enhanc-
ing forecast accuracy and regulatory compliance across 
airport networks.
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2. Data and methods

The primary data source in this study emanated from the 
universally employed standardized TAF (Figure 1). Regu-
larly disseminated, these TAF adhere to ICAO guidelines 
and regional directives stipulated by the respective com-
petent authorities, such as the Civil Aviation Authority in 
the Czech Republic. Manifesting in a standardized code 
format, the TAF concisely describe the prevailing atmos-
pheric conditions and significant anticipated changes in 
selected meteorological parameters over the forecast du-
ration.

Within the Czech Republic, aligned with recommenda-
tions in Annex 3, a TAF boasts a validity span of either 24 
or 30 hours, necessitating issuance at intervals of 6 or 9 
hours, with a release frequency of 3 hours. Geographical 
variations emerge across the globe, governed by distinc-
tive national, regional, and local regulations.

Vital for maintaining its accuracy and compliance, the 
TAF remains subject to continuous monitoring, as dictated 
by regulations. Transgressing the thresholds set by bind-
ing regulations and agreements mandates the swift issu-
ance of an Amendment. Notably, only one valid forecast 
for a specific airport can persist concurrently; hence, an 
amendment or a new forecast automatically cancels the 
preceding one.

In this research, TAF forecasts from 45 European air-
ports (Figure 2) were analyzed.

Airports were selected from major European cities and 
this selection was augmented by including the three Lon-
don airports (London Heathrow: EGLL, London Stansted: 
EGSS, and London Luton: EGGW). The aim was to inves-
tigate differences within proximity, where similar weather 
conditions could prevail.

Aggregate number of change groups (part of the 
forecast containing expected significant changes) become 
pivotal. This complexity is underscored in (Novotny et al., 
2021). The authors emphasize that compliance with regu-
latory norms may occasionally hinder certain adjustments, 
even if these modifications align with meteorological in-
sights. Basically, a forecast, despite capturing meteoro-
logical dynamics with precision, must adhere to formal 
principles to sustain clarity and intelligibility, necessitat-
ing a balance between technical precision and regulatory 
conformity.

2.1. Data acquisition
The initial phase encompassed the procurement of data, 
a pivotal endeavour executed through diverse data-
bases. The dedicated notebook, titled “Taf_get_data.ip-
ynb,” (Sládek, 2024) specifically interacts with the Ogimet 
(Ogimet, 2024) database. This interaction leverages the Py-
thon modules “requests” (Requests 2.31.0, 2024) and “bs4” 
(Beautifulsoup4 4.12.3, 2024) (The Python Package index, 
2024a, 2024b), enabling the extraction of pertinent text 
from the database (Figure 3). The user’s role is straightfor-
ward and is limited to specifying the following parameters:

1. A compilation of desired ICAO indicators.
2. The initiation year and month (with data spanning 

the entirety of the month).
3. The designated storage location for the acquired 

dataset.
Figure 3 shows the flowchart of the function that au-

tomatically retrieves the data. The first step starts in the 
bottom left corner, using concatenation to create a URL 
based on user parameters. A Request to Ogimet database 
is entered, a bs4 object is created, which extracts the query 

Figure 2. Analysed airports and their ICAO indicators
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text using an html parser. This text contains the one that 
would be displayed to the user on the page. 

Given that the stored file exclusively contains unpro-
cessed text, encompassing the introduction, page headers, 
and annotations, an indispensable data refinement func-
tion was devised. This function is integrated within the 
“Taf_clean.ipynb” notebook. The input is displayed in the 
Figure 4 and the outcome after cleaning and splitting by 
individual forecasts in the Figure 5.

Datasets sourced from different databases often en-
compass diverse forms of identifiers, headers, or accom-
panying textual information, as exemplified in Figure 4. 
However, the focus lies in extracting solely the encoded 
predictions from such datasets (Figure 5).

Figure 4 and Figure 5 indicate that the databases are 
not always uniformly set up and a slightly modified read-
ing algorithm must be created for each of them. In gen-
eral, preprocessing and data cleaning is a very challenging 
job in data analysis. However, rigid approach in this phase 
provides much less difficulties in the subsequent analysis.

2.2. Decoding
The core of the entire procedure is captured in the third 
notebook. This notebook contains the pivotal function 
named “process_taf_to_df,” (Figure 6) where the user’s in-
volvement is streamlined to a single parameter entry. This 
parameter involves the TAF as string, which was previously 
extracted.

