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Article History:  Abstract. The thermal conductivity coefficient of epoxy composites for aircraft, which are reinforced with 
glass fiber and filled with aerosil, γ-aminopropylaerosil, aluminum oxide, chromium oxide, respectively, was 
simulated. To this end, various machine learning methods were used, in particular, neural networks and boost-
ed trees. The results obtained were found to be in good agreement with the experimental data. In particular, 
the correlation coefficient in the test sample was 0.99%. The prediction error of neural networks in the test 
samples was 0.5; 0.3; 0.2%, while that of boosted trees was 1.5; 0.9%.
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1. Introduction 

In the aircraft design, the fuselage, wings, tail unit, engine 
nacelle, and interior parts can be made from composite 
materials. It is urgent to develop new materials, innova-
tive solutions for technology and production equipment, 
allowing for high strength and aerodynamic characteristics 
with economic efficiency in aircraft production conditions.

An increasingly growing automation of technology 
along with numerous data sets account for the need in 
machine learning methods, which, instead of being pro-
grammed, are capable of analyzing data and learning from 
them (Konovalenko et al., 2021). In the presence of ex-
perimental data, machine learning algorithms are known 
to solve the problems of fracture mechanics with great 
accuracy. In particular, they are capable of predicting the 
life of a fatigue crack that occurred in an aluminum alloy 
using a neural network (Mohanty et al., 2009) and fatigue 
fracture diagrams of aluminum alloy D16T subjected to 
the regular loading conditions with the load cycle asym-
metry R = 0; 0.2; 0.4; 0.6 (Yasnii et al., 2018). The authors 
(Zhang & Wei, 2022) predicted the propagation of a fa-
tigue crack under conditions of variable amplitude loading 
by means of Lagrange interpolation based on an artifi-
cial neural network. In addition, the stress-strain diagrams 
of aluminum alloy AMg6 (Yasniy et al., 2020; 2022a) and 
AL-6061 (Yasniy et al., 2022b) were simulated using ma-
chine learning methods. Neural networks have also aided 

the authors (Bezerra et al., 2007) in predicting the stress-
strain diagrams that describe the shear of such composites 
as carbon fiber/epoxy resin and glass fiber/epoxy resin. 
While the bending properties of 3D-printed carbon/ep-
oxy composites with different processing parameters were 
predicted by the authors (Monticeli et al., 2022) using an 
artificial neural network and statistical methods. In Stephen 
et al. (2022), the impact characteristics of fiber-reinforced 
polymer composites are modeled using the finite element 
method and an artificial neural network. In particular, a 
multi-scale approach based on the stochastic integrated 
machine training was used in Liu et al. (2022) in order to 
predict the thermal conductivity of polymer composites 
reinforced with carbon nanotubes. Therefore, different ma-
chine training methods appear relevant when it comes to 
predicting the thermal conductivity coefficient of polymer 
composites.

In general, polymer composite materials are often 
used in the production of load-bearing structures, such as 
equipment for gas mains, radio engineering products, and 
aircraft structures because of their superior physical-me-
chanical and thermo-physical properties (Stukhlyak et al., 
2015; Dobrotvor et al., 2021). The issues related to the 
preferable filler type, the degree of filling and dispersion, 
and the polymerization conditions of the filled composi-
tion are considered while creating composite materials. In 
particular, composites with improved technological and 
service characteristics ensure a strong and stable bond 
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between the surfaces of the filler and the polymer. The 
thermal expansion of polymers is characterized by cer-
tain features in the range of glass transition temperature. 
These features are known to depend on the temperature 
variation rate. Therefore, investigations into the thermo-
physical properties that affect the service characteristics 
remain topical.

This research aims at predicting the thermal conduc-
tivity coefficient of the epoxy composites reinforced with 
glass fiber and filled with aerosil, γ-aminopropylaerosil, 
aluminum oxide, chromium oxide, respectively, during their 
heating. For this purpose, various machine learning meth-
ods are used, in particular, neural networks and boosted 
decision trees. The results obtained are compared.