Special attention should be paid here to the need to 
modify the BECMG groups (implying a gradual change 
of the conditions). They are perhaps a bit unexpectedly 
a problem for the regular decoding itself. Validity in the 
temporal determination of a given group never belongs to 
that group, but de facto limits the validity of the previous 
one (see Figure 7).

Figure 3. Scheme of retrieving data from the Ogimet 
database

Figure 4. Ogimet File downloaded by the first Jupyter 
notebook

Figure 5. Ogimet File with cleaned and split data

Figure 6. Flowchart of decoding TAF string adjusting it to 
the regular DataFrame object

Figure 7. Example of simplified BECMG group understand-
ing by human reading. Green values correspond to the 
green times of validity and yellow wind information corre-
sponds to validity times that. Validity times are actually con-
tained in the different groups than their wind information
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Figure 7 illustrates a key challenge in understanding 
TAF forecasts. A sample forecast of SE winds of 12 knots, 
which will gradually calm to a variable wind direction of 
up to 2 knots in the afternoon was produced. While the 
main time indicator extends validity up to day 12, 6 hours, 
it is cut short by the BECMG change group. This indicates 
a change occurring between 2 and 4 pm on day 11. Con-
sequently, after 4 pm, the wind forecast VRB02KT (variable 
wind, 2 knots) and CAVOK, mentioned in the main group, 
are already in effect. To facilitate machine processing, it 
was necessary to divide the entire TAF into temporary 
groups (TEMPO, PROB) containing only conditional chang-
es, which then revert to the original conditions, and a sub-
database of permanent changes (BECMG, FM) that entirely 
alter the conditions. As illustrated in Figure 6, the solution 
of the BECMG group involved dividing the sub-database 
into two segments. This approach facilitated the inter-
change of timestamp objects (such as form 1012/1016) 
and time data represented as datetime objects within the 
corresponding cells. However, this property of the TAF can 
be identified as a significant drawback. The need to use 
such a procedure is an example of the fact that TAF is not 
built for machine reading. In the case shown in Figure 7, 
it can be seen that the values and their validity times are 
not given within a single group at all. Thus, one only can 
create the whole picture once the whole forecast is read. 

3. Results

To explore potential applications, an examination of spe-
cific parameters within the 2022–2023 TAF was conducted. 
The following parameters have been identified as primary 
focus points for analysis:

 ■ Count of corrected/amended forecasts.
 ■ Quantity and categories of change groups.

3.1. Amended and corrected forecasts
The TAF can be corrected in two ways:

 ■ TAF AMD, called an Amendment: a forecast issued on 
the basis that the forecast values themselves do not 
match or differ significantly from observations.

 ■ TAF COR, corrected: A forecast corrected for formal 
errors or typos.

The analysis also examined the number of AMD and 
COR forecasts issued by TAF (Figure 8 and Figure 9). This 
is because their number is a direct indicator of the quality 
of service provided. It is also defined as a quality indicator 
in ICAO Regulation 9873, Manual on Quality (ICAO, 2010), 
as mentioned at the beginning of the article. 

Before the analysis, the data were removed from Oslo 
Airport (2022) due to faulty data in the database, where al-
though the values are correct, a corrected message was au-
tomatically added to each message. Such input is probably 
due to a faulty data flow or checking the release time and au-
tomatically adding AMD/COR suffix to the header. Using the 
algorithm, it would be the need to design new code branch 
to mark the duplicate COR forecasts without this being nec-
essary. In the 2023 data, this error was already corrected. By 
the Kyiv airport, significant part of the database is missing.

The number of COR reports alone indicates low fore-
casters’ focus or low automation of report issuance; for 
AMD reports, changing conditions or lower staff experi-
ence may be to blame. These corrections/amendments are 
considerd together because, for example, the Paris airport 
(LFPG) does not issue COR reports but straight AMD re-
ports, as do airports in Athens or Portugal. 

 ■ Looking at the map (Figure 8 and Figure 9), several 
findings are particularly visible. Substantial variations 
exist among London airports. Such proximity high-
lights potential inconsistencies in regional regulations 
or disparities in the quality of service delivery.

Figure 8. Proportion of the number of corrected (AMD or COR) forecasts out of the total number issued for 2022
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 ■ London Stansted (EGSS) and London Luton (EGGW) 
AMD/COR numbers raised between 2022 and 2023.

 ■ Balkans, Prague or Brussels possess quite low AMD/
COR fraction without significant shift between the 
years.

It should be borne in mind that numbers alone may 
not be indicative. It is only the statistics on how many fore-
casts were amended and how many of them should have 
been actually amended. Analysis including observations 
comparison would indicate the accuracy of the reporting 
or amending of the forecasts.

For a detailed overview of how many COR and AMD 
forecasts have been issued, see Table A2 and Table A4. It 
can be seen that some airports (e.g. all three Portuguese 
airports) do not issue COR forecasts at all, but straight 
AMD forecasts (Table 1). This supports the assertion of the 
importance of local agreements and regulations that may 
mandate the use of AMD only.

For Portuguese airports, it can be assumed that the 
use of AMD may be governed by national regulations. 
The other possibility is that some automatic system is 

used in Portugal to correct formal errors. In the case of 
France and Greece, the further analysis must be carried 
out formulate the anticipations about the absence of COR 
forecasts.

An interesting change is the increase in the percentage 
of corrected messages at London airports. The magnitude 
of the changes in Europe is expressed by the percentage 
difference from 2023 minus 2022 (Figure 10).

Figure 10 presents a comparison of 2022–2023 chang-
es, revealing that numerous airports, particularly those in 
London, have experienced an incline in forecast correc-
tion percentage by 10 percent or more. This suggests the 
possibility of changes in directives or internal regulations 
within these airports. Interestingly, airports in Madrid or 
Mallorca have shown an increase in the frequency of is-
suing AMDs and CORs. This trend may be attributed to 
either more diligent work by meteorologists regarding 
corrections or the implementation of new regulations or 
significant weather changes. However, identifying the spe-
cific causes behind these trends requires further investiga-
tion in separate research.

Figure 9. Proportion of the number of corrected (AMD or COR) forecasts out of the total number 
issued for 2023

Table 1. Selection of exceptional airports with a high difference in AMD usage and COR forecasts

ICAO Location TAF COR AMD % of AMD/COR

EVRA Riga 2811 1 190 6%
LFPG Paris 1250 0 405 24%
LGAV Athens 1417 0 48 3%
LPPT Lisbon 1326 0 129 9%
LPMA Madeira 1418 0 54 4%
LPPD Ponta Delgada 1290 0 70 5%
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3.2. Change groups count
As part of the analysis, it is valuable to examine the fre-
quency of change groups within each TAF forecast. Follow-
ing the guidelines outlined in ICAO Annex 3, it is advised 
to limit the utilization of change groups to a maximum of 
four (ICAO, 2018). Excessive utilization of change groups 
can diminish the forecast’s clarity and typically leads to 
decreased accuracy, thereby resulting in heightened in-
stances of false alarms.

The number of change groups per forecast is shown in 
the following maps (Figure 11 and Figure 12).

In terms of year-on-year changes, the most interest-
ing situation is in London, where the number of change 
groups has almost doubled (Figure 13). This may be due to 
a new directive or national regulations coming into force. 
All three airports have increased their average numbers 
and it would not be expected that such a shift in weather 
variability would occur in these two years.

The high number of change groups can be attributed 
to one of three influences:

 ■ Very difficult situations where it is not possible to ex-
press the forecast more concisely.

Figure 10. Yearly differences between fractions of AMD/COR forecasts in 2022 and 2023. Higher 
value stands for increase in fraction of the AMD/COR percentage

Figure 11. Frequency of change groups per Issued TAF Forecast in 2022. London, Dublin, and Prague exhibit 
the highest average numbers, suggesting a more frequent utilization of change groups
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Figure 12. Frequency of change groups per Issued TAF Forecast in 2023. London, Dublin, and Amsterdam 
exhibit the highest average numbers, suggesting a more frequent utilization of change groups

Figure 13. Difference in the use of change groups per one issued TAF Forecast in 2022–2023

 ■ Regional specificities of the regulations that add cri-
teria when a change group needs to be included, be-
yond those defined in ICAO Annex 3.

 ■ Excessive apprehension of meteorologists and their 
protection against error. That is the placement of 
multiple values so that at least some are correct.

Since the professional forecasters are directed to fol-
low ICAO quality standards, it is correct to expect that the 
first two points are primarily to blame. A change in the 
approach of the forecasters or a change in the team would 
not have had such a significant impact. There are still more 
people involved in the service, and individual differences 
would probably not manifest themselves as significantly 
in changes in both the number of AMD/CORs (Figure 10), 
and the number of change groups. 