2. Materials and methods

2.1. Thermophysical research of filled epoxy 
composites
Epoxy composites with enhanced service properties can be 
obtained subject to optimizing their production technol-
ogy and the process of filling the matrix with the fillers of 
different chemical nature, composition and size, which are 
characterized by the improved mechanical and thermo-
physical properties. A small amount of fillers introduced 
into the epoxy matrix, the former being chemically active 
in relation to the matrix (1 wt % of aerosil and 1 wt % of 
γ-aminopropylaerosil per 100 wt %s), entails a significant 
increase in l. This is associated with a strong bond formed 
by the chemical and chemisorption interaction between 
the binder macromolecules and the aerosil surface. At the 
same time, a large amount of aerosil introduced into the 
epoxy matrix causes a decreased thermal conductivity of 
the material, which is due to an increased length of the 
separation boundary and a weakened interaction of OH 
groups between the filler and the binder.

A low concentration of Al2O3 (up to 30 wt %) introduced 
into the binder causes little change in the thermal con-
ductivity coefficient of the epoxy composite, as compared 
to the thermal conductivity of the unfilled binder. Epoxy 
composites with the Al2O3 content in the matrix exceeding 
30 wt % are characterized by an increased thermal conduc-
tivity compared to the unfilled binder. This is because the 
thermal conductivity of the filler itself affects the thermal 
conductivity of the material as a whole. In such composites, 
there is no bond between the matrix and the filler.

The mechanisms characteristic of both chemically ac-
tive (γ-aminopropylaerosil and aerosil) and inactive (alumi-
num oxide) fillers are also inherent in the epoxy composite 
filled with chromium oxide. Therefore, for this filler, the 
thermal conductivity coefficient is determined by the com-
peting contribution made by the mechanisms that account 
for its change as described above. In one case, physical 
nodes formed between the matrix and the active centers 
on the surface of the filler particles lead to an increase 
in l. This normally occurs at low temperatures due to the 
additional hydrogen bonds formed at the phase bound-

ary. In the other case, it leads to a decrease in l due to 
a higher defectiveness of the boundary layer. In addition, 
thermal resistance also increases in response to the elevat-
ed temperature caused by failure of physical nodes. At the 
same time, the thermal conductivity of the filler accounts 
for an increase in the filler content with an increase in the 
thermal conductivity of the matrix.

In general, the thermophysical properties of epoxy 
composite materials depend both on the nature and 
amount of the filler and the specifics of the particle sur-
face. In addition, these characteristics can be improved by 
introducing the fillers that are chemically active in relation 
to the matrix. These fillers form a strong bond between the 
binder macromolecules and the filler surface, which occurs 
as a result of the chemical and chemisorption interaction. 

2.2. Methods of machine learning
The most common model of a neural network is a multi-
layer perceptron, in which neurons are arranged in layers 
from input to output (Haykin, 2006). The structure of a 
three-layer neural network is shown in Figure 1. In particu-
lar, the concentration of the mass fraction C in the filler 
and the temperature T serve as input parameters, while 
the thermal conductivity coefficient l is the output pa-
rameter. Accordingly, wij and wjk are the synaptic weights 
between different layers of the network, and (H1, H2, ..., Hn) 
are the thresholds of the hidden layer. 

The input signal passes to the neurons of the hidden 
layer, while the output signals of the hidden layer of the 
neural network are the inputs of the next one. Neurons of 
each layer are the output signals of only the previous one.

To attain the best neural network architecture, a num-
ber of numerical experiments were conducted using the 
“input-output” pairs and different activation functions, 
such as tangential, logarithmic ones and others, thus vary-
ing the number of neurons in the hidden layer. In the pro-
cess of learning, the network uses error backpropagation 
algorithms, that is, it adjusts its weights to minimize the 
error between the predicted and experimental data.