Analysis of the second point is challenging because 
Annex 3 (ICAO, 2018) acknowledges regional and indi-
vidual agreements between the user and the weather ser-
vice provider on several points. These agreements are an 
integral part of the provision of aviation meteorological 
services. However, they are often written in local language 
and are not published comprehensively within ICAO.

The first point, on the other hand could be examined 
through the statistical comparison of the observations or 
numerical model forecasts. Such as research could reveal 
how much the TAF characteristics are dependent on the 
observations and source data, i.e. how complicated the 
situation was.
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3.3. Change groups type
It is also noteworthy to identify which specific groups are 
employed most frequently (Figure 14 and Figure 15). In 
certain airports, the absence of probability groups contrib-
utes to a diminished deterministic aspect of the forecast 
or its level of certainty.

The outcomes can be further scrutinized in the ap-
pended Table A1 and Table A3. Even at an initial glance, it 
becomes evident that certain airports exhibit a tendency 
to indicate changes through the TEMPO indicator, while 
others utilize the BECMG indicator equally. Notably, some 
airports choose to omit probabilities entirely. It is impor-
tant to note that the directive does not directly address 
these variations; instead, it interprets the nature of change 

groups, leaving it to individual meteorologists to deter-
mine how to articulate the nature of the change. It was 
selected interesting cases:

1. Yerevan Zvarnots (UDYZ) uses primarily TEMPO in-
dicator over BECMG.

2. Stockholm (ESSA) uses only PROB40 group, but not 
PROB40 TEMPO in 2022, but in 2023, also PROB40 
TEMPO is used.

3. Riga (EVRA), Copenhagen (EKCH), Baku (UBBB) 
and Minsk (UMMS) never use PROB30 nor PROB30 
TEMPO.

4. Rome Fiumicino (LIFR) and Vilnius (EYVI) do not use 
solely PROB30 and PROB40 groups, but they use 
PROB30/40 TEMPO. 

Figure 14. Pie Charts of usage change groups at airports in 2022

Figure 15. Pie Charts of usage change groups at airports in 2023
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These differences may indicate variations in local di-
rectives or practices regarding the involvement of change 
groups. A notable example is Rome, where it is possible to 
anticipate absence of phenomena suitable for decreased 
probability of occurrence and continuous presence, such 
as fog. These phenomena are often indicated by the 
PROB30 and PROB40 groups.

3.4. Code exception as a result
Even errors (exceptions) of the code run can be seen as 
useful. With deeper analysis, it can lead to more profound 
check of the TAF databases. Table 2 presents exceptions 
yielded by the algorithm, detecting some errors in the TAF 
forecasts:

These exceptions generated by the code can be also 
used for spotting formal error – in all cases, problem was 
in the timer of the group (extra number), and therefore al-
gorithm was not able to decode it unambiguously. Result-
ing errors (called exceptions) can be redirected to a service 
branch of the code, identify the problem, and resolve it. 

To take advantage of these formal errors, two solutions 
are being proposed:

 ■ Marking the error as correctable/uncorrectable for 
the case when there is a possibility to correct the 
error with high probability or when it is not pos-
sible to determine the correct value (e.g. typos in 
BKN - BNK, etc.)

 ■ Marking an error as corrected/neglected. The algo-
rithm would check the following report to see if it 
used COR or AMD to correct the error. The result 
would be an indicator of the consistency of the ser-
vice in correcting formal errors.

Overall, it is recommended to include a separate algo-
rithm when making predictions so that there are as few 
typos and formal errors as possible. However, by using 
error detection and automatic error correction, it would 
be possible at least produce detailed statistics of minor 
(and correctable) or major errors, as suggested by a pre-
vious study (Novotny et al., 2021). It is necessary to rec-
ognise that formal errors must be carefully identified and 
rigorously analysed before any summary statistics can be 
drawn. Failure to do so may compromise the quality of the 
results and potentially truncate the results of the method-
ology by not accounting for all possible scenarios.

4. Discussion

TAFs are pivotal in aviation meteorology, crucial for en-
suring flight safety and facilitating operational decision-
making at airports. Despite advancements in automated 
meteorological observations, TAF continue to heavily rely 
on the expertise of meteorologists.

The investigation into TAFs is characterized by its tech-
nical complexity, necessitating an understanding of the 
intricacies of meteorological data analysis and regulatory 
compliance. This study employs Python functions shared 
via GitHub repositories to conduct an overall analysis of 
TAF forecasts, focusing on tangible findings grounded in 
two years of the European data.

Regulatory compliance, as stipulated by the Interna-
tional Civil Aviation Organization (ICAO), serves as a cor-
nerstone for assessing the consistency of TAF forecasts. 
Acknowledging the need of adherence to ICAO regula-
tions and standards, the study provides concrete insights 
into the regulatory landscape governing aviation meteor-
ology. Real findings emerge from the analysis of changes 
in forecast issuance frequency and validity periods across 
various airports, revealing notable shifts in regulatory 
mandates and forecasting practices over time.

Decoding TAF forecasts poses several challenges 
due to their inherent complexity. Factors such as vary-
ing counts of change groups, fluctuating elements within 
each group, diverse header formats, data availability is-
sues, and regional nuances contribute to this complexity. 
Moreover, the use of change groups, integral to TAF fore-
casts, is influenced by regulations and regional conven-
tions, further complicating interpretation. The paper pro-
vides readers with the necessary tools to decode irregular 
BECMG groups reliably, addressing potential challenges 
for non-professional users. Furthermore, cleaning and 
splitting functions are available in the referenced Python 
notebooks, accessible in the referenced GitHub repository.

The analysis of TAF from 2022 to 2023 reveals basic in-
sights into their quality and characteristics. Examining the 
frequency of corrected and amended forecasts provides 
general overview of the service quality. Additionally, study-
ing change group utilization across different airports unveils 
various approaches to the structuring TAF forecast. Some 
airports exhibit a higher frequency of change groups, influ-
enced by factors such as complexity of situations, regional 
regulations, and forecaster decision-making. Remarkably, 

Table 2. Exceptions occurred during the run of the code exposing formal errors (marked yellow)

Excepting TAF 202301181130 TAF BKPR 181130Z 1812/1912 21008KT 9999 SCT030 BKN050
 TEMPO 18127/1818 24022KT
 PROB40 TEMPO 1812/1816 SHRA=

Error ‘NoneType’ object has no attribute ‘groupdict’
Excepting TAF Excepting TAF is 202301031700 TAF EYVI 031700Z 0318/0418 28014KT 9000 OVC012

 TEMPO 0318/0322 5000 RA BR BKN005
 BECMG 0401/0403 VRB04KT BKN015
 TEMPO 04003/0406 SCT005=

Error ‘NoneType’ object has no attribute ‘groupdict’
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the investigation uncovers instances where certain airports 
entirely forego the utilization of specific change group in-
dicators, such as PROB30. A brief discussion follows on the 
potential reasons behind these omissions, suggesting that 
they may stem from a combination of factors including the 
unsuitability of certain indicators based on the occurrence 
of phenomena, as well as adherence to national, internal, 
and local regulations. Moreover, the lack of standardization 
in change group directives allows individual meteorologists 
to express changes based on their judgment. This variability 
in interpretation poses challenges in forecast consistency 
and decision-making processes, highlighting the need for 
standardized guidelines.

In conclusion, this analysis highlights the fundamental 
bottleneck in understanding TAF forecasts in aviation me-
teorology. By understanding the challenges in decoding 
and interpreting TAF, the intricacies involved and work to-
wards improving forecast quality and reliability can be bet-
ter appreciated. This framework also introduced method 
for reshaping irregular forecast to the format suitable for 
database and ML processing.

5. Conclusions

The findings underscore the delicate balance between 
technical precision and regulatory conformity in producing 
accurate and intelligible TAF. The Python functions shared 
in the code repository provide forecasters with tools to 
dissect and analyse various aspects of TAF. While TAF have 
undergone previous analyses, this study offers a compre-
hensive approach that extends beyond technical reports, 
focusing on practical applications and implications for the 
forecaster’s performance improvement. The key conclu-
sions that emerge from the analysis and that were identi-
fied as critical to the perceived readability and quality of 
the forecasts issued are:

1. Variability in TAF Forecasts: TAF forecasts can exhibit 
significant differences, even among closely located 
areas such as London airports. This underscores the 
importance of considering regional nuances and mi-
croclimates in forecast interpretation.

2. Impact of Standards and Guidelines: National stand-
ards and internal guidelines exert a notable influ-
ence on TAF forecast counts. Standardized practices 
are essential to ensure consistency and reliability 
across diverse forecasting entities.