The network operation algorithm is based on Haykin 
(2006) the following Equations:

jl mjl mjl
m

NET w x= ×∑ ;  (1)

Figure 1. A three-layer neural network architecture with one 
hidden layer and one output layer 
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( )jl jl jlOUT F NET= − q ; (2)

( 1)mj l mlx OUT+ = , (3)

where i is the number of entry into the layer; j is the neu-
ron number in the layer; l is the layer number; xijl is the i-th 
input signal of the j-th neuron in layer l; wijl is the weight 
coefficient of the i-th input of the j-th neuron of layer l; 
NETjl is the NET signal of the j-th neuron of layer l; Outjl 
is the output signal; F is the nonlinear activation function; 
qjl is the threshold level of a particular neuron.

The choice of the neural network architecture, learning 
algorithm, error function, and activation function of the 
hidden and output layers is important when building a 
network. In addition, the stopping parameter of the neural 
network learning was the number of epochs, which in this 
research was equal to 1000.

The algorithm of boosted trees is a powerful method 
of the intelligent data analysis (Alpayndin, 2010). It is com-
monly used to predict data and in situations when the 
results of one decision affect those of the subsequent one, 
that is, in order to make sequential decisions. The model 
structure is tree-like (Figure 2). In general, a boosted tree 
consists of internal nodes and leaves that are added dur-
ing learning depending on the problem complexity. In par-
ticular, ovals are the decision nodes, while rectangles are 
the leaf nodes. The univariate decision node splits along 
one axis, and successive splits are orthogonal to each 
other. After the first split, {x | x1 < w10} is pure and is not 
split further.

The major advantage of the boosted trees is versatility 
and ease of data interpretation.

Using the Mean Absolute Percent Error (MAPE) for-
mula, the prediction error is calculated as follows:

( ) ( )

( )
1

1100%
n i true i prediction

i
i true

y y
MAPE

n y=

−
= ⋅ ∑ , (4)

where yi(prediction) is the predicted element of the sample; 
yi(true) is the real value of the element of the sample; n is 
the size of the study sample.

3. Results and discussion

3.1. Composition of the filled epoxy polymers 
reinforced with basalt and glass fiber
The introduction of fillers into epoxy composite materials 
in known to increase the heat resistance of the compos-
ites compared to that of the polymer binder. Accordingly, 
the heat resistance of epoxy composites depends both on 
the filler’s nature and the specifics of the particle surface. 
In particular, the presence of active (γ-aminopropylaerosil 
and aerosil) and inert (Al2O3 and Cr2O3) fillers allows in-
creasing the thermal stability limits of epoxy composites. 
Therefore, the introduction of fillers that are chemically 
active in relation to the matrix provides for a more signifi-
cant effect, which manifests itself in increasing the tem-
perature of thermal fracture of the filled polymer materials 
compared to Al2O3 and Cr2O3. In the formation of epoxy 
CMs, the ED-20 epoxy dian oligomer (GOST 10587-84) was 
chosen as the main binding component characterized by 
high adhesive and cohesive strength, low shrinkage and 
high manufacturability during application.

Polyethylene polyamine PEPA hardener (TU 6-05-241-
202-78) was used for crosslinking epoxy compositions, mak-
ing it possible for the materials to harden at room tempera-
tures. PEPA is known (Dobrotvor et al., 2021) to be a low 
molecular weight substance with the following chemical for-
mula: [-CH2-CH2-NH-]n. CMs were cross-linked by introduc-
ing a hardener into the composition at a stoichiometric ratio 
of components by content (wt %) – ED-20: PEPA – 100: 10. 
The scheme of the epoxy composite is given in Table 1.