3. Call for Standardization of Change Groups: There 
is a clear need to define the utilization of change 
groups in international guidelines. Standardization in 
this aspect would enhance clarity and comprehen-
sion, particularly for forecast users and stakeholders.

4. Advocacy for Unified Quality Assessment Tool: De-
veloping a unified tool for assessing basic forecast 
characteristics globally is crucial. Such a tool would 
serve as a valuable indicator of service quality 
changes, enabling benchmarking and improvement 
initiatives.

5. Potential of TAF Forecasts as Weather Complexity In-

dicators: Standardized TAF forecasts hold promise as 
indicators of weather complexity. This has significant 
implications for aviation operations and safety, pro-
viding valuable insights into atmospheric conditions.

In conclusion, this study contributes to improving the 
uniformity of TAF while emphasizing the importance of 
regional considerations, regulatory compliance, and ex-
pert judgment. The availability of Python functions in the 
GitHub repository enhances accessibility for meteorologists, 
researchers, and aviation personnel, facilitating deeper in-
sights and applications of TAF. Overall, this study provides 
code and overall analysis as an effective tool to increase 
standardization, interpretation of TAF predictions, as well as 
their processing into ML systems in the future.
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Notation

Abbreviations

AMD – Amended
ANSP – Air Navigation Service Provider
BCMG – Becoming
CAVOK – Clouds And Visibility OK
COR – Corrected

Appendix
Table A1. Complete results of change groups count 2022. Dates columns contain count of unique issue dates  
(even duplicate without duplicate forecasts)

ICAO NAME Dates TEMPO P30 P30T P40 P40T BECMG/FM

LATI Tirana 1486 872 14 81 48 110 759
UDYZ Yerevan 1483 1166 0 0 0 0 23
LOWW Vienna 2402 3127 70 787 35 420 3087
UBBB Baku 1482 3231 0 0 3 68 1762

UMMS Minsk 1297 2323 0 0 10 16 929
EBBR Brussels 1379 521 63 832 44 347 913
LQSA Sarajevo 1456 726 214 830 308 545 326
LBSF Sofia 1475 1275 85 256 115 251 2308
LDZA Zagreb 1668 558 172 1088 261 434 1706
LKPR Prague 1461 2420 8 924 0 204 2167
EKCH Copenhagen 1857 2678 0 0 143 56 1757
EETN Tallinn 1465 2292 2 141 3 840 1802
EFHK Helsinki 3538 4182 654 908 202 468 4153
LFPG Paris Charles de Gaulle 1655 1124 59 839 97 1126 2321
UGTB Tbilisi 1477 1693 0 35 3 184 1301
LGAV Athens 1458 947 56 445 10 240 1366
EIDW Dublin 1737 1979 16 1269 19 917 4067
LIRF Rome Fiumicino 1504 1210 0 31 0 41 3033
BKPR Pristina 1637 1212 64 196 81 149 645
EVRA Riga 2998 5419 0 0 3 537 1671
EYVI Vilnius 1607 3059 0 6 0 90 2123
ELLX Luxembourg 1476 1554 18 423 53 371 1493

LMML Malta 1435 355 191 287 171 148 923
LUKK Chisinau 1500 1602 0 12 1 161 1600
LYPG Podgorica 1511 877 13 311 3 397 477
EHAM Amsterdam Schiphol 1404 521 237 601 143 336 3530
LWSK Skopje 2930 2055 5 325 14 209 904
EPWA Warsaw 2816 2444 144 342 579 1457 2791
LPPT Lisbon 1439 882 110 546 60 280 4204
LPMA Madeira 1451 1183 40 504 66 272 1072
LPPD Ponta Delgada 1341 1298 21 435 14 254 1722
LROP Bucharest H. Coanda 1488 990 2 384 8 307 1773
UUEE Moscow Sheremetyevo 2900 3806 0 1 13 497 1844
LYBE Belgrade Nikola Tesla 1520 1088 10 67 26 136 1340
LZIB Bratislava 1632 1786 8 275 10 341 1682
LJLJ Ljubljana 1398 738 18 647 94 451 519

GCLP Gran Canaria 1554 281 14 669 10 454 523
LEMD Madrid Barajas 1533 655 12 1177 5 1118 1064

ICAO – International Civil Aviation Organization
KT – Knots, velocity unit
ML – Machine Learning
TAF – Terminal Aerodrome Forecast
TEMPO – Temporary
UTC – Universal Time Coordinated
WMO – World meteorological organization
WSP – Weather Service Provider
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ICAO NAME Dates TEMPO P30 P30T P40 P40T BECMG/FM

LEPA Palma de Mallorca 1764 1132 13 780 3 658 2723
ESSA Stockholm Arlanda 3192 1725 0 0 2521 0 2196
LTAC Ankara Esenboga 1544 1504 38 194 14 41 1866
EGLL London Heathrow 1743 1450 355 2155 165 532 2120

EGGW London Luton 2032 1858 534 2101 271 781 2544
EGSS London Stansted 1997 2000 657 2339 402 754 3043

Table A2. Count and percentage of AMD and COR forecasts 2022

ICAO NAME TAF COR AMD % of A/C

LATI Tirana 1445 11 33 3%
UDYZ Yerevan 1417 35 39 5%
LOWW Vienna 2163 36 210 10%
UBBB Baku 1411 27 47 5%

UMMS Minsk 997 6 298 23%
EBBR Brussels 1336 26 19 3%
LQSA Sarajevo 1243 133 87 15%
LBSF Sofia 1422 12 43 4%
LDZA Zagreb 1371 44 256 18%
LKPR Prague 1361 4 96 7%
EKCH Copenhagen 1435 9 421 23%
EETN Tallinn 1347 41 78 8%
EFHK Helsinki 2849 52 642 20%
LFPG Paris Charles de Gaulle 1250 0 405 24%
UGTB Tbilisi 1366 53 65 8%
LGAV Athens 1417 0 48 3%
EIDW Dublin 1322 31 393 24%
LIRF Rome Fiumicino 1437 11 63 5%
BKPR Pristina 1576 20 47 4%
EVRA Riga 2811 1 190 6%
EYVI Vilnius 1266 108 236 21%
ELLX Luxembourg 1285 75 120 13%

LMML Malta 1394 14 30 3%
LUKK Chisinau 1437 19 44 4%
LYPG Podgorica 1384 59 73 9%
EHAM Amsterdam Schiphol 1312 56 39 7%
LWSK Skopje 2829 42 68 4%
EPWA Warsaw 2649 13 156 6%
LPPT Lisbon 1326 0 129 9%
LPMA Madeira 1418 0 54 4%
LPPD Ponta Delgada 1290 0 70 5%
LROP Bucharest H. Coanda 1403 16 80 6%
UUEE Moscow Sheremetyevo 2616 21 297 11%
LYBE Belgrade Nikola Tesla 1381 71 73 9%
LZIB Bratislava 1368 34 230 16%
LJLJ Ljubljana 1332 4 63 5%

GCLP Gran Canaria 1459 6 102 7%
LEMD Madrid Barajas 1250 36 255 19%
LEPA Palma de Mallorca 1353 21 405 24%
ESSA Stockholm Arlanda 2810 17 372 12%
LTAC Ankara Esenboga 1441 9 106 7%
EGLL London Heathrow 1395 17 347 21%

EGGW London Luton 1358 10 688 34%
EGSS London Stansted 1354 10 657 33%

End of Table A1
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Table A3. Complete results of change group count 2023. Dates columns contain count of unique issue dates  
(even duplicate without duplicate forecasts)

ICAO NAME Dates TEMPO P30 P30T P40 P40T BECMG/FM

LATI Tirana 1476 1140 15 124 73 136 874
UDYZ Yerevan 1446 1339 0 0 0 0 22
LOWW Vienna 3004 5347 52 1010 57 706 4773
UBBB Baku 1470 3601 0 1 2 88 1787

UMMS Minsk 1470 3827 0 0 5 16 1790
EBBR Brussels 1497 1239 58 1031 69 473 1117
LQSA Sarajevo 1403 1158 245 1008 269 741 321
LBSF Sofia 1474 1560 88 210 142 351 2373
LDZA Zagreb 1515 837 123 1148 209 602 1657
LKPR Prague 2979 5257 27 1674 23 360 4455
EKCH Copenhagen 1525 3196 0 0 142 57 2215
EETN Tallinn 1492 3039 1 144 5 947 2072
EFHK Helsinki 2981 4588 725 769 242 477 4420
LFPG Paris Charles de Gaulle 1409 1823 26 1061 60 1456 2664
UGTB Tbilisi 1398 1765 4 63 7 234 1203
LGAV Athens 1485 750 90 501 24 300 1463
EIDW Dublin 1435 2552 19 1485 26 1070 4418
LIRF Rome Fiumicino 1477 1268 0 31 0 82 3139
BKPR Pristina 1466 1558 85 231 101 154 472
EVRA Riga 2979 7587 0 0 31 733 2523
EYVI Vilnius 1453 4388 0 32 0 129 2380
ELLX Luxembourg 1413 2015 25 384 49 480 1475