Table 1. Composition of the filled epoxy polymers 
reinforced with basalt and glass fiber

Filler Concentration, wt % Reinforcing fibrous filler

Aerosil 2 glass fiber
basalt fiber

6 glass fiber
basalt fiber

12 glass fiber
basalt fiber

g-aminopropy-
laerosil

2 glass fiber
basalt fiber

6 glass fiber
basalt fiber

12 glass fiber
basalt fiber

Cr2O3 30 glass fiber
basalt fiber

50 glass fiber
basalt fiber

100 glass fiber
basalt fiber

Al2O3 30 glass fiber
basalt fiber

50 glass fiber
basalt fiber

100 glass fiber
basalt fiber

Figure 2. Example of a data set and the corresponding 
decision tree (Alpayndin, 2010)
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3.2. Thermal conductivity coefficients of filled 
epoxy polymers 
To model the dependence of the thermal conductivity co-
efficient on the mass fraction concentration of the filler 
and temperature, the mass fraction concentration of the 
filler and temperature served as input parameters, while 
the thermal conductivity coefficient l was considered as 
an output parameter.

The thermal conductivity coefficient of epoxy poly-
mers reinforced with glass fiber and filled with aerosil, 
γ-aminopropylaerosil, aluminum oxide, chromium oxide, 
respectively, was predicted on the basis of the experimen-
tal data obtained in Mykytyshyn (2002) by various meth-
ods of machine learning, in particular, neural networks and 
boosted decision trees.

In the process of learning, the data set was divided 
into two unequal parts – the training sample and the test 
sample. The sample contained 4,000 elements for each 
epoxy polymer reinforced with fiberglass and filled with 
aerosil and γ-aminopropylaerosil, respectively, and 28,000 
elements for the polymer filled with aluminum oxide and 
chromium oxide, respectively, of which 80% were ran-
domly selected for the learning sample, and 20% were left 
to assess the prediction quality. In particular, to achieve 
this number of elements, the dataset was expanded using 
spline interpolation. 

To model the dependence of the thermal conductivity 
coefficient on the mass fraction concentration of the filler 
and temperature, the thermal conductivity coefficient l 
served as an input parameter, while the mass fraction con-
centration of the filler and temperature were considered 
as output parameters. 

Machine learning methods were used to construct the 
dependences of the experimental data relating to the ther-
mal conductivity coefficient on the predicted data (Fig-
ures 3–6). The prediction results were found to be in good 
agreement with the experimental ones.

It is noteworthy that points are located close to the 
bisector of the first coordinate angle in Figures 3–6, in-
dicating a linear relationship between the predicted 
and experimental data. The NN method gives an er-
ror of 0.5% for epoxy composites filled with aerosil and 
γ-aminopropylaerosil, 0.3% and 0.2% for epoxy composites 
filled with aluminum oxide and chromium oxide, respec-
tively. At the same time, the error of the boosted deci-
sion tree method is 1.5% for epoxy composites filled with 
aerosil, γ-aminopropylaerosil, and aluminum oxide, respec-
tively, and 0.9% for epoxy composite filled with chromium 
oxide. Figures 7–10 show the dependence of the predicted 
thermal conductivity coefficient on the mass fraction con-
centration of the filler and temperature of the test sample 
obtained by various methods of machine learning.

(a) (b)

(a) (b)

Figure 3. Predicted and experimental dependences of the thermal conductivity coefficient for an epoxy composite filled with 
aerosil obtained by the method of neural networks (a) and boosted decision trees (b) 

Figure 4. Predicted and experimental dependences of the thermal conductivity coefficient for an epoxy composite filled with 
γ-aminopropylaerosil obtained by the method of neural networks (a) and boosted decision trees (b)
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Figure 5. Predicted and experimental dependences of the thermal conductivity coefficient for an epoxy composite filled with 
aluminum oxide obtained by the method of neural networks (a) and boosted decision trees (b)

(a) (b)

(a) (b)

Figure 6. Predicted and experimental dependences of the thermal conductivity coefficient for an epoxy composite filled with 
chromium oxide obtained by the method of neural networks (a) and boosted decision trees (b)

Figure 7. Temperature dependence of changes in the thermal conductivity coefficient for the composite filled with aerosil 
obtained by the method of neural networks (a) and boosted decision trees (b)

(a) (b)

(a) (b)

Figure 8. Temperature dependence of changes in the thermal conductivity coefficient for the composite filled with 
γ-aminopropylaerosil obtained by the method of neural networks (a) and boosted decision trees (b)
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(a) (b)

Figure 9. Temperature dependence of changes in the thermal conductivity coefficient for the composite filled with aluminum 
oxide obtained by the method of neural networks (a) and boosted decision trees (b)

(a) (b)

Figure 10. Temperature dependence of changes in the thermal conductivity coefficient for the epoxy composite filled with 
chromium oxide obtained by the method of neural networks (a) and boosted decision trees (b)

The main parameters of machine learning algorithms, 
in particular, neural networks and boosted decision trees, 
are given in Table 2–3. The statistical graph used for the 
data analysis presents as a histogram of residual values, 
which shows the frequency of each interval of values ver-
sus residual values. In particular, the residuals show the 
difference between the experimental and predicted values. 

They were found to be concentrated around zero and have 
a normal distribution.

Figures 11–14 show frequency for epoxy compos-
ites reinforced by glass fiber and filled with Aerosil, 
γ-aminopropylaerosil, aluminum oxide, chromium oxide, 
respectively, using different machine learning methods, 
in particular, neural networks and boosted decision trees.

Table 2. Parameters of neural networks

Filler Name of network Algorithm of 
learning Error function Function of hidden 

activation
Function of output 

activation

Aerosil MLP 2-8-1 BFGS SOS Logarithmic Logarithmic
γ-aminopro-pylaerosil MLP 2-8-1 BFGS SOS Logarithmic Tangential
Al2O3; Cr2O3 MLP 2-7-1 BFGS SOS Tangential Tangential

Table 3. Parameters of reinforced trees

Filler Number of trees

Aerosil, γ-aminopropylaerosil, Al2O3; Cr2O3 1000
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(a) (b)

Figure 11. Frequency in the test set for the epoxy composite filled with aerosil obtained by the method of neural networks (a) 
and boosted decision trees (b)

Figure 12. Frequency in the test set for the epoxy composite filled with γ-aminopropylaerosil obtained by the method of 
neural networks (a) and boosted decision trees (b)

(a) (b)

(a) (b)

Figure 13. Frequency in the test set for the epoxy composite filled with aluminum oxide obtained by the method of neural 
networks (a) and boosted decision trees (b)

(a) (b)

Figure 14. Frequency in the test set for the epoxy composite filled with chromium oxide obtained by the method of neural 
networks (a) and boosted decision trees (b)
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4. Conclusions

Once predicted, thermal conductivity can provide im-
portant information about the thermal properties of a 
material. It also aids a lot in understanding thermal per-
formance of the material, making it easier to investigate 
and develop new composites for various applications. In 
particular, knowing thermal conductivity is crucial in the 
design of structures and materials, especially composites 
with different fillers. Materials with improved thermal per-
formance can be created for such industries as civil engi-
neering, aviation, electronics, and so on.

Machine learning methods, such as neural networks 
and boosted trees, were used to simulate the thermal 
conductivity coefficient of epoxy polymers reinforced by 
glass fiber and filled with aerosil, γ-aminopropyl aerosil, 
aluminum oxide, chromium oxide, respectively. Neural 
networks had a prediction error of 0.5%, 0.3%, and 0.2% 
when evaluating different test samples. At the same time, 
boosted trees had a slightly higher prediction error, which 
was 1.5% and 0.9%, respectively. Despite these differences, 
both machine learning methods proved to be efficient at 
predicting thermal conductivity coefficients. This makes 
them very promising in materials science. Very low predic-
tion errors further emphasize the accuracy and reliability 
of these models in the analysis of the complex relation-
ships between the composite materials studied.
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