LMML Malta 1464 639 141 311 211 198 1169
LUKK Chisinau 1480 1660 0 13 12 179 1555
LYPG Podgorica 1455 1014 12 353 4 387 367
EHAM Amsterdam Schiphol 1484 1148 285 848 156 580 4647
LWSK Skopje 2937 2482 16 338 6 267 1220
EPWA Warsaw 2981 3361 164 394 733 1651 3268
LPPT Lisbon 1467 1192 97 512 51 238 4705
LPMA Madeira 1482 1058 46 442 40 269 1142
LPPD Ponta Delgada 1469 1814 13 447 19 277 2318
LROP Bucharest Henri Coanda 1460 1170 10 405 11 301 1956
UUEE Moscow Sheremetyevo 2918 4695 0 0 12 615 2266
LYBE Belgrade Nikola Tesla 1426 1286 4 79 8 144 1261
LZIB Bratislava 1485 2367 3 246 0 428 1902
LJLJ Ljubljana 1451 1230 33 813 78 607 556

GCLP Gran Canaria 1482 341 11 799 13 467 686
LEMD Madrid Barajas 1451 1041 18 1235 13 1732 1352
LEPA Palma de Mallorca 1435 1443 9 905 0 877 2923
ESSA Stockholm Arlanda 2970 2612 0 0 3112 62 2845
LTAC Ankara Esenboga 1480 1498 86 183 16 20 1689
EGLL London Heathrow 1503 2200 308 2670 103 793 2490

EGGW London Luton 1495 2876 360 2697 248 1078 3136
EGSS London Stansted 1489 3129 527 3092 283 1076 3581
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Table A4. Count and percentage of AMD and COR forecasts 2023

ICAO NAME TAF COR AMD % of A/C

LATI Tirana 1542 29 37 4%
UDYZ Yerevan 1523 37 40 5%
LOWW Vienna 3366 38 324 12%
UBBB Baku 1582 23 89 8%

UMMS Minsk 1917 7 440 30%
EBBR Brussels 1554 40 17 4%
LQSA Sarajevo 1626 123 100 16%
LBSF Sofia 1544 11 59 5%
LDZA Zagreb 1784 43 226 18%
LKPR Prague 3024 2 43 2%
EKCH Copenhagen 2031 21 485 33%
EETN Tallinn 1688 54 142 13%
EFHK Helsinki 3574 35 558 20%
LFPG Paris Charles de Gaulle 1881 0 472 33%
UGTB Tbilisi 1564 81 85 12%
LGAV Athens 1529 0 44 3%
EIDW Dublin 1940 45 460 35%
LIRF Rome Fiumicino 1541 13 51 4%
BKPR Pristina 1683 91 126 15%
EVRA Riga 3287 4 304 10%
EYVI Vilnius 1863 101 309 28%
ELLX Luxembourg 1606 58 135 14%

LMML Malta 1531 35 32 5%
LUKK Chisinau 1546 15 51 4%
LYPG Podgorica 1554 36 63 7%
EHAM Amsterdam Schiphol 1591 57 50 7%
LWSK Skopje 3077 68 72 5%
EPWA Warsaw 3170 21 168 6%
LPPT Lisbon 1602 2 133 9%
LPMA Madeira 1537 5 50 4%
LPPD Ponta Delgada 1556 3 84 6%
LROP Bucharest Henri Coanda 1571 16 95 8%
UUEE Moscow Sheremetyevo 3326 34 374 14%
LYBE Belgrade Nikola Tesla 1545 50 69 8%
LZIB Bratislava 1786 43 258 20%
LJLJ Ljubljana 1584 1 132 9%

GCLP Gran Canaria 1587 15 90 7%
LEMD Madrid Barajas 1923 47 425 33%
LEPA Palma de Mallorca 1992 29 528 39%
ESSA Stockholm Arlanda 3481 5 506 17%
LTAC Ankara Esenboga 1573 10 83 6%
EGLL London Heathrow 1929 20 406 28%

EGGW London Luton 2309 12 802 54%
EGSS London Stansted 2272 10 773 53%


